
Algorithms and Data Structures

Marius Kloft

Data Types

Marius Kloft: Alg&DS, Summer Semester 2016 2

Content of this Lecture

• Example
• Abstract Data Types
• Lists, Stacks, and Queues
• Realization in Java

Marius Kloft: Alg&DS, Summer Semester 2016 3

Problem

• Suppose you are in the centre of Hamburg and are looking
for the next (i.e., closest) laptop repair shop

• Fortunately, your mobile knows your position and has a list
of laptop repair shops in Hamburg

• How does your mobile find the closest shop?

Marius Kloft: Alg&DS, Summer Semester 2016 4

Classical Post Box Problem

• Suppose a city with n boxes located at arbitrary positions
• You wake up in the middle of the city with a letter in your

hand; the letter should be thrown in the closest post box
• How do you find the closest post box?

– You have a list with locations of all post boxes
• Looking at a map is not

the answer
• Devise an algorithm

S: set_of_coordinates;
c: coordinate (x,y)
…

Marius Kloft: Alg&DS, Summer Semester 2016 5

Simple Solution

Input
S: set_of_coordinates;
c: coordinate (x,y); # your loc

t: coordinate; # closest box
m: real := MAXREAL; # smal. dist
for each c‘S do

if m > distance(c,c‘) then
m := distance(c,c‘);
t := c‘;

end if;
end for;
return t;

• How much work?

Marius Kloft: Alg&DS, Summer Semester 2016 6

Simple Solution

• How much work?
• Clearly, we can save the

second call to “distance”
• Thus, we need to compute

|S| distances, make |S|
comparisons, and perform
at most 2*|S| assignments

Input
S: set_of_coordinates;
c: coordinate (x,y); # your loc

t: coordinate; # closest box
m: real := MAXREAL; # smal. dist
for each c‘S do

if m > distance(c,c‘) then
m := distance(c,c‘);
t := c‘;

end if;
end for;
return t;

Marius Kloft: Alg&DS, Summer Semester 2016 7

Simple Solution

• How much work?
• Clearly, we can save the

second call to “distance”
• Thus, we need to compute

|S| distances, make |S|
comparisons, and perform
at most 2*|S| assignments

• Euclidian distance
– 6 arithmetic ops per distance

2
21

2
212211)()()),(),,((yyxxyxyxdist 

Marius Kloft: Alg&DS, Summer Semester 2016 8

Not the only Option

• How much work?
• Clearly, we can save the

second call to “distance”
• Thus, we need to compute

|S| distances, make |S|
comparisons, and perform
at most 2*|S| assignments

• Manhattan distance
– 5 operations, and different

ones

||||)),(),,((21212211 yyxxyxyxdist 

Marius Kloft: Alg&DS, Summer Semester 2016 9

Data Structure Point of View

• Data structures
– We need a list of coordinates
– The algorithm must iterate over the

elements of this list
– A linked list would suffice

• Now assume we need to perform
such searches very often
– Can we represent S in another way (S’),

such that searching requires less work?
– Note: Time for computing S’ from S

may be ignored
• Performed before searching starts
• Assuming that S does not change

input
S: set_of_coordinates;
c: coordinate (x,y);

t: coordinate;
m: real := MAXREAL;
For each c‘S do

if m > dist(c,c‘) then
m := dist(c,c‘);
t := c‘;

end if;
end for;
return t;

Marius Kloft: Alg&DS, Summer Semester 2016 10

Voronoi Diagrams

• Pre-processing: Compute for every point sS its Voronoi area, i.e., the
area in which all points have s as nearest point from S

• This is not easy, but can be achieved in O(|S|*log(|S|) time
• Nearest-neighbor search using Voronoi diagrams is O(log(|S|))
• Conclusion: Finding a proper data structure does pay off

Marius Kloft: Alg&DS, Summer Semester 2016 11

More Abstract

• We want a piece of software T that
– can store a list of coordinates
– can compute the nearest point to a given point c

• Thus, T must support (at least) two operations
– T.init (S: list_of_coordinate)
– T.nearestNeighbor (c: coordinate)
– T apparently uses another data type: “coordinate”

• Such combinations of object sets and operations on these
sets are called a data type

• If we abstract from the implementation and only look at
the sets and operations, we call this an abstract data type

Marius Kloft: Alg&DS, Summer Semester 2016 12

Content of this Lecture

• Example
• Abstract Data Types
• Lists, Stacks, and Queues
• Realization in Java

