Algorithms and Data Structures

One Problem, Four Algorithms

Marius Kloft

Content of this Lecture

e The Max-Subarray Problem
e Naive Solution

e Better Solution

e Best Solution

Marius Kloft: Alg&DS, Summer Semester 2016

Where is the Sun?

Source: http://www.layoutsparks.com

Marius Kloft: Alg&DS, Summer Semester 2016

How can we find the Sun Algorithmically?

e Assume pixel (RGB) representation
e The sun obviously is bright

e RGB colors can be transformed
into brightness scores

e The sun is the brightest spot

— Compute an average brightness
for the entire picture

— Subtract this from each brightness
value (will yields negative values)

— Find the shape (spot) such that the sum of its brightness
values is maximal

Marius Kloft: Alg&DS, Summer Semester 2016

Size of the Spot not Pre-Determined

Marius Kloft: Alg&DS, Summer Semester 2016

only Rectangles)

Example (Shapes

-2
-3
-3
-2

-2
-3
-3
-2

-2
-2
-3
-1

-2
-2
4
-1

0
-1
-4

4

0
-1
-4

A

1
2

-4
4

1

2
-4

4

3
-4
0

3
-1
0]

-2
-3
-2

-3

-2
-3
-3
-2

-2
-2
-3
-1

0
-1
-4

A

1

2
-4
A

3

-4
0

-2
-3
-2

-2
-3
-3
-2

-2
-2
-4
-1

0]
-1

4
4

1
2

4
4

3
-1
0]

-3

o}
i
o
o
—
()
-~
0
()
=
()
9]
—
()
=
£
3
0p)}
S’
()
3
o)
<
&£
S
4
()]
=
=
[1%]
=

Max-Subarray Problem

e We solve a simpler problem (1D versus 2D)

o Definition (Max-Subarray Problem)
Assume an array A of integers. Find the subarray A* of A

such that the sum s* of the values in A* is maximal over
all subarrays of A. If s*<0, return 0.

e Remarks

— We only want the maximal value, not the borders of A*
— Cells may have positive or negative values (or 0)
— Length of the subarray A* is not fixed

Marius Kloft: Alg&DS, Summer Semester 2016

Optimization

e Optimization problem — find the best among all solutions

e [ssues
— Find solutions: Simple here, but sometimes hard
— Score solutions: Simple here, but sometimes hard
— Search space pruning: Do we need to look at all solutions?

e Typical pattern
— Enumerate solutions in a systematic manner
— Typically generates a tree of partial and finally complete solutions
— Prune parts of the search space where no optimal solution can be
— If possible, stop early

Marius Kloft: Alg&DS, Summer Semester 2016

Types of Algorithms

e Creating an opt. algorithm is between engineering and art

o Different fundamental patterns (non exhaustive list)

— Greedy: Find some promising start point and expand aggressively
until a complete solution is found

e Usually fast, but doesn't find the optimal solution

— Exhaustive: Test all possible solutions and find the one that is best
e Sometimes the only choice if optimality is asked for

— Divide & Conquer: Break your problem into smaller ones until these
are so easy that they can be solved directly; construct solutions for
“bigger” problems from these small solutions

— Dynamic programming
— Backtracking

Marius Kloft: Alg&DS, Summer Semester 2016 9

A Greedy Solution

e Promising start point: Find maximal value in array A
e Greedy: Expand in both directions until sum decreases
o Complexity?

Marius Kloft: Alg&DS, Summer Semester 2016

A Greedy Solution

e Promising start point: Find maximal value in array A
e Greedy: Expand in both directions until sum decreases
e Complexity? (Let n=|A|)
— O(n) to find maximal value
— O(n) expansion steps in worst case
— O(n) together
e Do we optimally solve our problem?

Marius Kloft: Alg&DS, Summer Semester 2016

11

A Greedy Solution

e Promising start point: Find maximal value in array A
e Greedy: Expand in both directions until sum decreases
o Complexity? (Let n=|A])
— O(n) together
e Do we optimally solve our problem?

