
Algorithms and Data Structures

Marius Kloft

Stack, Queues, and Applications

Marius Kloft: Alg&DS, Summer Semester 2016 2

Content of this Lecture

• Stacks and Queues
• Tree Traversal
• Towers of Hanoi

Marius Kloft: Alg&DS, Summer Semester 2016 3

Stacks and Queues

• Recall these two fundamental ADTs

• Properties
– Stacks always add / remove the first element

• Add and remove from right - LIFO
– Queues always add the first element and remove the last element

• Add from right, remove from left - FIFO

type stack(T)
import

bool;
operators
isEmpty: stack bool;
push: stack x T stack;
pop: stack stack;
top: stack T;

type queue(T)
import

bool;
operators
isEmpty: queue bool;
enqueue: queue x T queue;
dequeue: queue queue;
head: queue T;

Marius Kloft: Alg&DS, Summer Semester 2016 4

Implementation

• Which are better for implementing stacks & queues:
arrays, linked lists, or double-linked lists?

Array Linked
list

Double-
linked l.

Insert O(n) O(n) O(n)
InsertAfter O(n) O(1) O(1)
Delete O(n) O(n) O(n)
DeleteThis O(n) O(n) O(1)
Search O(n) O(n) O(n)
Add to start O(n) O(1) O(1)
Add to end O(1) O(n) O(1)

Marius Kloft: Alg&DS, Summer Semester 2016 5

Implementation

• Stacks
– Always add / remove at the front
– Efficiently supported by linked lists or double-linked lists

• Queues
– Always add at the front and remove from the back
– Efficiently supported by

double-linked lists with pointer
to first and last element

– Adding a “last” pointer to a
single-linked list is also enough

Array Linked
list

Double-
linked l.

Insert O(n) O(n) O(n)
InsertAfter O(n) O(1) O(1)
Delete O(n) O(n) O(n)
DeleteThis O(n) O(n) O(1)
Search O(n) O(n) O(n)
Add to start O(n) O(1) O(1)
Add to end O(1) O(n) O(1)

Marius Kloft: Alg&DS, Summer Semester 2016 6

Content of this Lecture

• Stacks and Queues
• Tree Traversal

– Application
– Depth-First using Stacks
– Breadth-First using Queues

• Towers of Hanoi

Marius Kloft: Alg&DS, Summer Semester 2016 7

Application

• Information systems is a class of software systems that is
concerned with managing (and analyzing) data
– Customers of a company, calls of a telecom company, etc.

• „Managing“ means
– Storing, being fail-safe, allowing concurrent read and write access,

offering comfortable (and fast) ways of accessing the data
• „All customers older than 55 which purchased goods worth more than

30K in the last 6 months and that did never before buy a Rolex“
– See course on Databases

• Analyzing can mean
– Discover interesting relationships

• Customers who buy X, are likely to buy also Y
=> Show ad banner of Y

– See Machine Learning course

Marius Kloft: Alg&DS, Summer Semester 2016 8

Data Models

• Data managed within a database needs to be modeled
– Which data do we store?

• One particularly comfortable data model is called XML
– XML: Extended Markup Language
– Allows to model (and define) hierarchical data structures

• Central elements: Elements and values
– Elements are names of values or of groups of values
– Elements have an opening and a closing tag (<x></x>)
– Values store the actual data values

Marius Kloft: Alg&DS, Summer Semester 2016 9

Example – Elements and Values
<customers>

<customer>
<last_name>
Müller

</last_name>
<first_name>
Peter

</first_name>
<age>
25

</age>
</customer>

<customer>
<last_name>
Meier

</last_name>
<first_name>
Stefanie

</first_name>
<age>
27

</age>
</customer>

</customers>

• XML is verbose …
• But can be compressed well
• Not necessarily a model for

storage

Marius Kloft: Alg&DS, Summer Semester 2016 10

Example

• Production rules
customers -> cust
cust -> customer
cust -> customer, cust
customer -> last_name, first_name, age
last_name -> *
first_name -> *
age -> *

