Algorithms and Data Structures

Stack, Queues, and Applications

Marius Kloft

Content of this Lecture

e Stacks and Queues
e Tree Traversal
e Towers of Hanoi

Marius Kloft: Alg&DS, Summer Semester 2016 P

Stacks and Queues

e Recall these two fundamental ADTs

type stack(T) type queue(T)

import import
bool ; bool;

operators operators
isEmpty: stack — bool; ISEmpty: queue — bool;
push: stack x T » stack; enqueue: queue X T — queue;
pop: stack —» stack; dequeue: queue — queue;
top: stack —» T; head: queue — T;

e Properties

— Stacks always add / remove the first element
e Add and remove from right - LIFO

— Queues always add the first element and remove the last element
e Add from right, remove from left - FIFO

Marius Kloft: Alg&DS, Summer Semester 2016 3

Implementation

e Which are better for implementing stacks & queues:
arrays, linked lists, or double-linked lists?

Array | Linked | Double-

list linked .
Insert O(n) O(n) O(n)
InsertAfter O(n) O(1) O(1)
Delete O(n) O(n) O(n)
DeleteThis O(n) O(n) 0O(1)
Search O(n) O(n) O(n)
Add to start | O(n) 0O(1) 0O(1)
Add to end 0O(1) O(n) 0O(1)

Marius Kloft: Alg&DS, Summer Semester 2016 4

Implementation

e Stacks

— Always add / remove at the front
— Efficiently supported by linked lists or double-linked lists

e Queues
— Always add at the front and remove from the back

— Efficiently supported by Array | Linked | Double-
double-linked lists with pointer list | linked L.
to first and last element Insert o(n) o(n) o(n)

— Adding a “last” pointer to a InsertAfter | O(n) | O() o(1)
single-linked list is also enough Delete O(m | O On)

DeleteThis O(n) O(n) 0O(1)
Search O(n) O(n) O(n)
Add to start [O(n) 0O(1) 0O(1)
Add to end 0O(1) O(n) 0O(1)

Marius Kloft: Alg&DS, Summer Semester 2016 5

Content of this Lecture

e Stacks and Queues

e Tree Traversal
— Application
— Depth-First using Stacks
— Breadth-First using Queues

e Towers of Hanoi

Marius Kloft: Alg&DS, Summer Semester 2016 6

Application

e Information systems is a class of software systems that is
concerned with managing (and analyzing) data
— Customers of a company, calls of a telecom company, etc.

e ,Managing” means
— Storing, being fail-safe, allowing concurrent read and write access,
offering comfortable (and fast) ways of accessing the data

e ,All customers older than 55 which purchased goods worth more than
30K in the last 6 months and that did never before buy a Rolex™

— See course on Databases

e Analyzing can mean

— Discover interesting relationships

e Customers who buy X, are likely to buy also Y
=> Show ad banner of Y

— See Machine Learning course

Marius Kloft: Alg&DS, Summer Semester 2016 7

Data Models

e Data managed within a database needs to be modeled
— Which data do we store?

e One particularly comfortable data model is called XML
— XML: Extended Markup Language
— Allows to model (and define) hierarchical data structures
e Central elements: Elements and values
— Elements are names of values or of groups of values
— Elements have an opening and a closing tag (<x></x>)
— Values store the actual data values

Marius Kloft: Alg&DS, Summer Semester 2016 8

Example — Elements and Values

<customers>
<customer>
<last_name>
Maller
</last_name>
<first_name>
Peter
</first_name> .
<age> e XML is Verbose
25
</age> e But can be compressed well

</customer>

<customer> e Not necessarily a model for
<last_name>
Meier storage
</last_name>
<first_name>
Stefanie
</Ffirst_name>
<age>
27
</age>
</customer>
</customers>

Marius Kloft: Alg&DS, Summer Semester 2016 9

Example

<customers>
<customer>
<last_name>
Maller
</last_name>
<first_name>
Peter
</first_name>
<age>
25
</age>
</customer>
<customer>
<last_name>
Meler
</last_name>
<first_name>
Stefanie
</first_name>
<age>
27
</age>
</customer>
</customers>

