

Algorithms and Data Structures

Sorting: Simple Methods and a Lower Bound

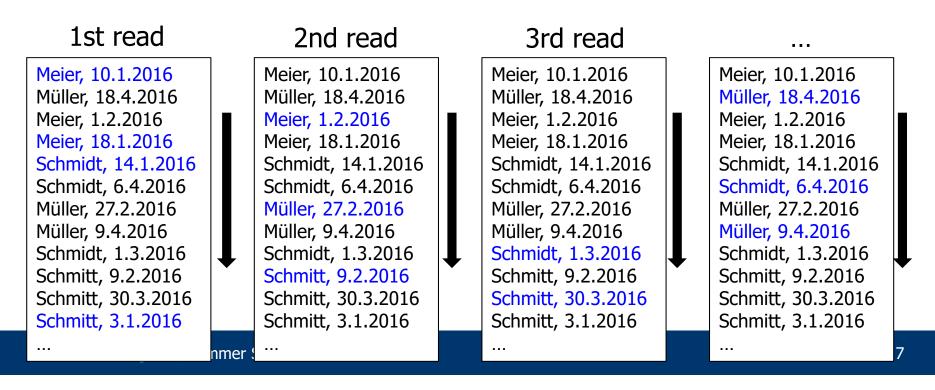
Marius Kloft

This Course

- Introduction
- Abstract Data Types
- Complexity analysis
- Styles of algorithms Part I
- Lists, stacks, queues
- Sorting (lists)
- Searching (in (sorted) lists)
- Hashing (to manage lists)
- Trees (to manage lists)
- Graphs (no lists!)
- The End

- Imagine you are the IT head of a telco-company
- You have 30.000.000 customers each performing ~100 telephone calls per months, each call creating 200 bytes
 - That's 30M*100*12*200=7.200.000.000 bytes per year
 - Imagine the data is in one file, one line per call
- At the end of the year, management wants list of all customers with aggregated revenue per day
 - That's ~30M*12*30 ~ 10.000.000.000 real numbers
- Problem: How can we compute these 10.000.000.000 numbers?

- This won't work
- Data is too big to load into main memory


Approach 0b: Load into a database and formulate a SQL Query

- This will work
- Not topic of our lecture
- [Will be slow inserting is costly]

Approach 1: Scan and Keep Intermediate Results

- Eventually, we need 10E9 real numbers
- Scan the file from start to end
 - Build a table (how?) on every combination of customer and day
 - When reading a record, look-up combination in table and update
- That's fast (if the table-look-up is fast)
- But we need ~80GB
- What if we want values for each day over 10 years?
- This won't scale

- Assume we can keep 30M*30 ~ 1E9 numbers in memory
 - Solve the problem month-by-month
 - Read the call-file 12 times, each time computing aggregates for all customers and the days of one month
 - This will be slow

Approach 3: Sorting

- Alternative?
 - Sort the file by customer and day
 - Read sorted file once and compute aggregates on the fly
 - Whenever a pair (day, customer) is finished (i.e., new ID values appear), sum can be written out and next day/customer starts
 - This will be very fast
 - Needs virtually no memory during counting
- But: Can we sort the call file using less than 12 reads?

Sum
Sum
Sum
Sum

- Sorting
- Simple Methods
- Lower Bound

Sorting

- Assumptions
 - We have n values (integer) that should be sorted
 - Values are stored in an array S (i.e., O(1) access to i'th element)
 - Comparing two values costs O(1)
 - We usually count # of comparisons; sometimes also # of swaps
 - Values are not interpreted
 - We do not know what a "big" value is or how many percent of all values are probably smaller than a given value
 - All we can do is compare two values
- We seek a permutation π of the indexes of S such that $\forall i,j \le n$ with $\pi(i) < \pi(j) : S[\pi(i)] \le S[\pi(j)]$

Variations

- External versus internal sorting
 - Internal sorting: S fits into main memory
 - External sorting: There are too many records to fit into memory
 - We only look at internal sorting
- In-place or with additional memory
 - In-place sorting only requires a constant (independent of n) amount of additional memory on top of S
 - We will look at both
- Pre-Sorting
 - Some algorithms can take advantage of an existing (incomplete, erroneous) order in the data, some not
 - We will not exploit pre-sorting

