
Algorithms and Data Structures

Marius Kloft



Marius Kloft: Alg&DS, Summer Semester 2016 2

Who am I

Marius Kloft
2006 Diploma in Mathematics, U Marburg

Minor: Computer Science
2007-2009 Doctoral Researcher, Fraunhofer & TU Berlin, 

Machine Learning for Intrusion Detection
2009-2010  Visiting Scholar, University of California
2010-2011 Doctorial Student, TU Berlin
2011 Dissertation on Multiple Kernel Learning
2011-2012 Postdoc, TU Berlin ML for Genomics
2012-2014 Postdoc, Courant Institute, Sloan-Kettering 

Cancer Center & Google Research
2014- Junior Professor of Machine Learning (ML),

HU Berlin

TU Berlin
HU Berlin

Sloan-Kettering 

Courant Institute
Google Research

University of
California



Marius Kloft: Alg&DS, Summer Semester 2016 3

Lehrstuhl “Maschinelles Lernen”

• Our topics in research
– Development of novel machine learning algorithms 
– Speeding up machine learning algorithms to big data 

(e.g., via distributed computing)
– Statistical learning theory
– Applications in the biomedical domain

• Our topics in teaching
– Machine Learning 
– Data Modeling
– Algorithms & Data Structures



Marius Kloft: Alg&DS, Summer Semester 2016 4

What is Machine Learning?

• Central question

– “How to develop computer 
programs that learn from data 
to make accurate predictions?”

• Example
– Image classification



Marius Kloft: Alg&DS, Summer Semester 2016 5

Once upon a Time …

• IT company A develops software for insurance company B
– Volume: ~4M Euros

• B not happy with delivered system; doesn’t want to pay
• A and B call a referee to decide whether requirements 

were fulfilled or not
– Volume: ~500K Euros

• Job of referee is to understand requirements (~60 pages) 
and specification (~300 pages), survey software and 
manuals, judge whether the contract was fulfilled or not



Marius Kloft: Alg&DS, Summer Semester 2016 6

One Issue

• Requirement: „Allows for smooth operations in daily 
routine“

This is hardly testable



Marius Kloft: Alg&DS, Summer Semester 2016 7

One Issue

• Requirement: „Allows for smooth operations in daily 
routine“

• Claim from B
– I search a specific 

contract
– I select a region and a

contract type
– I get a list of all 

contracts sorted by name
in a drop-down box

– This sometimes takes
minutes! A simple drop-
down box! This performance 
is inacceptable for our call centre! 



Marius Kloft: Alg&DS, Summer Semester 2016 8

Discussion

• A: We tried and it worked fined
• B: OK, most of the times it works fine, but sometimes it is 

too slow
• A: We cannot reproduce the error; please be more specific 

in what you are doing before the problem occurs
• B: Come on, you cannot expect I log all my clicks and take 

notes on what is happening
• A: Then we conclude that there is no error
• B: Of course there is an error
• A: Please pay as there is no reproducible error
• …



Marius Kloft: Alg&DS, Summer Semester 2016 9

A Closer Look

• System has classical two-tier architecture

• Upon selecting a region and a contract, a query is 
constructed and send to the database

• Procedure for “query construction” is used a lot
– All contracts in a region, … running out this year, … by first letter 

of customer, … sum of all contract revenues per year, …
– “Meta” coding: very complex, hard to understand

Clients                Database



Marius Kloft: Alg&DS, Summer Semester 2016 10

Requirement

• Recall

• After retrieving the list of customers, it has to be sorted



Marius Kloft: Alg&DS, Summer Semester 2016 11

Code used for Sorting the List of Customer Names

• S: array of Strings, |S|=n
• Sort S alphabetically

– Take the first string and compare to 
all others

– Swap whenever a later string is 
smaller

– Repeat for 2nd, 3rd, … 
– After 1st iteration of outer loop:

S[1] contains smallest string from S
– After 2nd iteration of outer loop: S[2] 

contains 2nd smallest string from S
– etc.

