

Algorithms and Data Structures

Asymptotic Complexity

Marius Kloft

Übungsgruppen

- Übungsgruppen, die sich über mehrere Übungstermine erstrecken, sind erlaubt.
- Bis zum 1. Mai müssen sich alle Studierenden für einen Übungstermin eingetragen haben (von Warte- und Vormerklisten verschwunden sein).
- Außerdem müssen Sie eine Übungsgruppe (Zweiergruppe, in Ausnahmefällen: Dreiergruppe) in Goya bis 1. Mai haben.
- Wer zur Abgabe des Blatts am 4. Mai für keinen Termin regulär angemeldet ist oder keine Übungsgruppe hat, kriegt dann entsprechend 0 Punkte für das erste Blatt.
- Bei Fragen: an jeweilige(n) ÜbungsgruppenleiterIn wenden

- Efficiency of Algorithms
- Machine Model
- Complexity
- Examples

Efficiency of Algorithms

- Research in algorithms focuses a lot on efficiency
 - Find fast/space-efficient algorithms for a given problem
 - Best-case, on average, in the worst-case
- Algorithms have an input and solve a defined problem
 - Sort this list of names
 - Compute the running 3-month average over this table of 10 years of daily revenues
 - Find the shortest path between node X and node Y in this graph with n nodes and m edges
 - Not: Which day is today? Are nuclear power plants evil?
- How can we measure efficiency for different inputs?
 - Also: How can we compare the efficiency of two algorithms for the same problem with different inputs?

Option 1: Use a Reference Machine

- Empirical evaluation
 - Define a concrete machine (CPU, RAM, BUS, ...)
 - Chose a set of different inputs
 - Run algorithm on all inputs and measure times
- Pro: Gives real runtimes
- Contra
 - Only one machine for the entire world?
 - Performance dependent on program. language and skill of engineer
 - Times between measured points can only be inter-/extrapolated
 - Are used datasets typical for what we expect in the real world?
 - Uniformly distributed over all possible inputs?
 - Can we extrapolate results into the future?

- Derive an estimate of the maximal (worst-case) number of operations as a function of the input
 - "For an input of size n, the alg. will perform " \sim n³" operations"
- Advantages
 - Analyses the algorithm, not its implementation
 - Independent of machine; future-proof
- Disadvantages
 - No real runtimes
 - What is an operation? What do we count?
 - How good is the estimate?

- In this lecture, we focus on complexity
 - Note: When it comes to practical problems, complexity is not everything
 - There can be extremely large runtime differences between algorithms having the same complexity
 - Difference between theoretical and practical computer science
- We need to define what we count: Machine model
- We need to define how we estimate: O-notation