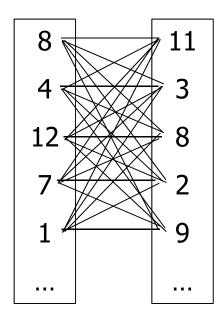
- Sorting is a ubiquitous task in computer science
 - [OW93] claims that 25% of all computing times is spent on sorting
- Second example: Information Retrieval
 - Imagine you want to build Goo***++
 - Fundamental operation: In a very large set of documents, find those that contain a given set of keywords
 - [Note: That's not what a search engine does!]
 - Popular way of doing this: Build an inverted index

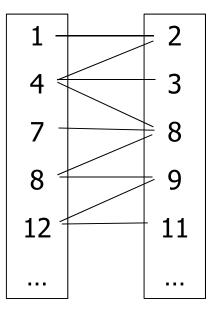
Inverted Index

ID Text

- 1 Baseball is played during summer months.
- 2 Summer is the time for picnics here.
- 3 Months later we found out why.
- 4 Why is summer so hot here?

Term	Freq	Document ids
baseball	1	[1]
during	1	[1]
found	1	[3]
here	2	[2], [4]
hot	1	[4]
is	3	[1], [2], [4]
months	2	[1], [3]
summer	3	[1], [2], [4]
the	1	[2]
why	2	[3], [4]


Source: http://docs.lucidworks.com


- A query is a set of keywords
- Finding the answer
 - For each keyword k_i of the query, load list d_i of docs containing k_i from inverted index
 - Build intersection of all d_i
 - Docs in this list are your answer
- Imagine the query "the man eats a bread" on the Web
 - Doc-list for "the" and "a" will contain >10 billion documents
- How do we compute the intersection of two sets of 10 billion IDs?

Intersection of Two Sets

With non-sorted sets: O(m*n)

With sorted sets: O(n+m)

Content of this Lecture

- Sorting
- Simple Methods
 - Selection sort
 - Insertion sort
 - Bubble sort
- Lower Bound

```
S: array_of_names;
n := |S|
for i = 1..n-1 do
  for j = i+1..n do
    if S[i]>S[j] then
      tmp := S[j];
      S[j] := S[i];
      S[i] := tmp;
    end if;
    end for;
end for;
```

- Analysis showed that selection sort is in O(n²)
- It is easy to see that selection sort also is in Ω(n²)
- How often do we swap values?
 - That depends a lot on the pre-sorted'ness of the array
 - But actually we can do a bit better

Selection Sort Improved

```
S: array_of_names;
n := |S|
for i = 1..n-1 do
  min_pos := i;
  for j = i+1..n do
    if S[min_pos]>S[j] then
      min_pos := j;
    end if;
  end for;
  tmp := S[i];
  S[i] := S[min_pos];
  S[min_pos] := tmp;
end for;
```

- How often do we swap values?
 - Once for every position
 - Thus: O(n)

Analogy

- Let's assume you keep your cards sorted
- How to get this order?
 - Selection sort: Take up all cards at once and build sorted prefixes of increasing length
 - Insertion sort: Take up cards one by one and sort every new card into the sorted subset in your hand
 - Bubble sort: Take up all cards at once and swap neighbors until everything is fine

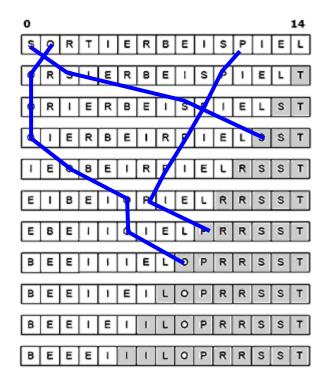
Insertion Sort

```
S: array_of_names;
n := |S|
for i = 2..n do
    j := i;
    key := S[j];
    while (S[j-1]>key) and (j>1) do
        S[j] := S[j-1];
        j := j-1;
    end while;
    S[j] := key;
end for;
```

- After each loop of i, the prefix S[1..i] of S is sorted
- While-loop runs backwards from current position (to be inserted) until values get too small (smaller than S[j])
- Example: 5 4 8 1 6
- One problem is the required movement of many values until correct place is found
 - Could be implemented much better with a double-linked list