Marius Kloft: Alg&DS, Summer Semester 2016 13

Abstract Data Types (ADT)

• An ADT defines a set of operations over a set of objects of
a certain (more basic) type
– Or over multiple sets of objects of different or same types

• The set of operations and types is called signature
• An ADT is independent of an implementation

– Different data structures to represent the objects
– Different algorithms to implement the operations
– An ADT is independent of any programming language

• Encapsulation: Objects are accessed only through the ops
• An implementation of a ADT is called a concrete (or

physical) data type

Marius Kloft: Alg&DS, Summer Semester 2016 14

Example

• ADT that we could use for our app for searching shops
• We only need two operations

– A way to insert shops (with their coordinates)
– A way to get the nearest shop with respect to a given coordinate

• We assume primitive data types to be given (string, int …)
• Not the only way …

type points
import

coordinate;
operators
add: points x coordinate  points;
neighbor: points x coordinate  coordinate;

Marius Kloft: Alg&DS, Summer Semester 2016 15

Modeling More Details

• An ADT defines what is necessary
• Design of ADT is a modeling decision

• Shop owner? Laptop models being repaired? Opening hours?
• Depends on requirements, ease-of-use, extensibility, personal

preferences, existing ADTs, …

type shops
import

shop;
operators
add: shops x shop  shops;
neighborC: shops x coordinate  coordinate;
neighborN: shops x coordinate  string;
neighborS: shops x coordinate  shop;

type shop
import

coordinate;
string;

operators
getName: shop  string;
getCoor: shop  coordinate;

Marius Kloft: Alg&DS, Summer Semester 2016 16

Reusing Existing ADTs

• For implementing points (or shops), it would be helpful to
import something that can hold a set of coordinates

• We need a list – an ADT in itself
– A parameterized ADT– a list of elements of an arbitrary ADT T
– For our ADT points, T will be coordinate

type list(T)
import

integer, bool;
operators
isEmpty: list  bool;
add: list x T  list;
delete: list x T  list;
contains: list x T  bool;
length: list  integer;

Marius Kloft: Alg&DS, Summer Semester 2016 17

Axioms: What we Know about an ADT

• We expect operations on lists to have a certain semantic
– Adding an element increases length by one

• If we assume bag semantics
– Deleting an element that doesn’t exist creates an error
– If a list is empty, its length is 0
– …

type list(T)
import

integer, bool;
operators
isEmpty: list  bool;
add: list x T  list;
contains: list x T  bool;
delete: list x T  list;
length: list  integer;

axioms:  l: list,  t: T
length(add(l, t)) = length(l) + 1;
length(l)=0  isEmpty(l);
…

Marius Kloft: Alg&DS, Summer Semester 2016 18

List versus Points

• Points uses a list and adds further functionality
• What‘s wrong?

– What happens if multiple x have the same distance to c?

type points
import

coordinate, bool, list(coordinates);
Operators
contains: points x coordinate  bool;

Implement as list.contains
add: points x coordinate  points;

Implement as list.add
neighbor: points x coordinate  coordinate;

Not implemented in list!
axioms
neighbor(p,c) = {x| contains(p,x) x’:contains(p, x’)=>

distance(x,c) ≤ distance(x’,c)};

Marius Kloft: Alg&DS, Summer Semester 2016 19

List versus Points

type points
import

coordinate, bool, 2Dspace;
Operators
contains: points x coordinate  bool;
add: points x coordinate  points;
neighbor: points x coordinate  points;

axioms
neighbor(p,c) = {x| contains(p,x)  x’: contains(p,x’):

distance(x,c) ≤ distance(x’,c)};

Marius Kloft: Alg&DS, Summer Semester 2016 20

We Stop Here

• There are various ways to formally specify the behavior of
operations of an ADT

• In this lecture, we only look at signature
– No semantics (except parameters of operations)
– Supported by most programming languages (e.g. Java)

• Algebraic specification
– Define an algebra over the object sets of the ADT
– Includes axioms defining the semantics of operations
– Axioms are essential to prove aspects of a system’s behavior

• Ideally, one only specifies and never programs

• See lecture on “Modellierung und Spezifikation”

Marius Kloft: Alg&DS, Summer Semester 2016 21

Content of this Lecture

• Data Structures Again
• Abstract Data Types
• Example: Lists, Stacks, and Queues
• Realization in Java