S: array_of_names;
n := |S|;
for i = 1..n-1 do

for j = i+1..n do
if S[i]>S[j] then
tmp := S[i];
S[i] := S[j];
S[j] := tmp;

end if;
end for;

end for;



Marius Kloft: Alg&DS, Summer Semester 2016 12

Example

5
7
3
9
1
7

5
7
3
9
1
7

5
7
3
9
1
7

3
7
5
9
1
7

3
7
5
9
1
7

3
7
5
9
1
7

1
7
5
9
3
7

1
7
5
9
3
7

1
7
5
9
3
7

1
7
5
9
3
7

1
5
7
9
3
7

1
5
7
9
3
7

1
5
7
9
3
7

1
3
7
9
5
7

1
3
7
9
5
7

1
3
7
9
5
7

1
3
7
9
5
7

1
3
7
9
5
7

1
3
5
9
7
7

1
3
5
9
7
7

S: array_of_names;
n := |S|;
for i = 1..n-1 do

for j = i+1..n do
if S[i]>S[j] then
tmp := S[i];
S[i] := S[j];
S[j] := tmp;

end if;
end for;

end for;



Marius Kloft: Alg&DS, Summer Semester 2016 13

Example continued

1
3
5
9
7
7

1
3
5
9
7
7

1
3
5
7
9
7

1
3
5
7
9
7

1
3
5
7
9
7

1
3
5
7
9
7

1
3
5
7
7
9

• Seems to work
• This algorithm is called “selection sort”

– Select smallest element and move to front, select second-smallest 
and move to 2nd position, …



Marius Kloft: Alg&DS, Summer Semester 2016 14

Analysis

• How long will it take (depending on n)?
• Which parts of the program take CPU time?

1. Very little, constant time
2. Probably very little, constant time
3. n-1 assignments

4. n-i assignments
5. One comparison

6. One assignment
7. One assignment
8. One assignment

9. No time
10. One increment (j+1); one test

11. One increment (i+1); one test

1. S: array_of_names;
2. n := |S|;
3. for i = 1..n-1 do
4. for j = i+1..n do
5. if S[i]>S[j] then
6. tmp := S[i];
7. S[i] := S[j];
8. S[j] := tmp;
9. end if;
10. end for;
11.end for;



Marius Kloft: Alg&DS, Summer Semester 2016 15

Slightly More Abstract

• Assume one assignment/test costs c, one addition d
• Which parts of the program take time?

1. 0
2. c
3. (n-1)*c

4. (n-i)*c (hmmm …)
5. c

6. c
7. c
8. c

9. 0
10. c+d

11. c+d

1. S: array_of_names;
2. n := |S|;
3. for i = 1..n-1 do
4. for j = i+1..n do
5. if S[i]>S[j] then
6. tmp := S[i];
7. S[i] := S[j];
8. S[j] := tmp
9. end if;
10. end for;
11.end for;



Marius Kloft: Alg&DS, Summer Semester 2016 16

Slightly More Compact

• Assume one assignment/test costs c, one addition d
• Which parts of the program take time?

– Let’s be pessimistic: We 
always swap

– How would the list have 
to look like in first place?

• c
• (n-1)*c* (

• n-i* (
• 5*c

• c+d) +
• c+d)

1. S: array_of_names;
2. n := |S|;
3. for i = 1..n-1 do
4. for j = i+1..n do
5. if S[i]>S[j] then
6. tmp := S[i];
7. S[i] := S[j];
8. S[j] := tmp;
9. end if;
10. end for;
11.end for;

This is not yet clear



Marius Kloft: Alg&DS, Summer Semester 2016 17

Even More Compact

• Assume one assignment/test costs c, one addition d
• Which parts of the program take time?

– We have some cost outside
the loop (out_loops)

– And some cost inside the 
loop (in_loops)

– How often do we need to 
perform in_loops?