Complexity (Worst Case)

```
S: array_of_names;
n := |S|
for i = 2..n do
    j := i;
    key := S[j];
    while (S[j-1]>key) and (j>1) do
        S[j] := S[j-1];
        j := j-1;
        end while;
        S[j] := key;
end for;
```


- Comparisons (worst-case)
 - Outer loop: n times
 - Inner-loop: n-i times
 - Thus, O(n²)
- How many swaps?
 - (We move and don't swap, but both are in O(1))
 - In worst-case, every comparison incurs a swap
 - Thus: O(n²)

Complexity (Best Case)

```
S: array_of_names;
n := |S|
for i = 2..n do
    j := i;
    key := S[j];
    while (S[j-1]>tkey) and (j>1) do
        S[j] := S[j-1];
        j := j-1;
        end while;
        S[j] := key;
end for;
```

- Assume the best case
 - Array is already sorted
- Comparisons
 - Outer loop: n times
 - Inner-loop: 1 time
 - Thus, O(n)
- Swaps
 - None
- We might be better!

Bubble Sort

Source: HKI, Köln

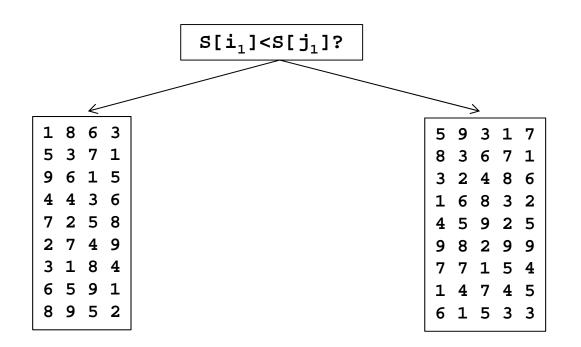
- Go through array again and again
- Compare all direct neighbors
- Swap if in wrong order
- Repeat until a loop finishes without a single swaps
- Analysis: About as good/bad as the others (so far)
 - Worst case O(n²) comparisons and O(n²) swaps
 - Best case O(n) comparisons and 0 moves / swaps

- Sorting
- Simple Methods
- Lower Bound

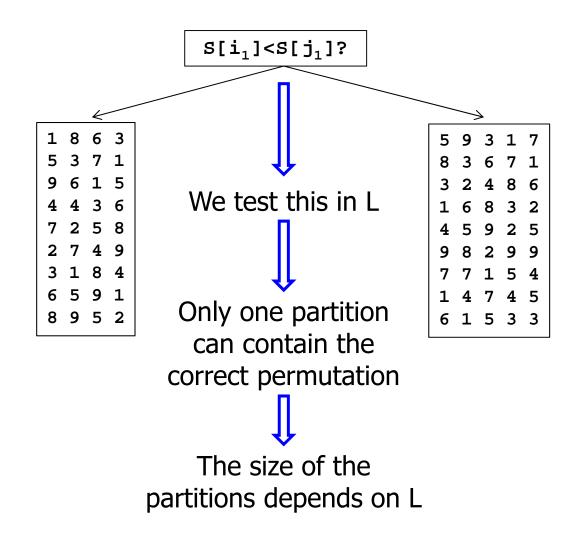
- We found three algorithms with WC-complexity O(n²)
- Maybe there is no better algorithm?
- Maybe the problem is $\Omega(n^2)$?
- Let's see if we can find a lower bound on the number of comparisons