- Efficiency of Algorithms
- Machine Model
- Complexity
- Examples

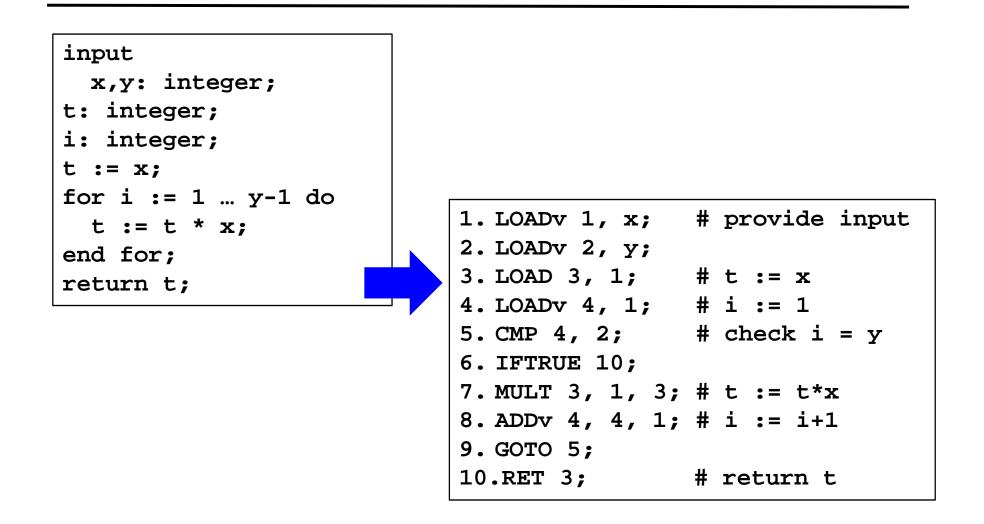
Machine Model

- Very simple model: Random Access Machines (RAM)
- Roughly: What a traditional CPU can execute in 1 cycle
 - Forget pipelining, registers, multi-core, disks, arithmetic units, ...
 - Forget GPU, FPGA, cache level, hyper-threading, ...
 - Note: There are cost models for many of these variations
- Storage
 - Infinite amount of storage cells
 - Each cell holds one (possibly infinitely large) value (number)
 - Cells are addressed by consecutive integers
 - Separate program storage no interference with data
 - Special treatment of input and output
 - One special register (switch) storing results of a comparison

Operations

- Load value into cell, move value from cell to cell
 - LOADv 3, 5: Load value "5" in cell 3
 - LOAD 3, 5: Copy value of cell 5 into cell 3
- Add/subtract/multiply/divide value/cell to/from/by cell and store in cell
 - ADDv 3, 5, 6; Add "6" to value of cell 5 and store result in cell 3
 - ADD 3, 5, 6; Add value of cell 6 to value of cell 5 and store in cell 3
- Compare values of two cells
 - If equal, set switch to TRUE, otherwise to FALSE
- Jump to position if switch is TRUE
- Jump to position
- Stop
 - RET 6; Returns value of cell 6 as result and stop

Example: X^y (for y>0)



Cost Model

- We count the number of operations (time) performed and the number of cells (space) required
- This is called uniform cost model (UCM)
 - Every operation costs time 1, every cell needs space 1
 - "1" has no unit we concentrate on the change in cost
 - Independent of size of operands
 - Clearly not realistic: Every CPU has only a certain number of bits per operation, thus can only compute values up to a certain limit
- Alternative model: Machine cost (logarithmic cost)
 - Consider machine representation of data
 - Binary for integer, ASCII for strings etc.
 - More realistic, yet more complex
 - Often not necessary ("values in sensible range")

```
1. LOADv 1, x; # input
2. LOADv 2, y;
3. LOAD 3, 1; # t := x
4. LOADv 4, 1; # i := 1
5. CMP 4, 2; # check i=y
6. IFTRUE 10;
7. MULT 3, 1, 3; # t := t*x
8. ADDv 4, 4, 1; # i := i+1
9. GOTO 5;
10.RET 3; # return t
```

- If y>1
 - Startup costs 4
 - Loop (lines 5-9) costs 5
 - Loop is passed by y times
 - Last loop costs 2, return costs 1
 - Total costs: 4+(y-1)*5+3
- If y=1
 - Total costs: 7=4+(y-1)*5+3

Selection Sort: Uniform versus Machine Cost

```
1. S: array of names;
2. n := |S|
3. for i = 1...-1 do
  for j = i+1..n do
4.
5.
  if S[i]>S[j] then
  tmp := S[i];
6.
      S[i] := S[j];
7.
      S[j] := tmp;
8.
  end if;
9.
    end for;
10.
11. end for;
```

- With UCM, we showed f(n)~4n²-3n
 - But: Every cell needs to hold a name = string of arbitrary length
 - We used a UCM including strings
- Towards machine cost
 - Assume max length m for any S[i]
 - Then, line 5 costs m comps in WC
 - Lines 6-8; additional cost for loops for copying char-by-char
- In 5-8, AC≠WC
 - Given two strings, how many characters do we have to compare on average to see which is greater?