– c+(n-1)*c* ((n-i)*…)=
out_loops+(n-1)*c*?*in_loops

1. S: array_of_names;
2. n := |S|;
3. for i = 1..n-1 do
4. for j = i+1..n do
5. if S[i]>S[j] then
6. tmp := S[i];
7. S[i] := S[j];
8. S[j] := tmp;
9. end if;
10. end for;
11.end for;

out_loops

in_loops



Marius Kloft: Alg&DS, Summer Semester 2016 18

Observations

• The number of comparisons is 
independent of the number of 
swaps
– We always compare, but we do 

not always swap

5
7
3
9
1
7

5
7
3
9
1
7

5
7
3
9
1
7

3
7
5
9
1
7

3
7
5
9
1
7

3
7
5
9
1
7

1
7
5
9
3
7

1
7
5
9
3
7

1
7
5
9
3
7

1
7
5
9
3
7

1
5
7
9
3
7

1
5
7
9
3
7

1
5
7
9
3
7

1
3
7
9
5
7

1
3
7
9
5
7

1
3
7
9
5
7

1
3
7
9
5
7

1
3
7
9
5
7

1
3
5
9
7
7

1
3
5
9
7
7

1
3
5
9
7
7

1
3
5
9
7
7

1
3
5
7
9
7

1
3
5
7
9
7

1
3
5
7
9
7

1
3
5
7
9
7

1
3
5
7
7
9



Marius Kloft: Alg&DS, Summer Semester 2016 19

Observations

• The number of comparisons is 
independent of the number of 
swaps
– We always compare, but we do 

not always swap
• How many comparisons do we 

perform in total?

5
7
3
9
1
7

5
7
3
9
1
7

3
7
5
9
1
7

3
7
5
9
1
7

1
7
5
9
3
7

1
7
5
9
3
7

1
5
7
9
3
7

1
5
7
9
3
7

1
3
7
9
5
7

1
3
7
9
5
7

1
3
7
9
5
7

1
3
5
9
7
7

1
3
5
9
7
7

1
3
5
7
9
7

1
3
5
7
9
7



Marius Kloft: Alg&DS, Summer Semester 2016 20

Observations

• The number of comparisons is 
independent of the number of 
swaps
– We always compare, but we do 

not always swap
• How many comparisons do we 

perform in total?

5
7
3
9
1
7

5
7
3
9
1
7

3
7
5
9
1
7

3
7
5
9
1
7

1
7
5
9
3
7

1
7
5
9
3
7

1
5
7
9
3
7

1
5
7
9
3
7

1
3
7
9
5
7

1
3
7
9
5
7

1
3
7
9
5
7

1
3
5
9
7
7

1
3
5
9
7
7

1
3
5
7
9
7

1
3
5
7
9
7



Marius Kloft: Alg&DS, Summer Semester 2016 21

Observations

• First string is compared to n-1 
other strings 
– First row

• Second is compared to n-2
• Second row

• Third is compared to n-3
• …
• n-1’th is compared to 1

5
7
3
9
1
7

5
7
3
9
1
7

3
7
5
9
1
7

3
7
5
9
1
7

1
7
5
9
3
7

1
7
5
9
3
7

1
5
7
9
3
7

1
5
7
9
3
7

1
3
7
9
5
7

1
3
7
9
5
7

1
3
7
9
5
7

1
3
5
9
7
7

1
3
5
9
7
7

1
3
5
7
9
7

1
3
5
7
9
7



Marius Kloft: Alg&DS, Summer Semester 2016 22

Together

222
)1(i  13)-(n2)-(n1)-(n

21-n

1i

nnnn



 



• This leads to the following total cost estimation:
out_loops+(n2-n)*in_loops/2

• Let’s assume c=d=1, then:
n+1+(n2-n)*8/2

n out_loops in_loops total
10 11 360 371
100 11 39.600 39.611
500 11 998.000 998.011

1.000 11 3.996.000 3.996.011
2.000 11 15.992.000 15.992.011

0
2,000,000
4,000,000
6,000,000
8,000,000

10,000,000
12,000,000
14,000,000
16,000,000
18,000,000

10 100 500 1,000 2,000

out_loops
in_loops

n



Marius Kloft: Alg&DS, Summer Semester 2016 23

What Happened?