<customers>
<customer>
<last_name>
Müller

</last_name>
<first_name>
Peter

</first_name>
<age>
25

</age>
</customer>

<customer>
<last_name>
Meier

</last_name>
<first_name>
Stefanie

</first_name>
<age>
27

</age>
</customer>

</customers>

Marius Kloft: Alg&DS, Summer Semester 2016 11

Data – A Tree

• The elements and values of an XML doc form a tree
<customers>

<customer>
<last_name>

Müller
</last_name>
<first_name>

Peter
</first_name>
<age>

25
</age>

</customer>
<customer>

<last_name>
Meier

</last_name>
<first_name>

Stefanie
</first_name>
<age>

27
</age>

</customer>
</customers>

customers

customer

last_name

first_name
age

Müller

Peter

25

customer

last_name

first_name

age
Meier

Stefanie

27

Marius Kloft: Alg&DS, Summer Semester 2016 12

Implementing a Tree

class XMLDoc {
root: element;
func void init()
func element getRoot()
func String printTree() {
? How ?

}
}

class element {
value: String;
children: list_of_element;

}

<customers>
<customer>
<last_name>
Müller

</last_name>
<first_name>
Peter

</first_name>
<age>
25

</age>
</customer>
<customer>

<last_name>
Meier

</last_name>
<first_name>
Stefanie

</first_name>
<age>
27

</age>
</customer>

</customers>

customers
customer customer

last_name first_name age last_name first_name age
Müller Peter 25 Meier Stefanie 27

Marius Kloft: Alg&DS, Summer Semester 2016 13

Two Strategies

• For both cases, we need to traverse the tree
– Start from root and recursively follow pointer to children
– Fortunately, we cannot run into cycles

• But they require different traversal strategies
– Depth-first: From root, always

follow the left-most child until
you reach a leaf; then follow
second-left-most …

– Breadth-first: From root, first
look at all children, then at all
grand-children, then …
(always from left to right)

customers

customer

last_name

first_name

age

Müller

Peter

25

customer

last_name

first_name

age

Meier

Stefanie

27

<customers>
<customer>

<last_name>
Müller

</last_name>
<first_name>

Peter
</first_name>
<age>

25
</age>

</customer>
<customer>

<last_name>
Meier

</last_name>
<first_name>

Stefanie
</first_name>
<age>

27
</age>

</customer>
</customers>

customers
customer customer

last_name first_name age last_name first_name age
Müller Peter 25 Meier Stefanie 27

Marius Kloft: Alg&DS, Summer Semester 2016 14

Content of this Lecture

• Stacks and Queues
• Tree Traversal

– Application
– Depth-First using Stacks
– Breadth-First using Queues

• Towers of Hanoi

Marius Kloft: Alg&DS, Summer Semester 2016 15

Depth-First Traversal (no indentation)

func String printDFS (t Tree) {
s := new Stack();
o := “”;
node : treeElement;
s.push(t.getRoot());
while not s.isEmpty() do
node := s.pop();
o := o+node.getValue()+”\lf”;
c := node.getChildren();
foreach x in c do
s.push(x);

end for;
end while;
return o;

}

customers

customer

last_name

first_name

age

Müller

Peter

25

customer

last_name

first_name

age

Meier

Stefanie

27

<customers>
<customer>

<last_name>
Müller

</last_name>
<first_name>

Peter
</first_name>
<age>

25
</age>

</customer>
<customer>

<last_name>
Meier

</last_name>
<first_name>

Stefanie
</first_name>
<age>

27
</age>

</customer>
</customers>

We assume that
elements have their

name as value

Marius Kloft: Alg&DS, Summer Semester 2016 16

DFS-2
s.push(root);
while not s.isEmpty() do
node := s.pop();
o := o+node.getValue();
print s, o;
c := node.getChildren();
foreach x in c do
s.push(x);

end for;
print s, o;

end while;

customer2
customer1

age
first_name
last_name
customer1

customers

customer1

customers
customer2

first_name
last_name
customer1

customers
customer2
age

customers customers
customer2

Stack s:

Output o:

Marius Kloft: Alg&DS, Summer Semester 2016 17

DFS-3

25
first_name
last_name
customer1

customers
customer2
age

customer1

customers
customer2
age
25
Peter
Müller

customers
customer2
age
25
last_name
Peter
first_name
Müller
customer1

age
first_name
last_name

customers
customer2
age
25
last_name
Peter
first_name
Müller
customer1

…

… …

…

s.push(root);
while not s.isEmpty() do
node := s.pop();
o := o+node.getValue();
print s, o;
c := node.getChildren();
foreach x in c do
s.push(x);

end for;
print s, o;

end while;