Conclusions

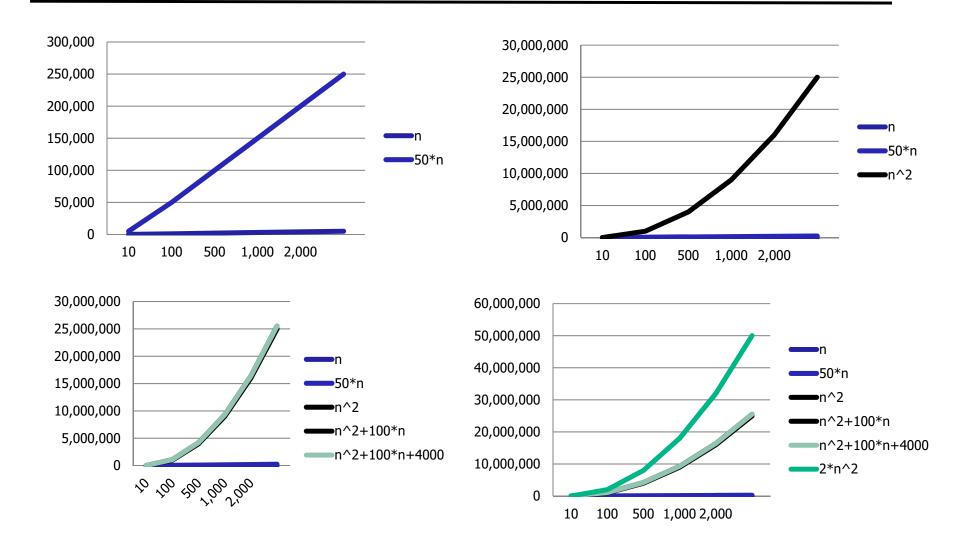
- We usually assume RAM with uniform cost, but will not give the RAM program itself
 - Translation from pseudo code is simple and adds only constant costs per operation
- We assume UCM for all numbers and strings
 - We sometimes look at strings in more detail
 - More complex data type (lists, sets, real) will be analyzed in detail
- When analyzing real programs, many more issues arise
 - Performance killer in Java: Garbage collection
 - Performance trick in Java: Object reuse
 - Performance killer in Java: new vector (1,1)

- ...

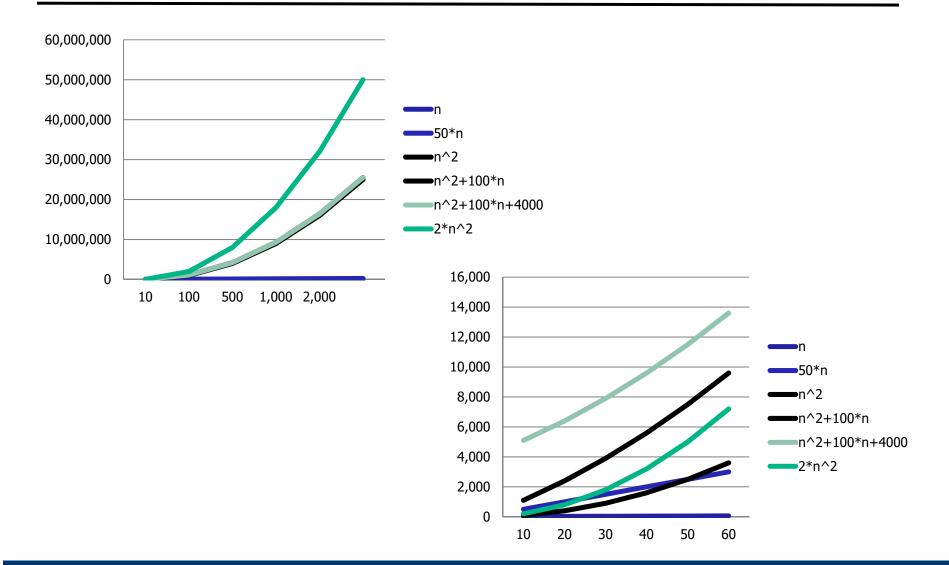
- Efficiency of Algorithms
- Machine Model
- Complexity
- Examples

- Counting the exact number of operations for an algorithm (wrt. input size) seems overly complicated
 - Linear scale-ups are often possible by using newer/more machines
 - Estimations need not be good for all cases for small inputs, many algorithms are lightning-fast anyway
 - We don't want long formulas focus on the dominant factors
- Computational complexity analyzes the major factors when the input gets "large"
 - Asymptotic complexity behavior if input size goes to infinity

Examples



Small Values



- Everything except the term with the highest exponent doesn't matter much, if n is large enough
- This term can have a factor, but the effect of this factor usually can be outweighted by newer/more machines

 Therefore, we do not consider it
- Assume we have developed a polynomial f capturing the exact cost of an algorithm A
- Intuitively, the complexity of A is the term of f with the highest exponent after stripping linear factors