• Most combinations (region, contract type) select only a 
handful of contracts

• A few combinations select many contracts (2000-5000)
• Time it takes to fill the drop-down list is not proportional to 

the number of contracts (n), but proportional to n2/2
– Required time is ”quadratic in n”
– Assume one comparison takes 10 nanoseconds (0.000001 sec)
– A handful of contracts (~10): ~500 operations => 0,0005 sec
– Many contracts (~5000) => ~125M operations => 125 sec
– Humans always expect linear time …

• Question: Could they have done it better?



Marius Kloft: Alg&DS, Summer Semester 2016 24

Of course

• Efficient sorting algorithms need ~n*log(n)*x operations
– Quick sort, merge sort, … see later
– For comparability, let’s assume x=8
– Under certain reasonable assumptions, one cannot sort faster than 

with ~n*log(n) operations

0

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

12,000,000

14,000,000

16,000,000

18,000,000

10 100 500 1,000 2,000

out_loops
in_loops
log

“Almost” linear

n*log(n)

n



Marius Kloft: Alg&DS, Summer Semester 2016 25

So there is an End to Research in Sorting?

• We didn‘t consider how long it takes to compare 2 strings
– We used c=d=1, but we need to compare strings char-by-char
– Time of every comparison is proportional to the length of the 

shorter string
• We want methods requiring less operations per inner loop
• We want algorithms that are fast even if we want to sort 

1.000.000.000 strings 
– Which might not fit into main memory

• We made a pessimistic estimate – what is a realistic 
estimate (how often do we swap in the inner loop?)?

• …



Marius Kloft: Alg&DS, Summer Semester 2016 26

Terasort Benchmark

• 2009: 100 TB in 173 minutes 
– Amounts to 0.578 TB/min
– 3452 nodes x (2 Quadcore, 8 GB memory)
– Owen O'Malley and Arun Murthy, Yahoo Inc. 

• 2010: 1,000,000,000,000 records in 10,318 seconds 
– Amounts to 0.582 TB/min
– 47 nodes x (2 Quadcore, 24 GB memory), Nexus 5020 switch
– Rasmussen, Mysore, Madhyastha, Conley, Porter, Vahdat, Pucher

• Other goals
– PennySort: Amount of data sorted for a penny's worth of system 

time
– JouleSort: Minimize amount of energy required during sorting



Marius Kloft: Alg&DS, Summer Semester 2016 27

Content of this Lecture

• This lecture
• Algorithms and …
• Data Structures
• Concluding Remarks



Marius Kloft: Alg&DS, Summer Semester 2016 28

Algorithms and Data Structures

• Slides are English
• Vorlesung wird auf Deutsch gehalten
• Acknowledgement: Prof. Ulf Leser
• Lecture: 4 SWS; exercises 2 SWS
• Contact:

– Marius Kloft
– RUD 25, Raum 4.215
– Office hours: Fridays, 15:00-16:00
– “Email”:  only via Goya
– Always cc your TA (=Übungsleiter(in)) when you write me a 

message



Marius Kloft: Alg&DS, Summer Semester 2016 29

Exercises & TAs:

• Monday, 9-11, RUD 26, 1‘303, Marc Bux
• Monday, 13-15, RUD 26, 1‘305, Marc Bux
• Monday, 13-15, RUD 26, 1‘303, Florian Tschorsch
• Tuesday, 9-11, RUD 26, 1'303, Patrick Schäfer
• Tuesday, 13-15, RUD 26, 0‘313, Kim Völlinger
• Wednesday, 9-11, RUD 26, 1‘306, Berit Grußien
• Thursday, 13-15, RUD 26, 1‘305, Kim Völlinger
• Thursday, 13-15, RUD 26, 0'313, Patrick Schäfer
• Friday, 9-11, RUD 26, 1‘305, Berit Grußien
• Friday, 11-13, RUD 26, 1‘305, Florian Tschorsch