-2 | 0 4 3 4 | -3|-1|12| 2 |-1| 1

-2 0 4 3 4 | -3|-1|12| 2 |-1| 1

-2 | 0 4 3 4 | -3|-1|12| 2 |-1| 1

Marius Kloft: Alg&DS, Summer Semester 2016

A Greedy Solution

e Promising start point: Find maximal value in array A
e Greedy: Expand in both directions until sum decreases
o Complexity? (Let n=|A])
— O(n) together
e Do we optimally solve our problem?

-2 | 0 4 3 4 | -3|-1|12| 2 |-1| 1

-2 0 4 3 4 | -3|-1|12| 2 |-1| 1

-2 | 0 4 3 4 | -3|-1|12| 2 |-1| 1

e First step is already wrong

-2 0 4 3 4 |-6|(-6|10|-6|-1| 1

Marius Kloft: Alg&DS, Summer Semester 2016

Content of this Lecture

e The Max-Subarray Problem
e Naive Solution

e Better Solution

e Best Solution

Marius Kloft: Alg&DS, Summer Semester 2016

Exhaustive Solution

1A];

I . ndo e i: Every start point of an array
S =
for kK := i . j do e j: Every end point of an array

end 1::0,,; ; e k: Compute the sum of the

i f s>m then values between start and end
m =S,
end 1f;
end for;
end for;
return m;

Marius Kloft: Alg&DS, Summer Semester 2016

Illustration

A: array_ of integer; 2|04 |3|4|-3|-1|12|2 |-1|1
n = |Al;
m = -maxint; i1 S —— j=1..n
for 1 :=1 .. n do T —
for jJ =1 n do
s := 0;
s :=s + AIKI; |jz2 mmmmm__ j=2.n
end for;
1T s>m then
m =S, '
end if; i—3 — _
end for; j=3..n
end for;
return m; s mm

Marius Kloft: Alg&DS, Summer Semester 2016

Complexity

1A];

1T s>m then
m := S;
end 1T;
end for;
end for;
return m;

Marius Kloft: Alg&DS, Summer Semester 2016

Complexity?

Outmost loop: n times

j-loop: n times (worst-case)
Inner loop: n times

Together: O(n3)

But: We are summing up the
same numbers again and again

We perform redundant work
More clever ways?

17

Exhaustive Solution

o First sum: A[1]

e Second: A[1]+A[2] —
o 3rd: A[1]H+A[2]HA[3] ——
o 4th: ...

-2/ 04| 3|4 |-3|-1|12| 2 |(-1|1

e Every next sum is the
previous sum plus the
next cell

e How can we reuse the
previous sum?

Marius Kloft: Alg&DS, Summer Semester 2016

Exhaustive Solution, Improved

e Every next sum is the
previous sum plus the
next cell

e Complexity: O(n?)

Marius Kloft: Alg&DS, Summer Semester 2016

array of integer;
Al
-maxint;
1 =1 . ndo
s := 0;
for Jj =1 .. ndo
s :=s + Aljl;
1T s>m then
m = S;
end 1f;
end for;
end for;
return m;

A:
n
m :
for

Content of this Lecture

e The Max-Subarray Problem
e Naive Solution

e Better Solution

e Best Solution

Marius Kloft: Alg&DS, Summer Semester 2016

Observation

e We still perform many sums multiple times

Marius Kloft: Alg&DS, Summer Semester 2016

Divide and Conquer

e We can break up our problem into smaller ones by looking
only at parts of the array

e One scheme: Assume A=A, |A,

— With “|” meaning array concatenation and |A,|=|A,]| or |A;|=|A,]|+1
e The max-subarray (msa) of A ...