Marius Kloft: Alg&DS, Summer Semester 2016

e Production rules

customers -> cust
cust -> customer

cust -> customer, cust

customer -> last_name, first_name, age

last_name -> *
first nhame -> *
age -> *

10

Data — A Tree

e The elements and values of an XML doc form a tree

<customers>
<customer>
<last_name>
Maller
</last_name>
<first_name>
Peter
</fTirst_name>
<age>
25
</age>
</customer>
<customer>
<last_name>
Meiler
</last_name>
<first_name>
Stefanie
</fTirst_name>
<age>
27
</age>
</customer>
</customers>

customers
customer customer
last_name last_name
first_name \ first_ name \
age age
Miiller Meier
Peter Stefanie
25 27

Marius Kloft: Alg&DS, Summer Semester 2016

11

Implementing a Tree

class element {
value: String;
children: list of element;

}

<customers>
<customer>
<last_name>
Maller
</last_name>
<fFirst_name>
Peter
</first_name>
<age>

class XMLDoc {
root: element;
func void init(Q)
func element getRoot()
func String printTree() {
? How ?

calil

\

25
</age>
</customer>

<last_name> Maller
Meier

</last_name>

customer

<customer> last name first _name age
25

Peter

customers

customer

last name first _name age
Meier Stefanie 27

<fFirst_name>
Stefanie
</first_name>
<age>
27
</age>
</customer>
</customers>

Marius Kloft: Alg&DS, Summer Semester 2016

12

Two Strategies

e For both cases, we need to traverse the tree
— Start from root and recursively follow pointer to children
— Fortunately, we cannot run into cycles

e But they require different traversal strategies

— Depth-first: From root, always
follow the left-most child until
you reach a leaf; then follow
second-left-most ... ler

<customers> Stefanie

— Breadth-first: From root, first | <o 25 27
Muller

look at all children, then at all </last_nane>

<first_name>

grand-children, then ... </firet_nane>

- <age>
(always from left to right) 25
</age>
</customer>
<customer> customers
<IasF_name> customer customer
Meier last_name first_name age last_name first_name age
</last_name> Maller Peter 25 Meier Stefanie 27
<first_name>
Stefanie

customers

customer

customer

last_name
first name

| last_ name |
first_name

</First_name>
<age>
27
</age>
</customer>
</customers>

Marius Kloft: Alg&DS, Summer Semester 2016

Content of this Lecture

e Stacks and Queues

e Tree Traversal
— Application
— Depth-First using Stacks
— Breadth-First using Queues

e Towers of Hanoi

Marius Kloft: Alg&DS, Summer Semester 2016

14

Depth-First Traversal (no indentation)

customers

customer

customer

func String printDFS (t Tree) {

s = new Stack();

last_name

o = 77,

node : treeElement;

s.push(t.getRoot()); Miiller

while not s.isEmpty() do Stefanie
node := s.pop(); 25 27

0 := o+tnode.getValue()+’\If’;
Cc := node.getChild O:

<customers>
<customer>
<last_name>

foreach x

s.push(x);

end for;
end while;
return o;

in c do

We assume that

elements have their
name as value

Marius Kloft: Alg&DS, Summer Semester 2016

Muller
</last_name>
<first_name>

Peter
</First_name>
<age>

25
</age>

</customer>
<customer>
<last_name>

Meier
</last_name>
<first_name>

Stefanie
</First_name>
<age>

27
</age>

</customer>
</customers>

15

DFS-2

s.push(root);

while not s.isEmpty() do
node := s.pop();
o :-= o+node.getValue();
print s, o;

Cc := node.getChildren()
foreach x In c do
s.push(x);
end for;
print s, oO;
end while;

Output o:
customers customers customers customers customers
customer?2 customer?2 customer?2
age
. ‘J[:;” age

Stack s: first_name first_name
customer?2 last name last name
customerl customerl customerl customerl

Marius Kloft: Alg&DS, Summer Semester 2016

16

DFS-3

customers
customer?2
age

25
first_name
last name
customerl

s.push(root);

while not s.isEmpty() do
node := s.pop();
o :-= o+node.getValue();
print s, o;
Cc := node.getChildren();
foreach x In c do

s.push(x);

end for;
print s, oO;

end while;

customers customers customers
customer?2 customer?2 customer?2 nus
age age age
25 25 25
Peter last_name last_name
MOl ler Peter Peter

first_name first_name

Maller Maller

customerl customerl

age
first_name
customerl last _name —na

Marius Kloft: Alg&DS, Summer Semester 2016

17

Adding Indentation

e We need to also store the depth of a node on the stack

— We assume a generic, type-independent stack

s.push(root);
s.push(1);
while not s.i1sEmpty() do
depth := s.pop();
node := s.pop();
0 := o+ SPACES(depth) +node.getValue();
c := node.getChildren();
foreach x in c do
s.push(x);
s.push(depth+1);
end 1T;
end while;