Marius Kloft: Alg&DS, Summer Semester 2016 30

Schedule

• Tutorial: Michael R. Jung
– Mondays, 17-19, RUD 26, 1‘303
– Wednesdays, 17-19, RUD 26, 1‘303
– Thursdays, 15-17, RUD 26, 1‘306
– Fridays, 11-13, RUD 25, 3.101

• Mathematics refresher course:
– Wednesday, 9-11, RUD 26, 1‘306, Berit Grußien
– Thursday, 13-15, RUD 26, 0'313, Berit Grußien

• Exam: 
– Aug 1, 9:30-12:00, RUD 26, 0‘115 & 0‘110

• „Klausureinsicht“: Aug 4, 11-13, RUD25, 3.101 & 3.113
– Oct 4, 9:30-12:00, RUD 26, 0‘115   (Wiederholungsklausur)



Marius Kloft: Alg&DS, Summer Semester 2016 31

Lecture

• Mondays & Wednesdays, RUD 26, 0’115
– 11:00-11:45 & 12:00-12:45

• We will make 15mins break



Marius Kloft: Alg&DS, Summer Semester 2016 32

Exercises

• You will build teams of usually two students (maximally 
three) students registered in GOYA

• There will six bi-weekly assignments in total
• Each assignment gives 50 points
• Only groups having ≥50% of the maximal number of 

points over the entire semester are admitted to the exam



Marius Kloft: Alg&DS, Summer Semester 2016 33

Exercises (continued)

• Text-based homework assignments to be submitted in 
paper until 10:55 before the Monday lecture
– Or earlier in the letterbox at RUD 25, 3.321
– New problem sheet available on the same day

• One-time exception: this week‘s problem sheet will be
released on Wednesday, April 20
– You have time for submission until Wednesday, May 4

• First assignment available on Wednesday (is due May 2)
• Programming assignments to be tested with Java 1.6 on 

gruenau2 and submitted in GOYA (same deadline)



Marius Kloft: Alg&DS, Summer Semester 2016 34

Literature 

• Ottmann, Widmayer: Algorithmen und Datenstrukturen, 
Spektrum Verlag, 2002-2012
– 20 copies in library

• Other
– Saake / Sattler: Algorithmen und Datenstrukturen (mit Java), 

dpunkt.Verlag, 2006
– Sedgewick: Algorithmen in Java: Teil 1 - 4, Pearson Studium, 2003

• 20 copies in library
– Güting, Dieker: Datenstrukturen und Algorithmen, Teubner, 2004
– Cormen, Leiserson, Rivest, Stein: Introduction to Algorithms, MIT 

Press, 2003
• 10 copies in library



Marius Kloft: Alg&DS, Summer Semester 2016 35

Web 



Marius Kloft: Alg&DS, Summer Semester 2016 36

Website: Lecture

• https://hu.berlin/vl_algodat16



Marius Kloft: Alg&DS, Summer Semester 2016 37

Website: Excercises



Marius Kloft: Alg&DS, Summer Semester 2016 38

Pseudo Code

• You need to program all exercises in Java
• I will use informal pseudo code

– Much more concise than Java
– Goal: You should understand what I mean
– Syntax is not important; don’t try to execute programs from slides

• Translation into Java should be simple



Marius Kloft: Alg&DS, Summer Semester 2016 39

Topics of the Course

• Intro (~2)
• Complexity (~1)
• Abstract data types (~2)
• Lists  (~2)
• Sorting (~3)
• Searching in lists (~4)
• Queues & Hashing (~3)
• Search trees (~4)
• Graphs (~5)
• The end (~1)

April

Mai

June

July



Marius Kloft: Alg&DS, Summer Semester 2016 40

Questions?



