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Übungsgruppen

• Übungsgruppen, die sich über mehrere Übungstermine 
erstrecken, sind erlaubt. 

• Bis zum 1. Mai müssen sich alle Studierenden für einen 
Übungstermin eingetragen haben (von Warte- und 
Vormerklisten verschwunden sein).

• Außerdem müssen Sie eine Übungsgruppe (Zweiergruppe, 
in Ausnahmefällen: Dreiergruppe) in Goya bis 1. Mai 
haben.

• Wer zur Abgabe des Blatts am 4. Mai für keinen Termin 
regulär angemeldet ist oder keine Übungsgruppe hat, 
kriegt dann entsprechend 0 Punkte für das erste Blatt.

• Bei Fragen: an jeweilige(n) ÜbungsgruppenleiterIn wenden
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Content of this Lecture

• Efficiency of Algorithms
• Machine Model
• Complexity
• Examples
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Efficiency of Algorithms

• Research in algorithms focuses a lot on efficiency
– Find fast/space-efficient algorithms for a given problem
– Best-case, on average, in the worst-case

• Algorithms have an input and solve a defined problem 
– Sort this list of names
– Compute the running 3-month average over this table of 10 years 

of daily revenues
– Find the shortest path between node X and node Y in this graph 

with n nodes and m edges
– Not: Which day is today? Are nuclear power plants evil?

• How can we measure efficiency for different inputs?
– Also: How can we compare the efficiency of two algorithms for the 

same problem with different inputs?
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Option 1: Use a Reference Machine

• Empirical evaluation
– Define a concrete machine (CPU, RAM, BUS, …)
– Chose a set of different inputs
– Run algorithm on all inputs and measure times

• Pro: Gives real runtimes
• Contra

– Only one machine for the entire world? 
– Performance dependent on program. language and skill of engineer
– Times between measured points can only be inter-/extrapolated
– Are used datasets typical for what we expect in the real world?

• Uniformly distributed over all possible inputs?
– Can we extrapolate results into the future? 
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Option 2: Computational Complexity

• Derive an estimate of the maximal (worst-case) number of 
operations as a function of the input
– “For an input of size n, the alg. will perform “~n3“ operations”

• Advantages
– Analyses the algorithm, not its implementation
– Independent of machine; future-proof

• Disadvantages
– No real runtimes
– What is an operation? What do we count?
– How good is the estimate?
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Next steps

• In this lecture, we focus on complexity
– Note: When it comes to practical problems, complexity is not 

everything
– There can be extremely large runtime differences between 

algorithms having the same complexity
– Difference between theoretical and practical computer science

• We need to define what we count: Machine model
• We need to define how we estimate: O-notation
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Content of this Lecture

• Efficiency of Algorithms
• Machine Model
• Complexity
• Examples
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Machine Model

• Very simple model: Random Access Machines (RAM)
• Roughly: What a traditional CPU can execute in 1 cycle

– Forget pipelining, registers, multi-core, disks, arithmetic units, …
– Forget GPU, FPGA, cache level, hyper-threading, …
– Note: There are cost models for many of these variations

• Storage
– Infinite amount of storage cells

• Each cell holds one (possibly infinitely large) value (number)
• Cells are addressed by consecutive integers

– Separate program storage – no interference with data
– Special treatment of input and output
– One special register (switch) storing results of a comparison
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Operations

• Load value into cell, move value from cell to cell
• LOADv 3, 5: Load value “5” in cell 3
• LOAD 3, 5: Copy value of cell 5 into cell 3

• Add/subtract/multiply/divide value/cell to/from/by cell and store in cell
– ADDv 3, 5, 6; Add “6” to value of cell 5 and store result in cell 3
– ADD 3, 5, 6; Add value of cell 6 to value of cell 5 and store in cell 3

• Compare values of two cells
– If equal, set switch to TRUE, otherwise to FALSE

• Jump to position if switch is TRUE
• Jump to position
• Stop

– RET 6; Returns value of cell 6 as result and stop
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Example: xy (for y>0)

input
x,y: integer;

t: integer;
i: integer;
t := x;
for i := 1 … y-1 do
t := t * x;

end for;
return t;

1. LOADv 1, x;   # provide input
2. LOADv 2, y;
3. LOAD 3, 1;    # t := x
4. LOADv 4, 1;   # i := 1
5. CMP 4, 2;     # check i = y 
6. IFTRUE 10;
7. MULT 3, 1, 3; # t := t*x
8. ADDv 4, 4, 1; # i := i+1
9. GOTO 5;
10.RET 3; # return t
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Cost Model

• We count the number of operations (time) performed and 
the number of cells (space) required

• This is called uniform cost model (UCM)
– Every operation costs time 1, every cell needs space 1