Marius Kloft: Alg&DS, Summer Semester 2016

customers
customer?2
age
25
first_name
Peter
last name
Maller
customerl

18

Reverting Order

e We create customer? ... customerl — but we wanted
customerl ... customer?2

e The order of children is reverted by the stack

e Remedy
— Push children in reverted order

— Can be achieved by a FOREACH which traverses a list in reverted
order

— Easy if a double-linked list is used

Marius Kloft: Alg&DS, Summer Semester 2016

19

Content of this Lecture

e Stacks and Queues

e Tree Traversal
— Application
— Depth-First using Stacks
— Breadth-First using Queues

e Towers of Hanoi

Marius Kloft: Alg&DS, Summer Semester 2016

20

Breadth-First Traversal

customers

Func String printBFS (t Tree) {
g := new Queue();
o = "7
node : element;
g-enqueue(t.getRoot());
while not q.i1sEmpty() do
node := g.dequeue();
o :-= o+node.getValue();
Cc := node.getChildren();
foreach x In c do

q-enqueue(X);

customer customer

last_name
first_name

last_name
first_name

Miiller

Stefanie

25 27

end 1T;
end while;
customers
} customer customer
last_name first_name age last_name first_name age
Maller Peter 25 Meier Stefanie 27

Marius Kloft: Alg&DS, Summer Semester 2016

BFS-2

customers
customerl
customer?2

customers customers customers customers
customerl customerl
: age
first_name
customer2 last name
customerl customer?2 customer?2

age
first_name
last name

Marius Kloft: Alg&DS, Summer Semester 2016

22

BFS-3

customers
customerl
customer?2
last name

customers customers
customerl customerl
customer2 customer2
age
first_name
last name
age age
first _name first_name
last _name last _name

age
first_name
last name

age
first_name

customers customers
customerl customerl
customer2 customer2
last_name last_name
first_name
Maller Peter
age Maller
first_name age
last name first_name
age last _name
first_name age

o If we add information about the depth of a hode, we can
put elements of same depth at the same line of the output

Marius Kloft: Alg&DS, Summer Semester 2016

23

Time Complexity

e The complexity of the traversal is O(n) in both cases

— n = number of nodes in the tree
— Each node is pushed (enqueued) once and popped (dequeued) once

e Thus, the foreach loop is passed by (n-1) times altogether
e The style of argument is different from what we had so far

— Recall SelectionSort

— We have two nested loops in both algorithms

printBFS:

end for;
end while;

while not q.isEmpty() do
foreach x 1In ¢ do

SelectionSort:
for 1 = 1..n-1 do
for j = 1+1l..n do

end for;
end for;

Marius Kloft: Alg&DS, Summer Semester 2016

24

Explanation

printBFS:
while not q.i1sEmpty() do
foreach x 1n c do

end for;
end while;

SelectionSort:
for 1 = 1..n-1 do
for j = 1+1l..n do

end for;
end for;

e In printBFS, we do not know how often the inner loop is
passed-through for a specific iteration of the outer loop

— We cannot sensibly estimate this number — depends on the number
of children, not on the concrete iteration of the outer loop

— But we can directly count how often the inner loop is passed over
all iterations of the outer loop

— This is possible because we know that no element is touched twice

e In SelectionSort, we do know how often the inner loop is
passed-through for every iteration of the outer loop

— Obviously, n-i-1 times

— But we have no simple estimation for the number of times the inner loop is
passed-through over all iterations of the outer run

— This is because we touch elements multiple times

Marius Kloft: Alg&DS, Summer Semester 2016

25

Space Complexity

e Time complexity is the same for DFS and BFS, but space
complexity is different

e Let d be the depth of the tree (length of longest path)

e Let b be the breadth of the tree
— Maximal humber of nodes with same depth over all levels

e Let c be the maximal humber of children of any node
e In DFS, the stack holds at most d*c elements
e In BFS, the queue holds at most b elements

e That's a big difference in typical database settings

— Little nesting (small d), but hundreds of thousands of customers
(large b)

Marius Kloft: Alg&DS, Summer Semester 2016

26

Content of this Lecture

e Stacks and Queues
e Tree Traversal
e Towers of Hanoi

Marius Kloft: Alg&DS, Summer Semester 2016

27

Rules of the Game

I
[]
%’ .)N |

1 2 3

e Move stack from stick 1 to stick 2
e Always move only one disc at a time
e Never place a larger disc on a smaller one