— either lies in A; — can be found by solving msa(A,)

— orin A, — can be found by solving msa(A,)

— or partly in A; and partly in A,

e Can be solved by summing-up the msa in A,/A, that aligns with the
right/left end of A,/A,

e We divide the problem into smaller ones and create the
“bigger” solution from the “smaller” solutions

Marius Kloft: Alg&DS, Summer Semester 2016 22

Algorithm (for simplicity, assume |A|=2* for some x)

function msa (A: array of _int)
n = |Al;
It (n=1) then
iIT A[1]>0 then
return A[1]

else
return O;
end 1F;
m = n/2;
Al = A[l1.m];
A2 = A[m+1l..n
11 = rmax(Al);
12 = Imax(A
m = max(msa(Al),
11+12,
msa(A2));
return mj;

Marius Kloft: Alg&DS, Summer Semester 2016

function rmax (A: array_of _int){

: i
for 1 :=n .. 1 do
s :=s + A[il];
1T s>m then
m = S;
end 1f;
end for;
return m;

Example

il I Il Bl e Bl e Solution: max(7,7+4,4)
rmax=7/ Imax=4 ﬂ
23|13 4 [-3[-a] 2 o Left array: max(3,3+4,4)
rmax=3 imax=4 Imax=0 * nght array: maX(4,1+O,2)

rmax=1 ﬂ
_K x j/Kj -}\j e Left-most: max(0,0+3,3)

Marius Kloft: Alg&DS, Summer Semester 2016 24

Complexity

e This time it is not so €aSY ... | function rmax (A: array of _int){

. = A ;
e Complexity of Imax / rmax? | o - ¢:
m = -—-maxint;
for 1 :=n .. 1 do

s :=s + A[il];
1T s>m then
m = s;
end 1T;
end for;
return m;

}

Marius Kloft: Alg&DS, Summer Semester 2016

Complexity

e This time it is not so easy ...
e Complexity of Imax / rmax?

— O(n)

Marius Kloft: Alg&DS, Summer Semester 2016

function rmax (A: array_of _int){

n = |Al;

s = 0;

m = —-maxint;

for 1 :=n .. 1 do

s :=s + A[il];
1T s>m then
m = s;
end 1f;
end for;
return m;

}

26

Complexity

e This time it is not so easy ...

e Complexity of Imax / rmax?
— O(n)
e Function msa

— Let T(n) be the number of
steps necessary to execute
the algorithm for |A|=n

e In each level, n'=n/2

e The two sub-solutions
require T(n") each

function msa (A: array of int) {

}

n := |A];
1T (n=1) then
1T A[1]>0 then
return A[1]

else
return O;

end 1f;
m = n/2; # .
Al = A[1.m];
A2 = A[m+1.n];
11 := rmax(Al);
12 := Imax(A2);

m = max(msa(Al),11+12,msa(A2));
return m;

— This yields: T(n) ~ O(1)+0(n)+T(n/2)+T(n/2)

Marius Kloft: Alg&DS, Summer Semester 2016

Complexity

e Further:

Marius Kloft: Alg&DS, Summer Semester 2016

function msa (A: array_of integer) {
n = |A|;
it (n=1) then
if A[1]>0 then
return A[1]
else
return O;
end 1F;
R = N/2; # Assume even sizes

a(Al), 11+12, msa(AZ))S

] function msa (A: array_of integer) {
n = |A|;
Complexity e ey then
iT A[1]>0 then

return A[1]
else
return O;
end 1f;
m = n/2; # Assume even sizes
Al = A[l1l.m];
e For constants ¢, ¢, A2 := A[m+1.n];
11 := rmax(Al);
° T(n) = 2*T(n/2)+c1*n 12 := Imax(A2);
m = max(msa(Al), 11+12, msa(A2));
e Further: T(l) = G return m:

e [terative substitution: !
T(n)= 2*T(n/2)+c,n =
= 2(2T(n/4)+c,n/2)+c,n = 4T(n/4)+cyn+Cyn =
= 4(2T(n/8)+c,n/4)+2c,n = 8T(n/8)+3c;n = ...
—
2109(M*c, + ¢;n*log(n) =
c,n+cyn*log(n) = O(n*log(n))