• “1” has no unit – we concentrate on the change in cost
– Independent of size of operands

• Clearly not realistic: Every CPU has only a certain number of bits per 
operation, thus can only compute values up to a certain limit

• Alternative model: Machine cost (logarithmic cost)
– Consider machine representation of data

• Binary for integer, ASCII for strings etc.
– More realistic, yet more complex
– Often not necessary (“values in sensible range”)
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Counting Operations in the RAM Model

• If y>1
– Startup costs 4
– Loop (lines 5-9) costs 5
– Loop is passed by y times
– Last loop costs 2, return costs 1
– Total costs: 4+(y-1)*5+3

• If y=1
– Total costs: 7=4+(y-1)*5+3

1. LOADv 1, x;   # input
2. LOADv 2, y;
3. LOAD 3, 1;    # t := x
4. LOADv 4, 1;   # i := 1
5. CMP 4, 2;     # check i=y 
6. IFTRUE 10;
7. MULT 3, 1, 3; # t := t*x
8. ADDv 4, 4, 1; # i := i+1
9. GOTO 5;
10.RET 3; # return t
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Selection Sort: Uniform versus Machine Cost

• With UCM, we showed f(n)~4n2-3n
– But: Every cell needs to hold a name = 

string of arbitrary length
– We used a UCM including strings

• Towards machine cost
– Assume max length m for any S[i]
– Then, line 5 costs m comps in WC
– Lines 6-8; additional cost for loops for 

copying char-by-char
• In 5-8, AC≠WC

– Given two strings, how many 
characters do we have to compare on 
average to see which is greater?

1. S: array_of_names;
2. n := |S|
3. for i = 1..n-1 do
4. for j = i+1..n do
5. if S[i]>S[j] then
6. tmp := S[i];
7. S[i] := S[j];
8. S[j] := tmp;
9. end if;
10. end for;
11.end for;
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Conclusions

• We usually assume RAM with uniform cost, but will not 
give the RAM program itself
– Translation from pseudo code is simple and adds only constant 

costs per operation
• We assume UCM for all numbers and strings

– We sometimes look at strings in more detail
– More complex data type (lists, sets, real) will be analyzed in detail

• When analyzing real programs, many more issues arise
– Performance killer in Java: Garbage collection
– Performance trick in Java: Object reuse
– Performance killer in Java: new vector (1,1)
– ... 
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Content of this Lecture

• Efficiency of Algorithms
• Machine Model
• Complexity
• Examples



Marius Kloft: Alg&DS, Summer Semester 2016 17

Complexity

• Counting the exact number of operations for an algorithm 
(wrt. input size) seems overly complicated 
– Linear scale-ups are often possible by using newer/more machines
– Estimations need not be good for all cases - for small inputs, many 

algorithms are lightning-fast anyway
– We don’t want long formulas – focus on the dominant factors

• Computational complexity analyzes the major factors when 
the input gets “large”
– Asymptotic complexity – behavior if input size goes to infinity
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Examples
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Small Values
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Intuitive Observations

• Everything except the term with the highest exponent
doesn’t matter much, if n is large enough

• This term can have a factor, but the effect of this factor 
usually can be outweighted by newer/more machines
– Therefore, we do not consider it

• Assume we have developed a polynomial f capturing the 
exact cost of an algorithm A

• Intuitively, the complexity of A is the term of f with the 
highest exponent after stripping linear factors
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More Formally

• For now, let’s assume f(n) gives the number of operations 
performed by alg. A in worst case for an input of size n

• We are interested in describing the essence of f, i.e., the 
factors which will dominate the runtime if n grows large

• Formally, we define a hierarchy of classes of functions 
• For a function g, define O(g) as the class of functions that 

is asymptotically smaller or equal g
– We want a simple g; simpler than f

• Now, if f∈O(g), then f will be asymptotically smaller or 
equal g; for large inputs, the number of ops will be smaller 
than or equal to the one estimated through g

• Asymptotically, g is an upper bound for f (not the lowest)
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Formally: O-Notation

• Definition
Let g∶ Թ

ା → Թ
ା. O(g) is the class of functions defined as

Ο ݃ ൌ ݂:Թ
ା → Թ

ା	
	∃ܿ  0			∃݊  0

∀݊  ݊: 		݂ ݊  ܿ · ݃ሺ݊ሻ
• Explanation

– O(g) is the class of all functions that compute lower or equal values 
than g for any sufficiently large n, ignoring linear factors

– O(g) is the class of functions that are asymptotically smaller than 
or equal g

• If fO(g), we say that “f is in O(g)” or “f is O(g)” or 
“f has complexity O(g)”
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Examples

• Example: First f
– Choose c=9 and n0=7
– Assume n>7=n0: 