Marius Kloft: Alg&DS, Summer Semester 2016 41

Questions

• BSc CS?
• Diplom CS? 
• BSc Mathematics?
• Kombibachelor?
• INFOMIT? Biophysics? Beifach?
• Semester?
• Who heard this course before?



Marius Kloft: Alg&DS, Summer Semester 2016 42

Content of this Lecture

• This lecture
• Algorithms and …
• Data Structures
• Concluding Remarks



Marius Kloft: Alg&DS, Summer Semester 2016 43

What is an Algorithm?

• An algorithm is a recipe for doing something
– Washing a car, sorting a set of strings, preparing a pancake, 

employing a student, …
• The recipe is given in a (formal, clearly defined) language
• The recipe consists of atomic steps

– Someone (the machine) must know what to do
• The recipe must be precise

– After every step, it must be uniquely decidable what comes next
– Does not imply that every run has the same sequence of steps

• The recipe must not be infinitely long



Marius Kloft: Alg&DS, Summer Semester 2016 44

More Formal

• Definition (general)
An algorithm is a precise and finite description of a process 
consisting of elementary steps.

• Definition (Computer Science)
An algorithm is a precise and finite description of a process 
that is (a) given in a formal language and (b) consists of 
elementary and machine-executable steps.

• Usually we also want: “and (c) solves a given problem”
– But algorithms can be wrong …



Marius Kloft: Alg&DS, Summer Semester 2016 45

Almost Synonyms

• Rezept
• Ausführungsvorschrift
• Prozessbeschreibung
• Verwaltungsanweisung
• Regelwerk
• Bedienungsanleitung

– Well …
• …



Marius Kloft: Alg&DS, Summer Semester 2016 46

History

• Word presumably dates back to “Muhammed ibn Musa abu
Djafar alChoresmi”,
– Published a book on calculating in the 8th century in Persia
– See Wikipedia for details

• Given the general meaning of the term, there have been 
algorithms since ever

• One of the first prominent one in math: Euclidian algorithm 
for finding the greatest common divisor (gcd) of two ints
– Assume a,b0; define gcd(a,0)=a



Marius Kloft: Alg&DS, Summer Semester 2016 47

Euclidian Algorithm

• Recipe: Given two integers a, b. As long as neither a nor b 
is 0, take the smaller of both and subtract it from the 
greater. If this yields 0, return the other number

• Example: (28, 92)
– (28, 64)
– (28, 36)
– (28, 8)
– (20, 8)
– (12, 8)
– (4, 8)
– (4, 4)
– (4, 0)

• Will this always work?

1. a,b: integer;
2. if a=0 return b;
3. while b≠0
4. if a>b
5. a := a-b;
6. else
7. b := b-a;
8. end if;
9. end while;
10.return a;

Actually not really precise



Marius Kloft: Alg&DS, Summer Semester 2016 48

Proof (sketch) that an Algorithm is Correct

• Assume our function “euclid” returns x
• We write “b|a” if (a mod b)=0

– We say: “b teilt a”
• 1st step: x is a common divisor of a 

and b
– Last step: b=0 and x=a≠0  x|a, x|b
– Pre-last: It must hold: a=b  x|a, x|b
– Previous: Either a=2x or b=2x  x|a, x|b
– Previous: Either (a,b)=(3x,x) or 

(a,b)=(2x,3x) or (a,b)=(x,3x) or 
(a,b)=(3x,2x)      x|a, x|b

– …

1. func euclid(a,b: int)
2. if a=0 return b;
3. while b≠0
4. if a>b
5. a := a-b;
6. else
7. b := b-a;
8. end if;
9. end while;
10. return a;
11.end func;