Marius Kloft: Alg&DS, Summer Semester 2016 22

Lists, Stacks, Queues

• We looked at a data type (points, shops) which essentially
is a list with one special operation: nearestNeighboor
– Canonical list operations: insert, search, delete, update, length

• There are many ways to implement the general ADT list
– Array, linked lists, double-linked lists, trees, …

• Two types of lists are of exceptional importance in
computer science: Stacks and Queues
– Both support mostly two operations
– These suffice for surprisingly many problems and applications
– Can be implemented very efficiently

Marius Kloft: Alg&DS, Summer Semester 2016 23

Queues

IN OUT

• Operations: enqueue, dequeue
• Special semantic: First in, first out (FIFO)
• Breadth-first traversal, shortest paths, BucketSort, …

Marius Kloft: Alg&DS, Summer Semester 2016 24

Stacks

• Operations: push, pop
• Special semantic: Last in, first out (LIFO)
• Call stacks, backtracking, “Kellerautomaten”, …

IN

OU
T

Marius Kloft: Alg&DS, Summer Semester 2016 25

As Abstract Data Types

type stack(T)
import

bool;
operators
isEmpty: stack  bool;
push: stack x T  stack;
pop: stack  stack;
top: stack  T;

type queue(T)
import

bool;
operators
isEmpty: queue  bool;
enqueue: queue x T  queue;
dequeue: queue  queue;
head: queue  T;

• Where‘s the difference?

Marius Kloft: Alg&DS, Summer Semester 2016 26

Signature does not Suffice

type a(T)
import

bool;
operators
isEmpty: a  bool;
add: a x T  a;
remove: a  a;
give: a  T;

type a(T)
import

bool;
operators
isEmpty: a  bool;
add: a x T  a;
remove: a  a;
give: a  T;

• Where‘s the difference?
• From the signature alone, there is no difference
• Yet – we expect a different behavior

Marius Kloft: Alg&DS, Summer Semester 2016 27

Defining the Difference

type stack(T)
import

bool;
operators
isEmpty: stack  bool;
push: stack x T  stack;
pop: stack  stack;
top: stack  T;

axioms  s:stack,  t:T
top(push(s, t)) = t;
pop(push(s, t)) = s;

type queue(T)
import

bool;
operators
isEmpty: queue  bool;
enqueue: queue x T  queue;
dequeue: queue  queue;
head: queue  T;

axioms  q:queue,  t:T
head(enqueue(q, t)) =
if isEmpty(q): t
else head(q);

dequeue(enqueue(q, t)) =
if isEmpty(q): q
else enqueue(dequeue(q), t);

Marius Kloft: Alg&DS, Summer Semester 2016 28

Content of this Lecture

• Data Structures Again
• Abstract Data Types
• Lists, Stacks, and Queues
• Realization in Java

Marius Kloft: Alg&DS, Summer Semester 2016 29

ADTs in Java

• Recall
– An ADT summarizes the essential operations on a set of objects
– An ADT is independent of a realization/implementation
– Any implementation of a ADT is called a concrete data type

• Realization in Java?
• Interfaces

– Only exhibit the essential operations on a class of objects
– Can have different implementations
– Can be implemented by a concrete class

Marius Kloft: Alg&DS, Summer Semester 2016 30

Remarks

• Java does not support axioms on interfaces
– Some other languages do, e.g. contracts in Eiffel

• Java adds functionality we mostly ignore
– Inheritance (syntactic sugar), different levels of visibility (public,

protected, private, …), overloading, …
• Historically, ADTs are a predecessor of classes in

programming languages
• ADTs can be realized at least in all OO languages

– Critical: encapsulation – you must not see anything of an object /
do anything with an object that is not represented in its (public)
interface

Marius Kloft: Alg&DS, Summer Semester 2016 31

Summary

• ADT’s specify the possible operations on a data structure
• ADT’s are free of implementation details
• We often discuss pros/contras of different ways to

implement a given ADT
• (Formal) ADTs can be used for much more

– Proving properties of a data type
– Proving that a concrete data type implements a ADT
– Proving that an implementation does not hurt axioms
– Program verification

Marius Kloft: Alg&DS, Summer Semester 2016 32

Exemplary Questions

• What is an abstract data type, what is a physical data
type?

• What are typical operations of a list? Of a stack?
• Imagine a class storing rectangles in a plane. We want to

add and remove rectangles, test if there are any
rectangles, and find all rectangles intersection of given
one. Define the ADT. What could be possible axioms?