Marius Kloft: Alg&DS, Summer Semester 2016

Solution for 3 Discs

FpFEE

|

e |
. |

Marius Kloft: Alg&DS, Summer Semester 2016

Source: Informatik Didaktik, U Potsdam

29

el e | |
4 Discs ——===-. | L
e . L
e . I
p— e el
p— i R
— I e
» I | i
| I i
e — S
I | | I We have
— seen this
- .8 I part before
R L
I e 1
I I

| e— | | R
4 Discs —~——=== | 1
e i A
— L I L And this
PRI N e, part as well
P I b,
I ' i |
+ . J' . +_
— b e L Wehave
: ! | seen this
part before
S

Idea

e The problem can be solved “easily” (with little program
code) using the following observations
— Suppose you know how to solve the problem for n-1 discs
— Then solving it for n discs
is simple e /‘\x ‘

e 1. Move the (n-1) top-part | |

of the tower to stick 3 L 2 3
e 2. Move the n'th (largest) disc ‘ ‘
to stick 2 P ,5‘
e 3. Move the (n-1) tower from . 2 3
stick 3 to stick 2 ‘ e ’i‘
— Furthermore, we know how to | : | |

solve the problem for n=1 ;

— Done ,i ‘
|

3

Marius Kloft: Alg&DS, Summer Semester 2016

32

Algorithm

e We want an algorithm which prints the series of moves

that solve the problem for size n

e We encode a move as a quadruple (n, a, b, ¢) which
means: “"Move n discs from stick a to b using c”

e We build a stack of tasks

e When we pop a task from
the stack, we can do either

— Task is easy (n=1):
Print next move

— Task is difficult (n>1):

Push three new tasks

Marius Kloft: Alg&DS, Summer Semester 2016

s: stack;
s.push(n, 1, 2, 3);
while not s.isEmpty() do
(n, a, b, ¢c) = s.popQ);
iIT (n=1) then
print “Move “+at+”->*“+b;
else
s.push(n-1, c, b, a);
s.push(1, a, b, ©);
s.push(n-1, a, c, b);
end 1f;
end while;

33

Example

s: stack;
s.push(n, 1, 2, 3);
while not s.isEmpty() do
(n, a, b, ¢) = s.pop();
it (n=1) then
print “Move “+a+”->*“+b;
else
s.push(n-1, c, b, a);
s.push(1, a, b, ©);
s.push(n-1, a, c, b);
end 1T;
end while;

3,1,2,3

CEEEER

FHEFEEET
S 3 S S

Marius Kloft: Alg&DS, Summer Semester 2016

2,1,3,2
1,1,2,3
2,3,2,1

Move 1->2

1,1,2,3
1,1,3,2
1,2,3,1
1,1,2,3
23,21

1,3,1,2
1,3,2,1
1,1,2,3

Move 1->3
Move 2->3
Move 1->2

Move 3->1
Move 3->2
Move 1->2

Complexity

e How often do we pop from the stack?
— For a task of size n, we pop once and create two tasks of size n-1
and one task of size 1
— For a task of size 1, we pop once and create no further task

— This gives 1+2+1+4+1+8+1+ ... +2™1 = O(2") tasks altogether
e Recall that >2! = 2n+1-1

e The algorithm has complexity O(2")

Marius Kloft: Alg&DS, Summer Semester 2016

35

Optimality

e We can also derive: For solving a problem of size n, the
algorithm creates 2"-1 moves

— As every pop yields one move

e As no algorithm can create 2"-1 moves in less than 2"-1
operations, the algorithm is optimal for such sequences

e Question: Is there a shorter sequence of moves that also
solves the problem?
— Answer: No

e Second example of an exponential problem

Marius Kloft: Alg&DS, Summer Semester 2016

36

Recursion

e Doesn't this fiddling around with a stack look overly

complex? func void solve(n, a, b, c) {
. . 1T (n=1) then
e Recursive formulation orint “Move “+a+"->“rc:
else

solve(n-1,a, c, b);

solve(1, a, b, ©);

solve(n-1, c, b, a);
end 1T;

e This program will create more |3
or the less the same stack
- on the program stack

e A stack can be used to “de-recursify” a recursive algorithm
— Which doesn’t mean that the program gets easier to understand

Marius Kloft: Alg&DS, Summer Semester 2016 37