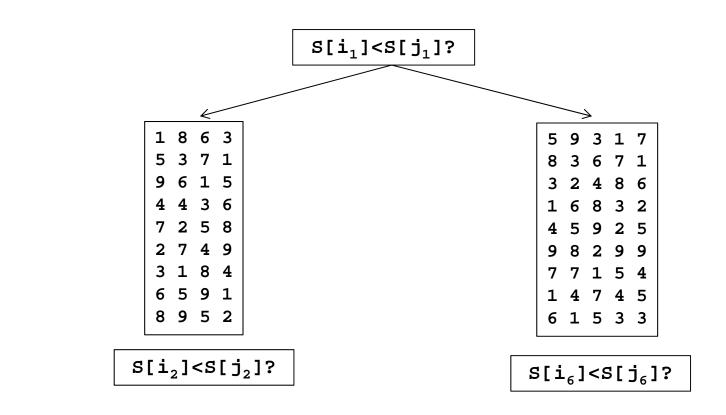
• Lemma

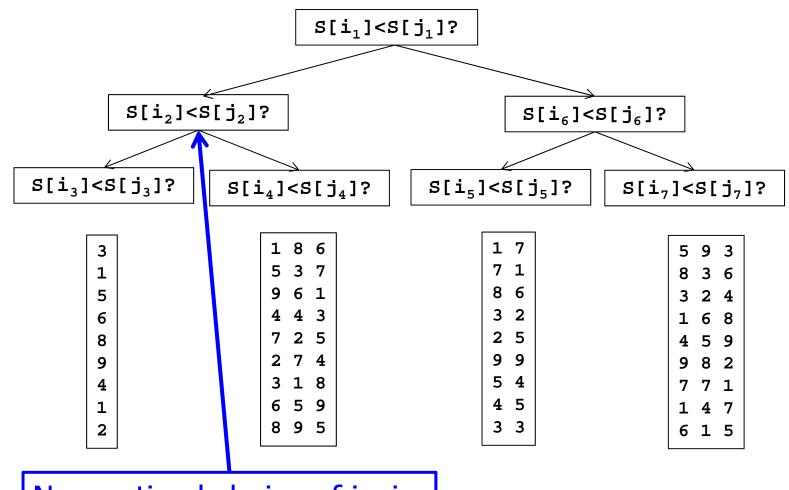
To sort a list of n distinct values using only comparisons, every algorithm needs $\Omega(n*\log(n))$ comp's in worst case


- Proof structure
 - We argue about all possible ways to find the right permutation π
 - Observe that there are n! different permutations
 - Each could be the right one (and there is only one "right one")
 - To decide which, we are only allowed to compare two values
 - Every comparison splits the group of all permutations into two disjoint partitions
 - How often do we need to compare such that every partition has size 1 – in the best of all worlds?

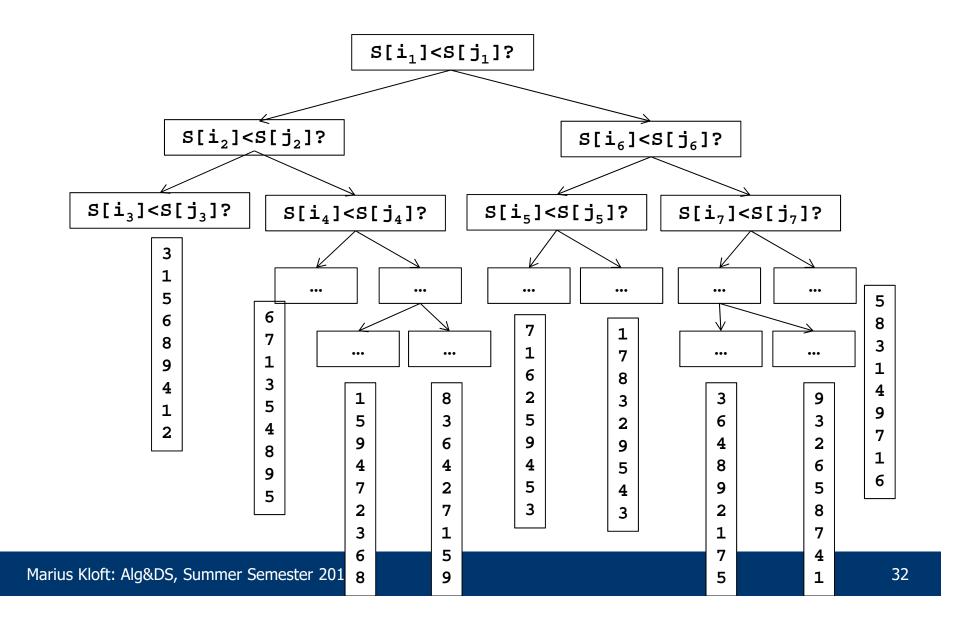
S[i₁]<S[j₁]?


