Algorithms and Data Structures

Data Types

Marius Kloft

Content of this Lecture

e Example

e Abstract Data Types

o Lists, Stacks, and Queues
e Realization in Java

Marius Kloft: Alg&DS, Summer Semester 2016

Problem

e Suppose you are in the centre of Hamburg and are looking
for the next (i.e., closest) laptop repair shop

e Fortunately, your mobile knows your position and has a list
of laptop repair shops in Hamburg

e How does your mobile find the closest shop?

Marius Kloft: Alg&DS, Summer Semester 2016

Classical Post Box Problem

e Suppose a city with n boxes located at arbitrary positions

e You wake up in the middle of the city with a letter in your
hand; the letter should be thrown in the closest post box

e How do you find the closest post box?
— You have a list with locations of all post boxes

e Looking at a map is not N
the answer e
e Devise an algorithm =

S: set_pf_coordinates;
c: coordinate (x,y)

-t

i e
Marius Kloft: Alg&DS, Summer Semester 2016 4

Simple Solution

Input
S: set of coordinates;
c: coordinate (x,y);
t: coordinate;
m: real := MAXREAL;
for each c¢c'eS do
if m > distance(c,c') then
m := distance(c,c‘');
t :=cY;
end if;
end for;
return t;

your loc
closest box
smal. dist

Marius Kloft: Alg&DS, Summer Semester 2016

e How much work?

Simple Solution

Input
S: set of coordinates;
c: coordinate (x,y);
t: coordinate;
m: real := MAXREAL;
for each c¢c'eS do
if m > distance(c,c') then
m := distance(c,c‘');
t :=cY;
end if;
end for;
return t;

your loc
closest box
smal. dist

How much work?

Clearly, we can save the
second call to “distance”

Thus, we need to compute
|S| distances, make |S]|

comparisons, and perform
at most 2*|S| assignments

Marius Kloft: Alg&DS, Summer Semester 2016

Simple Solution

e How much work?

e (Clearly, we can save the
ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ I second call to “distance”
LI e Thus, we need to compute

|S| distances, make |S]
comparisons, and perform
at most 2*|S| assignments

e Euclidian distance
— 6 arithmetic ops per distance

dist((X,, Y,)» (%55 ¥2)) = 6 = %,)> + (¥, = V)

Marius Kloft: Alg&DS, Summer Semester 2016

Not the only Option

e How much work?
e (Clearly, we can save the

[£ v = N The ; la;fl (‘ollcctmp o 'Sa" Rockefeller .‘I
1 %Lﬁ“£ A W.__70th St Mall LT | obier - 6%t 8L Medicd i
;5‘% \ Sheep /] ; < Coflege | | esmstRmm; ! o d II t “d- t ”
£ | Lincoln W.65 §*M“§M§f] I \§ |y v L Ye Asstn :;‘ g.':‘:' Secon Ca O IS a nce
5 | Center 8 om, ol ETWME’ z‘mi ;,r: < E 63 | ‘é:g
RERRY o ee=e=]y
et m-;..u?-ﬁ SENTTEL = e Thus, we need to compute
| W STnSL Visitors jCarncgic | - ' |
isgm % v(‘.euu.'r ! Hall ! | =
w:”‘ . Eg?i : rMEArEnmfr | S | d ISta nces, ma ke | S |
;m‘w 50th I é; 1
comparisons, and perform
= %m 2> % 2 : .
e is at most 2*|S| assignments
| " “:J. 42nd St. o hr.l;;s.
| < :}:‘I“{"n‘;}‘ W, 40m =
e e Manhattan distance
\\s“ J&‘"&i; ,w‘% q w o\ | E mm *men v K =~
S e - e i | 5 operations, and different
uo\ s :..’Ji?,’ih% mﬁfn ‘i"“ * ‘v-% ‘p feer\ onhes

diSt((Xl, yl),(xz, yz)) =| X — X, |+ | Yi— Y, |

Marius Kloft: Alg&DS, Summer Semester 2016

Data Structure Point of View

e Data structures
— We need a list of coordinates
— The algorithm must iterate over the

input elements of this list

S: t of rdinates; . . .

o: coordinate (x.9) — A linked list would suffice
S AYREAL e Now assume we need to perform
For each c'eS do such searches very often

if m > dist(c,c') then

m := dist(c,c'); — Can we represent S in another way (S'),

P such that searching requires less work?
en: f°r;_ — Note: Time for computing S’ from S
TR may be ignored

e Performed before searching starts
e Assuming that S does not change

Marius Kloft: Alg&DS, Summer Semester 2016 9

Voronoi Diagrams

e Pre-processing: Compute for every point seS its Voronoi area, i.e., the
area in which all points have s as nearest point from S

e This is not easy, but can be achieved in O(|S|*log(|S]) time
e Nearest-neighbor search using Voronoi diagrams is O(log(|S]))
e Conclusion: Finding a proper data structure does pay off