Marius Kloft: Alg&DS, Summer Semester 2016 18

Adding Indentation

• We need to also store the depth of a node on the stack
– We assume a generic, type-independent stack

s.push(root);
s.push(1);
while not s.isEmpty() do
depth := s.pop();
node := s.pop();
o := o+ SPACES(depth) +node.getValue();
c := node.getChildren();
foreach x in c do
s.push(x);
s.push(depth+1);

end if;
end while;

customers
customer2
age
25

first_name
Peter

last_name
Müller

customer1
…

Marius Kloft: Alg&DS, Summer Semester 2016 19

Reverting Order

• We create customer2 … customer1 – but we wanted
customer1 … customer2

• The order of children is reverted by the stack
• Remedy

– Push children in reverted order
– Can be achieved by a FOREACH which traverses a list in reverted

order
– Easy if a double-linked list is used

Marius Kloft: Alg&DS, Summer Semester 2016 20

Content of this Lecture

• Stacks and Queues
• Tree Traversal

– Application
– Depth-First using Stacks
– Breadth-First using Queues

• Towers of Hanoi

Marius Kloft: Alg&DS, Summer Semester 2016 21

Breadth-First Traversal

Func String printBFS (t Tree) {
q := new Queue();
o := “”;
node : element;
q.enqueue(t.getRoot());
while not q.isEmpty() do
node := q.dequeue();
o := o+node.getValue();
c := node.getChildren();
foreach x in c do
q.enqueue(x);

end if;
end while;

}

customers

customer

last_name

first_name

age

Müller

Peter

25

customer

last_name

first_name

age

Meier

Stefanie

27

customers
customer customer

last_name first_name age last_name first_name age
Müller Peter 25 Meier Stefanie 27

Marius Kloft: Alg&DS, Summer Semester 2016 22

BFS-2

customer2
customer1

age
first_name
last_name
customer2

customers

customer2

customers
customer1

age
first_name
last_name

customers
customer1
customer2

customers customers
customer1

Marius Kloft: Alg&DS, Summer Semester 2016 23

BFS-3

age
first_name
last_name

customers
customer1
customer2

customers
customer1
customer2

customers
customer1
customer2
last_name

age
first_name
last_name

age
first_name
last_name

Müller
age

first_name
last_name

age
first_name

customers
customer1
customer2
last_name

age
first_name
last_name

age
first_name

Peter
Müller
age

first_name
last_name

age

customers
customer1
customer2
last_name
first_name

• If we add information about the depth of a node, we can
put elements of same depth at the same line of the output

Marius Kloft: Alg&DS, Summer Semester 2016 24

Time Complexity

• The complexity of the traversal is O(n) in both cases
– n = number of nodes in the tree
– Each node is pushed (enqueued) once and popped (dequeued) once

• Thus, the foreach loop is passed by (n-1) times altogether
• The style of argument is different from what we had so far

– Recall SelectionSort
– We have two nested loops in both algorithms

SelectionSort:
for i = 1..n-1 do

for j = i+1..n do
…

end for;
end for;

printBFS:
while not q.isEmpty() do

foreach x in c do
…

end for;
end while;

Marius Kloft: Alg&DS, Summer Semester 2016 25

Explanation

• In printBFS, we do not know how often the inner loop is
passed-through for a specific iteration of the outer loop
– We cannot sensibly estimate this number – depends on the number

of children, not on the concrete iteration of the outer loop
– But we can directly count how often the inner loop is passed over

all iterations of the outer loop
– This is possible because we know that no element is touched twice

• In SelectionSort, we do know how often the inner loop is
passed-through for every iteration of the outer loop
– Obviously, n-i-1 times
– But we have no simple estimation for the number of times the inner loop is

passed-through over all iterations of the outer run
– This is because we touch elements multiple times

SelectionSort:
for i = 1..n-1 do

for j = i+1..n do
…

end for;
end for;

printBFS:
while not q.isEmpty() do

foreach x in c do
…

end for;
end while;

Marius Kloft: Alg&DS, Summer Semester 2016 26

Space Complexity

• Time complexity is the same for DFS and BFS, but space
complexity is different

• Let d be the depth of the tree (length of longest path)
• Let b be the breadth of the tree

– Maximal number of nodes with same depth over all levels
• Let c be the maximal number of children of any node
• In DFS, the stack holds at most d*c elements
• In BFS, the queue holds at most b elements
• That’s a big difference in typical database settings