 $\pi_1 \ \pi_2 \ \pi_3 \ \dots$


1	8	6	3	5	9	3	1	7	
5	3	7	1	8	3	6	7	1	
9	6	1	5	3	2	4	8	6	
4	4	3	6	1	6	8	3	2	
7	2	5	8	4	5	9	2	5	
2	7	4	9	9	8	2	9	9	
3	1	8	4	7	7	1	5	4	
6	5	9	1	1	4	7	4	5	
8	9	5	2	6	1	5	3	3	

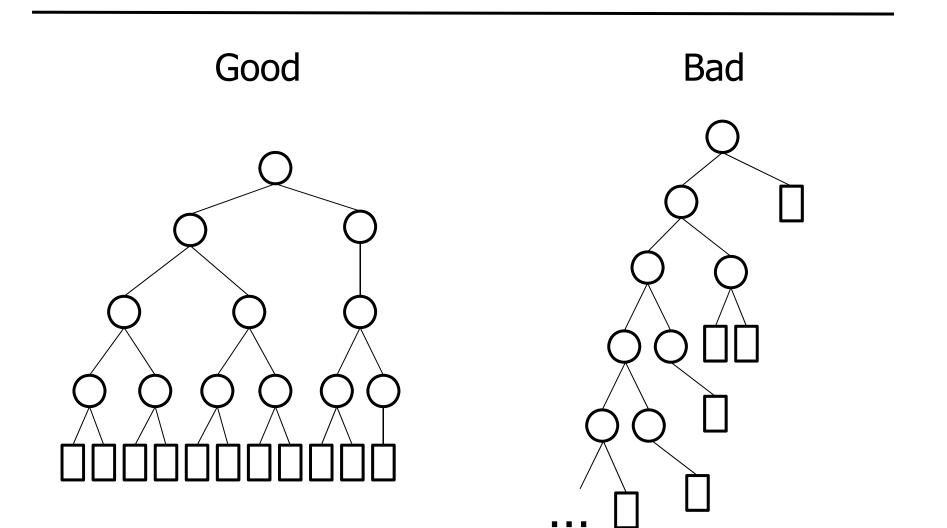

Some exemplary permutations of an arbitrary list L with |L|=9

All permutations of L where the value at position i_1 stays before the value at position j_1 All permutations of L where the value at position i_1 stays after the value at position j_1



Non-optimal choice of i_1, j_1

Marius Kloft: Alg&DS, Summer Semester 2016


Full Decision Tree

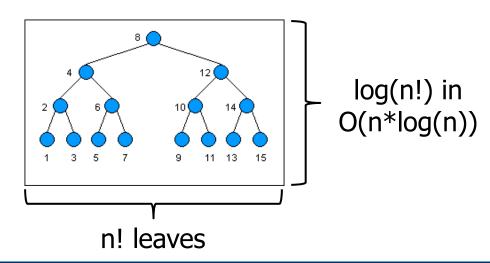
Optimal Sequence of Comparisons

- We have no clue about which concrete series of comparisons is optimal for a given list
- But: Here we are looking for a lower bound
 - We may always assume to take the best choice
- Best choice: Creating 1-partitions with as few comparisons as possible
- Thus, we want to know the length of the longest path through the optimal decision tree
 - Even in the best of all worlds we may need to make this number of comparisons to find the correct permutation
- The optimal tree is the one with the shortest longest path

Intuition

Shortest Longest Path

• Definition


The height of a binary tree is the length of its longest path.

• Lemma

A binary tree with k leaves has at least height log(k).

- Proof
 - Every inner node has at most two children
 - To cover as many leaves as possible in the level above the leaves, we need ceil(k/2) nodes
 - In the second level, we need ceil(k/2/2) nodes, etc.
 - After log(k) levels, only one node remains (root)
 - Qed.

- Our decision tree has n! leaves (all permutations)
- The height of a binary tree with n! leaves is at least log(n!)
- Thus, the longest path in the optimal tree has at least log(n!) comparisons
- Since $n! \ge (n/2)^{n/2}$: $\log(n!) \ge \log((n/2)^{n/2}) = n/2*\log(n/2)$
- This gives the overall lower bound Ω(n*log(n))
- qed.

Summary

	Comparisons worst case	Comparisons best case	Additional space	Moves worst/best
Selection Sort	O(n ²)	O(n ²)	O(1)	O(n)
Insertion Sort	O(n ²)	O(n)	O(1)	O(n ²) / O(n)
Bubble Sort	O(n ²)	O(n)	O(1)	O(n ²) / O(1)
Merge Sort	O(n*log(n))	O(n*log(n))	O(n)	O(n*log(n))