Marius Kloft: Alg&DS, Summer Semester 2016 10

More Abstract

e We want a piece of software T that
— can store a list of coordinates
— can compute the nearest point to a given point c
e Thus, T must support (at least) two operations
— T.init (S: list_of_coordinate)
— T.nearestNeighbor (c: coordinate)
— T apparently uses another data type: “coordinate”

e Such combinations of object sets and operations on these
sets are called a data type

o If we abstract from the implementation and only look at
the sets and operations, we call this an abstract data type

Marius Kloft: Alg&DS, Summer Semester 2016

11

Content of this Lecture

e Example

e Abstract Data Types

o Lists, Stacks, and Queues
e Realization in Java

Marius Kloft: Alg&DS, Summer Semester 2016

12

Abstract Data Types (ADT)

e An ADT defines a set of operations over a set of objects of
a certain (more basic) type
— Or over multiple sets of objects of different or same types

e The set of operations and types is called signature

e An ADT is independent of an implementation
— Different data structures to represent the objects
— Different algorithms to implement the operations
— An ADT is independent of any programming language

e Encapsulation: Objects are accessed only through the ops

e An implementation of a ADT is called a concrete (or
physical) data type

Marius Kloft: Alg&DS, Summer Semester 2016 13

Example

type points

import
coordinate;

operators
add: points x coordinate — points;
neighbor: points x coordinate — coordinate;

e ADT that we could use for our app for searching shops

e We only need two operations
— A way to insert shops (with their coordinates)
— A way to get the nearest shop with respect to a given coordinate

e We assume primitive data types to be given (string, int ...)
e Not the only way ...

Marius Kloft: Alg&DS, Summer Semester 2016

Modeling More Details

type shop
import
coordinate;
string;
operators
getName: shop — string;
getCoor: shop — coordinate;

type shops
import
shop;
operators
add:
neighborC:
neighborN:
neighborsS:

shops
shops
shops
shops

X X X X

shop — shops;

coordinate — coordinate;
coordinate — string;
coordinate — shop;

e An ADT defines what is necessary

e Design of ADT is a modeling decision
e Shop owner? Laptop models being repaired? Opening hours?

o Depends on requirements, ease-of-use, extensibility, personal
preferences, existing ADTSs, ...

Marius Kloft: Alg&DS, Summer Semester 2016

Reusing Existing ADTs

e For implementing points (or shops), it would be helpful to
import something that can hold a set of coordinates
e We need a list —an ADT in itself

— A parameterized ADT— a list of elements of an arbitrary ADT T
— For our ADT points, T will be coordinate

type list(T)

import
integer, bool;

operators
isEmpty: 1list — bool;
add: list x T —» list;
delete: list x T —» list;

contains: list x T — bool;
length: list —> integer;

Marius Kloft: Alg&DS, Summer Semester 2016

Axioms: What we Know about an ADT

o We expect operations on lists to have a certain semantic

— Adding an element increases length by one
e If we assume bag semantics

— Deleting an element that doesn’t exist creates an error
— If a list is empty, its length is O

type list(T)

import
integer, bool;

operators
isEmpty: 1list — bool;
add: list x T — 1list;
contains: list x T — bool;
delete: list x T — 1list;

length: list —» integer;

axioms: V 1: list, V t: T
length(add(l1, t)) = length(1) + 1;
length(1)=0 <& isEmpty(l);

Marius Kloft: Alg&DS, Summer Semester 2016

List versus Points

type points
import
coordinate, bool, list(coordinates);
Operators
contains: points x coordinate — bool;
Implement as list.contains
add: points x coordinate — points;
Implement as list.add
neighbor: points x coordinate — coordinate;
Not implemented in list!
axioms
neighbor (p,c) = {x| contains(p,x)A Vx'’:contains(p, x’')=>
distance(x,c) < distance(x’,c)};

e Points uses a list and adds further functionality

e What's wrong?
— What happens if multiple x have the same distance to c?

Marius Kloft: Alg&DS, Summer Semester 2016

List versus Points

type points
import
coordinate, bool, 2Dspace;
Operators
contains: points x coordinate — bool;
add: points x coordinate — points;
neighbor: points x coordinate — points;
axioms
neighbor (p,c) = {x| contains(p,x) A Vx’': contains(p,x’):
distance(x,c) < distance(x’,c)};

Marius Kloft: Alg&DS, Summer Semester 2016

We Stop Here

e There are various ways to formally specify the behavior of
operations of an ADT

e In this lecture, we only look at signature
— No semantics (except parameters of operations)
— Supported by most programming languages (e.g. Java)
e Algebraic specification
— Define an algebra over the object sets of the ADT
— Includes axioms defining the semantics of operations
— Axioms are essential to prove aspects of a system’s behavior
e Ideally, one only specifies and never programs

e See lecture on “"Modellierung und Spezifikation”