Marius Kloft: Alg&DS, Summer Semester 2016 49

Proof (sketch) that an Algorithm is Correct

• Note: if c|a and c|b and a>b  c|(a-b)
• 2nd step: x is the greatest divisor

– Assume some y with y|a and y|b
– It follows that y|(a-b) (or y|(b-a))
– It follows that y|((a-b)-b) (or y|((b-a)-b) …)
– …
– It follows that y|x
– Thus, y≤x

1. func euclid(a,b: int)
2. if a=0 return b;
3. while b≠0
4. if a>b
5. a := a-b;
6. else
7. b := b-a;
8. end if;
9. end while;
10. return a;
11.end func;



Marius Kloft: Alg&DS, Summer Semester 2016 50

Properties of Algorithms

• Definition
An algorithm is called terminating if it stops after a finite 
number of steps for every valid input

• Definition
An algorithm is called deterministic if it always performs 
the same series of steps given the same input

• We only study terminating and mostly deterministic algs
– Operating systems are “algorithms” that do not terminate
– Algs randomly deciding about next steps are not deterministic



Marius Kloft: Alg&DS, Summer Semester 2016 51

Algorithms and Runtimes

• Usually, one seeks efficient (read: fast) algorithms
• We will analyze the efficiency of an algorithm as a function 

of the size of its input; this is called its (time-)complexity 
– Selection-sort has time-complexity “O(n2)”

• The real runtime of an algorithm on a real machine 
depends on many additional factors we gracefully ignore
– Clock rate, processor, programming language, representation of 

primitive data types, available main memory, cache lines, …
• But: Complexity in some sense correlates with runtime

– It should correlate well in most cases, but there may be exceptions 
(especially on small inputs)



Marius Kloft: Alg&DS, Summer Semester 2016 52

Algorithms, Complexity and Problems

• An (correct) algorithm solves a given problem
• An algorithm has a certain complexity

– Which is a statement about the time it will take to finish as a 
function on the size of its input

• Also problems have complexities
– The complexity of a problem is a lower bound on the complexity of 

any algorithm that solves it
– If an algorithm has the same complexity as the problem it solves, it 

is optimal – no algorithm can solve this problem faster
• Proving the complexity of a problem usually is much harder 

than proving the complexity of an algorithm
– Needs to make a statement about any possible algorithm



Marius Kloft: Alg&DS, Summer Semester 2016 53

Relationships

• There are problems for which we know their complexity, but no 
optimal algorithm is known

• There are problems for which we do not know the complexity yet more 
and more efficient algorithms are discovered over time

• There are problems for which we only know lower thresholds on their 
complexity, but not the precise complexity

• There are problems of 
which we know that no 
algorithm exists 
– Undecidable problems
– Example: “Halteproblem”
– Implies that we cannot 

check in general if an 
algorithm is terminating

Source: S. Albers, Alg&DS; SoSe 2010



Marius Kloft: Alg&DS, Summer Semester 2016 54

Properties of Algorithms

1. Efficiency – how long will it take?
– Time complexity
– Worst-case, average-case, best-case
– Alternative: Run on reference machine using reference data set

• Done a lot in practical algorithm engineering
• Not so much in this introductory course

2. Space consumption – how much memory will it need?
– Space complexity
– Worst-case, average-case, best-case
– Can be decisive for large inputs

3. Correctness – does the algorithm solve the problem?

Often, one can 
trade space for 

time – look at both



Marius Kloft: Alg&DS, Summer Semester 2016 55

In This Module

• We will only occasionally look at space complexity
• We will mostly focus on worst-case time complexity

– Best-case is not very interesting
– Average-case often is hard to determine

• What is an „average string list“? 
• What is the average length of an arbitrary string?
• May depend in the semantic of the input (person names, DNA 

sequences, job descriptions, book titles, language, …)

• Keep in mind: Worst-case often is overly pessimistic



Marius Kloft: Alg&DS, Summer Semester 2016 56

Content of this Lecture

• This lecture
• Algorithms and …
• Data Structures
• Concluding Remarks



Marius Kloft: Alg&DS, Summer Semester 2016 57

What is a Data Structure?