- For now, let's assume f(n) gives the number of operations performed by alg. A in worst case for an input of size n
- We are interested in describing the essence of f, i.e., the factors which will dominate the runtime if n grows large
- Formally, we define a hierarchy of classes of functions
- For a function g, define O(g) as the class of functions that is asymptotically smaller or equal g
 - We want a simple g; simpler than f
- Now, if f∈O(g), then f will be asymptotically smaller or equal g; for large inputs, the number of ops will be smaller than or equal to the one estimated through g
- Asymptotically, g is an upper bound for f (not the lowest)

- Definition Let $g: \mathbb{R}_0^+ \to \mathbb{R}_0^+$. O(g) is the class of functions defined as $O(g) = \left\{ f: \mathbb{R}_0^+ \to \mathbb{R}_0^+ \mid \begin{array}{c} \exists c > 0 & \exists n_0 > 0 \\ \forall n \ge n_0: f(n) \le c \cdot g(n) \end{array} \right\}$
- Explanation
 - O(g) is the class of all functions that compute lower or equal values than g for any sufficiently large n, ignoring linear factors
 - O(g) is the class of functions that are asymptotically smaller than or equal g
- If f∈O(g), we say that "f is in O(g)" or "f is O(g)" or "f has complexity O(g)"

Examples

- $f(n)=3*n^2+6*n+7$ is $O(n^2)$
- $f(n)=n^3+7000*n-300$ is $O(n^3)$
- $f(n)=4*n^2+200*n^2-100$ is $O(n^2)$
- f(n)=log(n)+300 is O(log(n))
- f(n)=log(n)+n is O(n)
- f(n)=n*log(n) is O(n*log(n))

 $f(n)=n^2$ is $O(n^3)$

- Example: First f
 - Choose c=9 and $n_0=7$
 - Assume $n > 7 = n_0$:
 - Then, n²>6*n+7
 - Thus: $3n^2 + 6n + 7 \le 3n^2 + n^2$
 - Finally: $3*n^2 + n^2 \le 9*n^2$
 - Would also work for c=8,7,...
- Concrete values of c and n₀ don't matter
 - Especially: No need to search for smallest such values for proving complexity

Calculating with Complexities

```
1. S: array of names;
2. n := |S|
3. for i = 1...-1 do
    for j = i+1..n do
4.
5.
  if S[i]>S[j] then
6.
  tmp := S[i];
7.
  S[i] := S[j];
8.
    S[j] := tmp;
9.
  end if;
10. end for;
11.end for;
```

- Usually, we want to derive the complexity of a program without calculating its exact cost
 - Estimate a tight g without knowing f
- Some observations
 - Having many ops with cost 1 yields the same complexity as having only 1
 - Lines 5-8 cost 4 times 1 ~ 1 (c>3)
 - If we see a polynomial, we can forget about all smaller or equal ones
 - As we certainly need O(n) for the outer loop, we can forget the startup

Formally: O-Calculus

- Such observations can be cast in a set of rules
- Lemma

Let k be a constant. The following equivalences are true

- O(k+f) = O(f);
- $O(k^*f) = O(f);$
- O(f) + O(g) = O(max(f,g))- O(f) * O(g) = O(f*g)

with "slight misuse of notations"

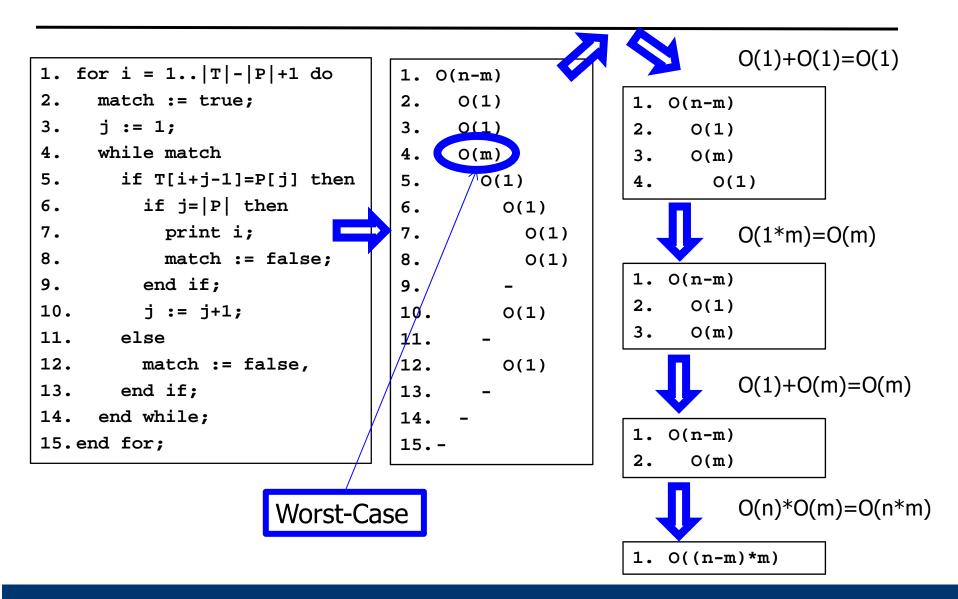
- Explanations
 - Rule 3 (4) actually implies rule 1 (2), as $k \in O(1)$
 - Rule 3 is used for sequentially executed parts of a program
 - Rule 4 is used for nested parts of a program (loops)