Marius Kloft: Alg&DS, Summer Semester 2016

Content of this Lecture

e Data Structures Again

e Abstract Data Types

e Example: Lists, Stacks, and Queues
o Realization in Java

Marius Kloft: Alg&DS, Summer Semester 2016

Lists, Stacks, Queues

e We looked at a data type (points, shops) which essentially
is a list with one special operation: nearestNeighboor
— Canonical list operations: insert, search, delete, update, length

e There are many ways to implement the general ADT list
— Array, linked lists, double-linked lists, trees, ...

e Two types of lists are of exceptional importance in
computer science: Stacks and Queues
— Both support mostly two operations

— These suffice for surprisingly many problems and applications
— Can be implemented very efficiently

Marius Kloft: Alg&DS, Summer Semester 2016

22

Queues

e Operations: enqueue, dequeue
e Special semantic: First in, first out (FIFO)
e Breadth-first traversal, shortest paths, BucketSort, ...

Marius Kloft: Alg&DS, Summer Semester 2016

Stacks

e QOperations: push, pop
e Special semantic: Last in, first out (LIFO)

e (Call stacks, backtracking, “Kellerautomaten”, ...

Marius Kloft: Alg&DS, Summer Semester 2016

24

As Abstract Data Types

type stack(T)

import
bool;

operators
isEmpty: stack — bool;
push: stack x T —> stack;
pop: stack — stack;
top: stack —» T;

type queue(T)

import
bool;
operators

isEmpty:
enqueue:
dequeue:

head:

queue
queue
queue
queue

— bool;

x T — queue;
— queue;

- T;

e Where's the difference?

Marius Kloft: Alg&DS, Summer Semester 2016

Signature does not Suffice

type a(T) type a(T)

import import
bool; bool;

operators operators
isEmpty: a — bool; isEmpty: a — bool;
add: axT—> a; add: axT-—> a;
remove: a — a; remove: a — aj;
give: a > T; give: a > T;

e Where's the difference?
e From the signature alone, there is no difference
e Yet — we expect a different behavior

Marius Kloft: Alg&DS, Summer Semester 2016

Defining the Difference

type stack(T) type queue(T)
import import
bool; bool;
operators operators
isEmpty: stack — bool; isEmpty: queue — bool;
push: stack x T —» stack; enqueue: queue x T — queue;
PopP: stack — stack; dequeue: queue — queue;
top: stack — T; head: queue — T;
axioms V s:stack, V t:T axioms V q:queue, V t:T
top(push(s, t)) = t; head(enqueue(q, t)) =
pop(push(s, t)) = s; if isEmpty(q): t
else head(q);
dequeue (enqueue(q, t)) =
if isEmpty(q): q
else enqueue(dequeue(q), t);

Marius Kloft: Alg&DS, Summer Semester 2016

Content of this Lecture

e Data Structures Again

e Abstract Data Types

o Lists, Stacks, and Queues
o Realization in Java

Marius Kloft: Alg&DS, Summer Semester 2016

ADTs in Java

e Recall
— An ADT summarizes the essential operations on a set of objects
— An ADT is independent of a realization/implementation
— Any implementation of a ADT is called a concrete data type

e Realization in Java?
e Interfaces
— Only exhibit the essential operations on a class of objects

— Can have different implementations
— Can be implemented by a concrete class

Marius Kloft: Alg&DS, Summer Semester 2016

29

Remarks

e Java does not support axioms on interfaces
— Some other languages do, e.g. contracts in Eiffel
e Java adds functionality we mostly ignore

— Inheritance (syntactic sugar), different levels of visibility (public,
protected, private, ...), overloading, ...

e Historically, ADTs are a predecessor of classes in
programming languages
e ADTs can be realized at least in all OO languages

— Ciritical: encapsulation — you must not see anything of an object /
do anything with an object that is not represented in its (public)
interface

Marius Kloft: Alg&DS, Summer Semester 2016

Summary

e ADT's specify the possible operations on a data structure
e ADT's are free of implementation details

o We often discuss pros/contras of different ways to
implement a given ADT

e (Formal) ADTs can be used for much more
— Proving properties of a data type
— Proving that a concrete data type implements a ADT
— Proving that an implementation does not hurt axioms
— Program verification

Marius Kloft: Alg&DS, Summer Semester 2016

31

Exemplary Questions

e What is an abstract data type, what is a physical data
type?

e What are typical operations of a list? Of a stack?

e Imagine a class storing rectangles in a plane. We want to
add and remove rectangles, test if there are any
rectangles, and find all rectangles intersection of given
one. Define the ADT. What could be possible axioms?

Marius Kloft: Alg&DS, Summer Semester 2016

32