• Then, n2>6*n+7
• Thus: 3n2+6n+7 ≤ 3n2 + n2

• Finally: 3*n2+n2 ≤ 9*n2

– Would also work for c=8,7, …
• Concrete values of c and n0

don’t matter
– Especially: No need to search for 

smallest such values for proving 
complexity

f(n)=3*n2+6*n+7 is O(n2)

f(n)=n3+7000*n-300 is O(n3)

f(n)=4*n2+200*n2-100 is O(n2)

f(n)=log(n)+300 is O(log(n))

f(n)=log(n)+n is O(n)

f(n)=n*log(n) is O(n*log(n))

f(n)=n2 is O(n3)
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Calculating with Complexities

• Usually, we want to derive the 
complexity of a program without 
calculating its exact cost
– Estimate a tight g without knowing f

• Some observations
– Having many ops with cost 1 yields 

the same complexity as having only 1
• Lines 5-8 cost 4 times 1 ~ 1 (c>3)

– If we see a polynomial, we can forget 
about all smaller or equal ones

• As we certainly need O(n) for the 
outer loop, we can forget the startup

1. S: array_of_names;
2. n := |S|
3. for i = 1..n-1 do
4. for j = i+1..n do
5. if S[i]>S[j] then
6. tmp := S[i];
7. S[i] := S[j];
8. S[j] := tmp;
9. end if;
10. end for;
11.end for;
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Formally: O-Calculus

• Such observations can be cast in a set of rules
• Lemma

Let k be a constant. The following equivalences are true
– O(k+f) = O(f);
– O(k*f) = O(f);
– O(f) + O(g) = O( max(f,g))
– O(f) * O(g) = O(f*g)

• Explanations
– Rule 3 (4) actually implies rule 1 (2), as kO(1)
– Rule 3 is used for sequentially executed parts of a program
– Rule 4 is used for nested parts of a program (loops)

with “slight misuse of 
notations”
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Example

• There is a typo in this slide: Somewhere, I typed “und” 
instead of “and”. Where?

• Abstract problem: Given a 
string T (template) und a 
pattern P (pattern), find all 
occurrences of P in T
– Exact substring search

• The following algorithm 
solves this problem
– There are better ones

1. for i = 1..|T|-|P|+1 do
2. match := true;
3. j := 1;
4. while match
5. if T[i+j-1]=P[j] then
6. if j=|P| then
7. print i;
8. match := false;
9. end if;
10. j := j+1;
11. else
12. match := false,
13. end if;
14. end while;
15.end for;
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Complexity Analysis (n=|T|, m=|P|)

1. for i = 1..|T|-|P|+1 do
2. match := true;
3. j := 1;
4. while match
5. if T[i+j-1]=P[j] then
6. if j=|P| then
7. print i;
8. match := false;
9. end if;
10. j := j+1;
11. else
12. match := false,
13. end if;
14. end while;
15.end for;

1. O(n-m)
2. O(1)
3. O(1)
4. O(m)
5. O(1)
6. O(1)
7. O(1)
8. O(1)
9. -
10. O(1)
11. -
12. O(1)
13. -
14. -
15.-

1. O(n-m)
2. O(1)
3. O(m)
4. O(1)

1. O(n-m)
2. O(1)
3. O(m)

1. O(n-m)
2. O(m)

1. O((n-m)*m)

O(1)+O(1)=O(1)

O(1*m)=O(m)

O(1)+O(m)=O(m)

O(n)*O(m)=O(n*m)Worst-Case
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-Notation

• O-Notation denotes an upper bound for the amount of 
computation necessary to run an algorithm for 
asymptotically large inputs
– Not necessarily the lowest upper bound

• Sometimes, we also want lower bounds
• Definition

Let ݃:Թ
ା → Թ

ା.  (g) is the class of functions defined as 
Ω ݃ ൌ ݂:Թ

ା → Թ
ା	

	∃ܿ  0			∃݊  0
∀݊  ݊: 		݂ ݊  ܿ · ݃ሺ݊ሻ

• Explanation
– (g) is the class of functions that are asymptotically larger than g
– Again: Not necessarily the largest smaller one
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Further Notation

• Θ ݃ ൌ ݂:Թ
ା → Թ

ା	
∃ܿଵ, ܿଶ  0			∃݊  0				∀݊  ݊:
	ܿଵ · ݃ ݊  ݂ ݊  ܿଶ · ݃ሺ݊ሻ

	