Example

- There is a typo in this slide: Somewhere, I typed "und" instead of "and". Where?
- Abstract problem: Given a string T (template) und a pattern P (pattern), find all occurrences of P in T
 - Exact substring search
- The following algorithm solves this problem
 - There are better ones

```
1. for i = 1 \cdot |T| - |P| + 1 do
2.
    match := true;
3. j := 1;
  while match
4.
5.
       if T[i+j-1]=P[j] then
6.
         if j = |P| then
7.
          print i;
          match := false;
8.
9.
      end if;
10. j := j+1;
11. else
12.
         match := false,
13.
       end if;
14. end while;
15.end for;
```

Complexity Analysis (n=|T|, m=|P|)



Ω -Notation

- O-Notation denotes an upper bound for the amount of computation necessary to run an algorithm for asymptotically large inputs
 - Not necessarily the lowest upper bound
- Sometimes, we also want lower bounds
- Definition

Let $g: \mathbb{R}_0^+ \to \mathbb{R}_0^+$. $\Omega(g)$ is the class of functions defined as $\Omega(g) = \left\{ f: \mathbb{R}_0^+ \to \mathbb{R}_0^+ \middle| \begin{array}{c} \exists c > 0 \quad \exists n_0 > 0 \\ \forall n \ge n_0: f(n) \ge c \cdot g(n) \end{array} \right\}$

- Explanation
 - $\Omega(g)$ is the class of functions that are asymptotically larger than g
 - Again: Not necessarily the largest smaller one

Further Notation

•
$$\Theta(g) = \left\{ f \colon \mathbb{R}_0^+ \to \mathbb{R}_0^+ \middle| \begin{array}{l} \exists c_1, c_2 > 0 \quad \exists n_0 > 0 \quad \forall n \ge n_0 \colon \\ c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n) \end{array} \right\}$$

- $\Theta(g)$ is the class of functions that are asymptotically equal to g

•
$$o(g) = \left\{ f \colon \mathbb{R}_0^+ \to \mathbb{R}_0^+ \middle| \begin{array}{c} \forall c > 0 \quad \exists n_0 > 0 \\ \forall n \ge n_0 \colon f(n) < c \cdot g(n) \end{array} \right\}$$

o(g) is the class of functions that are asymptotically
 <u>strictly</u> smaller than g

•
$$\omega(g) = \left\{ f : \mathbb{R}_0^+ \to \mathbb{R}_0^+ \middle| \begin{array}{c} \forall c > 0 \quad \exists n_0 > 0 \\ \forall n \ge n_0 : \quad f(n) > c \cdot g(n) \end{array} \right\}$$

- $\omega(g)$ is the class of functions that are asymptotically **strictly larger** than g

• Details given in exercise classes!

- Definition
 - We call an algorithm A with cost function f
 - polynomial, if there exists a polynomial p with $f \in O(p)$
 - exponential, if $\exists \varepsilon > 0$ with $f \in \Omega(2^{n^{\varepsilon}})$
- General assumption: If A is exponential, it cannot be executed in reasonable time for non-trivial input
 - But: If A is exponential, this does not imply that the problem solved by A cannot be solved in polynomial time
 - Of course: If A is bounded by a polynomial, then also the problem solved by A can be solved in polynomial time (by A)