– Little nesting (small d), but hundreds of thousands of customers
(large b)

Marius Kloft: Alg&DS, Summer Semester 2016 27

Content of this Lecture

• Stacks and Queues
• Tree Traversal
• Towers of Hanoi

Marius Kloft: Alg&DS, Summer Semester 2016 28

Rules of the Game

• Move stack from stick 1 to stick 2
• Always move only one disc at a time
• Never place a larger disc on a smaller one

1 2 3

Marius Kloft: Alg&DS, Summer Semester 2016 29

Solution for 3 Discs

Source: Informatik Didaktik, U Potsdam

Marius Kloft: Alg&DS, Summer Semester 2016 30

4 Discs

We have
seen this
part before

Marius Kloft: Alg&DS, Summer Semester 2016 31

4 Discs

We have
seen this
part before

And this
part as well

Marius Kloft: Alg&DS, Summer Semester 2016 32

Idea

• The problem can be solved “easily” (with little program
code) using the following observations
– Suppose you know how to solve the problem for n-1 discs
– Then solving it for n discs

is simple
• 1. Move the (n-1) top-part

of the tower to stick 3
• 2. Move the n’th (largest) disc

to stick 2
• 3. Move the (n-1) tower from

stick 3 to stick 2
– Furthermore, we know how to

solve the problem for n=1
– Done

Marius Kloft: Alg&DS, Summer Semester 2016 33

Algorithm

• We want an algorithm which prints the series of moves
that solve the problem for size n

• We encode a move as a quadruple (n, a, b, c) which
means: “Move n discs from stick a to b using c”

• We build a stack of tasks
• When we pop a task from

the stack, we can do either
– Task is easy (n=1):

Print next move
– Task is difficult (n>1):

Push three new tasks

s: stack;
s.push(n, 1, 2, 3);
while not s.isEmpty() do

(n, a, b, c) := s.pop();
if (n=1) then
print “Move “+a+”->“+b;

else
s.push(n-1, c, b, a);
s.push(1, a, b, c);
s.push(n-1, a, c, b);

end if;
end while;

Marius Kloft: Alg&DS, Summer Semester 2016 34

Example

3,1,2,3 2,1,3,2
1,1,2,3
2,3,2,1

1,1,2,3
1,1,3,2
1,2,3,1
1,1,2,3
2,3,2,1

Move 1->2
Move 1->3
Move 2->3
Move 1->2

1,3,1,2
1,3,2,1
1,1,2,3

Move 3->1
Move 3->2
Move 1->2

s: stack;
s.push(n, 1, 2, 3);
while not s.isEmpty() do

(n, a, b, c) := s.pop();
if (n=1) then
print “Move “+a+”->“+b;

else
s.push(n-1, c, b, a);
s.push(1, a, b, c);
s.push(n-1, a, c, b);

end if;
end while;

Marius Kloft: Alg&DS, Summer Semester 2016 35

Complexity

• How often do we pop from the stack?
– For a task of size n, we pop once and create two tasks of size n-1

and one task of size 1
– For a task of size 1, we pop once and create no further task
– This gives 1+2+1+4+1+8+1+ … +2n-1 = O(2n) tasks altogether

• Recall that ∑2i = 2n+1-1

• The algorithm has complexity O(2n)

Marius Kloft: Alg&DS, Summer Semester 2016 36

Optimality

• We can also derive: For solving a problem of size n, the
algorithm creates 2n-1 moves
– As every pop yields one move

• As no algorithm can create 2n-1 moves in less than 2n-1
operations, the algorithm is optimal for such sequences

• Question: Is there a shorter sequence of moves that also
solves the problem?
– Answer: No

• Second example of an exponential problem

Marius Kloft: Alg&DS, Summer Semester 2016 37

Recursion

• Doesn‘t this fiddling around with a stack look overly
complex?

• Recursive formulation

• This program will create more
or the less the same stack
- on the program stack

• A stack can be used to “de-recursify” a recursive algorithm
– Which doesn’t mean that the program gets easier to understand

func void solve(n, a, b, c) {
if (n=1) then
print “Move “+a+”->“+c;

else
solve(n-1,a, c, b);
solve(1, a, b, c);
solve(n-1, c, b, a);

end if;
}