• Algorithms work on input data, generate intermediate data, 
and finally produce result data

• A data structure is a way how data is represented inside 
the machine
– In memory or on disc (see Database course)

• Data structures determine what algs may do at what cost
– More precisely: … what a specific step of an algorithm costs

• Complexity of algs is tightly bound to the ds they use
– So tightly that one often subsumes both concepts under the term 

“algorithm”



Marius Kloft: Alg&DS, Summer Semester 2016 58

Example: Selection Sort (again)

• We assumed that S is 
– a list of strings (abstract), represented 
– as an array (concrete data structure)

• Arrays allow us to access the i’th
element with a cost that is
independent of i (and |S|)
– Constant cost, “O(1)”

• Let’s use a linked list for storing S
– Create a class C holding a string and a pointer to an object of C
– Put first sS into first object and point to second object, put 

second s into second object and point to third object, …
– Keep a pointer p0 to the first object

1. S: array_of_names;
2. n := |S|;
3. for i = 1..n-1 do
4. for j = i+1..n do
5. if S[i]>S[j] then
6. tmp := S[i];
7. S[i] := S[j];
8. S[j] := tmp;
9. end if;
10. end for;
11.end for;



Marius Kloft: Alg&DS, Summer Semester 2016 59

Selection Sort with Linked Lists 

• How much do the algorithm’s steps 
cost now?
– Assume following a pointer costs c
1. One assignment
2. Nothing
3. One assignment, n-1 times
4. Nothing
5. One comparison, … times
6. …

• Apparently no change in 
complexity
– Why? Only sequential access

1. i := p0;
2. repeat
3. j := i.next;
4. repeat
5. if i.val > j.val then
6. tmp := i.val;
7. i.val := j.val;
8. j.val := tmp;
9. end if;
10. j = j.next;
11. unil j.next = null;
12. i := i.next;
13.until i.next = null;



Marius Kloft: Alg&DS, Summer Semester 2016 60

Example Continued

• No change in complexity, but
– Previously, we accessed array 

elements, performed additions of 
integers and comparisons of strings, 
and assigned values to integers

– Now, we assign pointers, follow 
pointers, compare strings and follow 
pointers again

• These differences are not 
reflected in our “cost model”, but 
may have a big impact in practice

1. i := p0;
2. repeat
3. j := i.next;
4. repeat
5. if i.val > j.val then
6. tmp := i.val;
7. i.val := j.val;
8. j.val := tmp;
9. end if;
10. j = j.next;
11. unil j.next = null;
12. i := i.next;
13.until i.next = null;



Marius Kloft: Alg&DS, Summer Semester 2016 61

Content of this Lecture

• This lecture
• Algorithms and Data Structures
• Concluding Remarks 



Marius Kloft: Alg&DS, Summer Semester 2016 62

Why do you need this?

• You will learn things you will need a lot through all of your 
professional life

• Searching, sorting, hashing – cannot Java do this for us?
– Java libraries contain efficient implementations for most of the 

(basic) problems we will discuss 
– But: Choose the right algorithm / data structure for your problem

• TreeMap? HashMap? Set? Map? Array? …
• “Right” means: Most efficient (space and time) for the expected 

operations: Many inserts? Many searches? Biased searches? …

• Few of you will design new algorithms, but all of you often 
will need to decide which algorithm to use when

• To prevent problems like the ones we have seen earlier



Marius Kloft: Alg&DS, Summer Semester 2016 63

Exemplary Questions

• Give a definition of the concept “algorithm”
• What different types of complexity exist?
• Given the following algorithm …, analyze its worst-case 

time complexity
• The following algorithm … uses a double-linked list as basic 

set data structure. Replace this with an array
• When do we say an algorithm is optimal for a given 

problem?
• How does the complexity of an algorithm depend on (a) 

the data structures it uses and (b) the complexity of the 
problem it solves?