- Efficiency of Algorithms
- Machine Model
- Complexity
- Examples
 - Exact substring search (average-case versus worst-case)
 - Knapsack problem (exponential problem)

```
1. for i = 1 .. |T| - |P| do
     match := true;
2.
3.
  i := 1;
   while match
4.
5.
       if T[i+j-1]=P[j] then
         if j=|P| then
6.
       print i;
7.
           match := false;
8.
9.
       end if;
10.
         i := i+1;
11.
       else
         match := false,
12.
       end if;
13.
     end while;
14.
15.end for;
```

- We showed that the algorithm's WC is O((n-m)*m)~O(n*m)
- How does a worst case look like?

```
1. for i = 1 .. |T| - |P| do
     match := true;
2.
3.
  i := 1;
  while match
4.
       if T[i+j-1]=P[j] then
5.
         if j=|P| then
6.
          print i;
7.
           match := false;
8.
       end if;
9.
10.
         i := i+1;
    else
11.
12.
         match := false,
       end if;
13.
     end while;
14.
15.end for:
```

- We showed that the algorithm's WC is O((n-m)*m)~O(n*m)
- How does a worst case look like?
 T=aⁿ; P=a^m
- What about the average case?
 - The outer loop is always passed by n-m times, no matter how T / P look like
 - This already gives $\Omega(n)$ in worst and average case

Exact Substring Search: Average Case

- How often do we pass by the inner loop?
- Needs a model of "average strings"
- Simplest model:
 Strings are randomly generated from alphabet Σ
 Every character appears with equal probability at every position
- Gives a chance of $p=1/|\Sigma|$ for every test "T[i+j]=P[j]"
- The expected number of comparisons in line 3

$$-1(1-p)+2*p(1-p)+3*p^{2}(1-p)+...+m*p^{m-1}=$$

$$1-p+2p-2p^{2}+3p^{2}-3p^{3}+...m*p^{m-1}=$$

$$1+p+p^{2}+p^{3}+...p^{m-1}=\sum_{i=0}^{m-1}p^{i}=\frac{1-p^{m}}{1-p}$$

"geometric series"

1. O(n)

while match

0(1)

else

if T[i+j-1]=P[j] then

match := false,

2.

3.

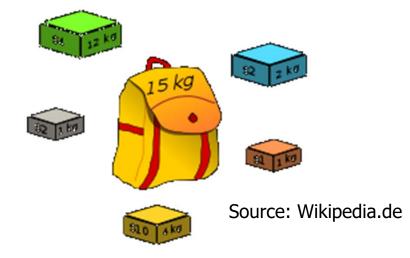
4. 5.

6.

On Real Data

- Assume |T|=50,000 and |P|=8 and |Σ|=29
 - German text, including Umlaute, excluding upper/lower case letters
 - Worst-case upper bound: ~400,000 comparisons
 - Average-case: 51,778 comparisons
 - We expect a mismatch after every 1,03 comparisons
- Assume |T|=50,000, |P|=8, |Σ|=4 (e.g., DNA)
 - Worst-case: 400,000 comparisons
 - Average-case: 66,656
- Best algorithms are O(m+n) ~ 50.008 comparisons
 - Beware: We ignore constant factors
- Not much better than the average case
- But: Are German texts random strings?

Knapsack Problem



 Given a set S of items with weights w[i] and value v[i] and a maximal weight m; find the subset T_⊆S such that:

$$\sum_{i \in T} w[i] \le m$$
 and $\sum_{i \in T} v[i] = \max$

Algorithm and its Complexity

- Imagine an algorithm which enumerates all possible T
- For each T, computing its value and its weight is in O(|S|)
 Testing for maximum is O(1)
- But how many different T exist?

Algorithm and its Complexity

- Imagine an algorithm which enumerates all possible T
- For each T, computing its value and its weight is in O(|S|)
 Testing for maximum is O(1)
- But how many different T exist?
 - Every item from S can be part of T or not
 - This gives $2*2*2* \dots *2=2^{|S|}$ different options
- Together: This algorithm is in O(2^{|S|})
- Actually, the knapsack problem is NP-hard
- Thus, very likely no polynomial algorithm exists

- Given the following algorithm: ... Analyze its worst case and average case complexity
- Prove that $O(f^*g) = O(f)^*O(g)$
- Order the following functions by their complexity class: n², 100n, n*log(n), n*2^{log(n)}, sqrt(n), n!
- Let $f \in \Omega(g)$ and $g \in \Omega(h)$. Show that $f \in \Omega(h)$