Marius Kloft: Alg&DS, Summer Semester 2016 29

Same Problem, Different Algorithms

e Naive: O(n3)
e Less naive, still redundant: O(n?)
e Divide & Conquer: O(n*log(n))
e The problem: O(n)

Marius Kloft: Alg&DS, Summer Semester 2016

Content of this Lecture

e The Max-Subarray Problem
e Naive Solution
e Better Solution
e Linear Solution

Marius Kloft: Alg&DS, Summer Semester 2016

31

Let's Think again — More Carefully

e Let's use another strategy for dividing the problem
o |et's look at the solutions for A[1], A[1..2], A[1...3], ...

o What can we say about the msa for A*1=A[1...i+1], given
the msa of A'=A[1...i]?

-2 0 (4|3 |4f-3|-1| 6

Marius Kloft: Alg&DS, Summer Semester 2016

32

Let's Think again — More Carefully

e Let's use another strategy for dividing the problem
o |et's look at the solutions for A[1], A[1..2], A[1...3], ...

o What can we say about the msa for A*1=A[1...i+1], given
the msa of A'=A[1...i]?

-2 0 (4|3 |4f-3|-1| 6

e msa(A*l)is ...
— either somewhere within A, which means the same as msa(A")
— or is formed by rmax(A)+A[i+1]

e Thus, we only need to keep msa and rmax while scanning
once through A from left to right

Marius Kloft: Alg&DS, Summer Semester 2016

33

Algorithm & Complexity

e Obviously: O(n)

A: array_ of integer; - -

rmax:= 03 o Asymptotically optimal

m = -maxint; — We only look a constant number

for iz= 1 tondo of times at every element of A
T AL < rmax:ﬁ[!] then — But we need to look at least
el;gax -= rmax+ALL]; once at every element of A

rmax := A[i]; — Thus, the problem is Q(n)

end 1T; e Example of dynamic
m = max(rmax, m); . :

end for- programming: Build larger

solutions from smaller ones

Marius Kloft: Alg&DS, Summer Semester 2016

Example

rmax m
23|13 |4|-3|-4]02 2| -2
23|13 |4|-3|-4]02 3 | 3
23|13 |4|-3|-4]2 4 | 4
2| 3| 1|3|4a|-3|-4]|2 717
23|13 |4|-3|-4]2 11 | 11
2|3 |1|3|4|-3|-4]02 8 | 11
23|13 |4|-3|-4]2 4 |11
23|13]|4/|-3|-4]2 6 | 11

Marius Kloft: Alg&DS, Summer Semester 2016

Exemplary Questions

e Give an optimal algorithm for the max-subarray problem
and prove its optimality

e Assume the max-subarray problem with the additional
restriction that the length of sub-array must be short-or-
equal a constant k. Give a linear algorithm solving this
problem.

e Give an algorithm for the max-subarray problem in 2D,
where |A| is quadratic and the subarray must be a square.
Analyze its worst-case complexity.

— Hint: For improvements, store intermediate results

Marius Kloft: Alg&DS, Summer Semester 2016

Solution for the 2D Case

e Finds optimal solutions for
subarrays from column i to
column j

— Number of rows doesn't change

e Givei,j, compute the sums of
values of every row (tmp); this is
a 1D array; use linear algorithm
as in lecture to find optimal
solution

e To compute tmp, only add values
of current new column to existing
row sums

e Complexity: O(n3)

Marius Kloft: Alg&DS, Summer Semester 2016

A: array of size nxm;
m = -maxint;
for 1:= 1 to n do
tmp[1l..m]:=0;
for jJ:= 1 to n do
for k:= 1 to m do
tmp[k]+=ALJ,K];
end for;
m> :-= 1D-max-subarray(tmp);
iIT M” > m then m:=m~;
end for;
end for;

37