– Θ ݃ is the class of functions that are asymptotically
equal to g

• ߧ ݃ ൌ ݂:Թ
ା → Թ

ା	
	∀ܿ  0			∃݊  0

∀݊  ݊: 		݂ ݊ ൏ ܿ · ݃ሺ݊ሻ
–  ݃ is the class of functions that are asymptotically 

strictly smaller than g

• ߱ ݃ ൌ ݂:Թ
ା → Թ

ା	
	∀ܿ  0			∃݊  0

∀݊  ݊: 		݂ ݊  ܿ · ݃ሺ݊ሻ
– ߱ ݃ is the class of functions that are asymptotically 

strictly larger than g
• Details given in exercise classes!
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Not Every Problem is Simple

• Definition
We call an algorithm A with cost function f
– polynomial, if there exists a polynomial p with fO(p)
– exponential, if >0 with f (     )

• General assumption: If A is exponential, it cannot be 
executed in reasonable time for non-trivial input
– But: If A is exponential, this does not imply that the problem solved 

by A cannot be solved in polynomial time
– Of course: If A is bounded by a polynomial, then also the problem 

solved by A can be solved in polynomial time (by A)

n2
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Content of this Lecture

• Efficiency of Algorithms
• Machine Model
• Complexity
• Examples

– Exact substring search (average-case versus worst-case)
– Knapsack problem (exponential problem)
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Exact Substring Search: Average Case

• We showed that the algorithm’s 
WC is O((n-m)*m)~O(n*m)

• How does a worst case look like?

1. for i = 1..|T|-|P| do
2. match := true;
3. j := 1;
4. while match
5. if T[i+j-1]=P[j] then
6. if j=|P| then
7. print i;
8. match := false;
9. end if;
10. j := j+1;
11. else
12. match := false,
13. end if;
14. end while;
15.end for;
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Exact Substring Search: Average Case

• We showed that the algorithm’s 
WC is O((n-m)*m)~O(n*m)

• How does a worst case look like?
– T=an; P=am

• What about the average case?
– The outer loop is always passed by 

n-m times, no matter how T / P look 
like 

– This already gives (n) in worst and 
average case

1. for i = 1..|T|-|P| do
2. match := true;
3. j := 1;
4. while match
5. if T[i+j-1]=P[j] then
6. if j=|P| then
7. print i;
8. match := false;
9. end if;
10. j := j+1;
11. else
12. match := false,
13. end if;
14. end while;
15.end for;
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Exact Substring Search: Average Case

• How often do we pass by the 
inner loop?

• Needs a model of “average strings”
• Simplest model: 

Strings are randomly generated from alphabet ∑
– Every character appears with equal probability at every position

• Gives a chance of p=1/|∑| for every test “T[i+j]=P[j]”
• The expected number of comparisons in line 3

– 1(1-p)+2*p(1-p)+3*p2(1-p)+…+m*pm-1=
1 – p   + 2p–2p2+ 3p2-3p3+ … m*pm-1= 
1    +   p     +   p2 +   p3 + … pm-1 = 

“geometric series”

1. O(n)
2. while match
3. if T[i+j-1]=P[j] then
4. O(1)
5. else
6. match := false,
7. -

p
pp

m
i





 1

11-m

0i
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On Real Data

• Assume |T|=50,000 and |P|=8 and |∑|=29 
– German text, including Umlaute, excluding upper/lower case letters
– Worst-case upper bound: ~400,000 comparisons 
– Average-case: 51,778 comparisons 

• We expect a mismatch after every 1,03 comparisons

• Assume |T|=50,000, |P|=8, |∑|=4 (e.g., DNA)
– Worst-case: 400,000 comparisons 
– Average-case: 66,656

• Best algorithms are O(m+n) ~ 50.008 comparisons 
– Beware: We ignore constant factors

• Not much better than the average case
• But: Are German texts random strings?
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Knapsack Problem

• Given a set S of items with weights w[i] and value v[i] and 
a maximal weight m; find the subset TS such that:

and 

Source: Wikipedia.de

miw
Ti




][ max][ 
Ti

iv
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Algorithm and its Complexity

• Imagine an algorithm which enumerates all possible T
• For each T, computing its value and its weight is in O(|S|)

– Testing for maximum is O(1)
• But how many different T exist?
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Algorithm and its Complexity

• Imagine an algorithm which enumerates all possible T
• For each T, computing its value and its weight is in O(|S|)

– Testing for maximum is O(1)
• But how many different T exist?

– Every item from S can be part of T or not
– This gives 2*2*2* …. *2=2|S| different options

• Together: This algorithm is in O(2|S|)

• Actually, the knapsack problem is NP-hard
• Thus, very likely no polynomial algorithm exists
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Exemplary Questions

• Given the following algorithm: … Analyze its worst case 
and average case complexity

• Prove that O(f*g) = O(f)*O(g)
• Order the following functions by their complexity class: n2, 

100n, n*log(n), n*2log(n), sqrt(n), n!
• Let f(g) and g(h). Show that f(h)


