Algorithms and Data Structures

Sorting:
Simple Methods and a Lower Bound

Marius Kloft

This Course

e Sorting (lists)

e Searching (in (sorted) lists)
e Hashing (to manage lists)
e Trees (to manage lists)

e Graphs (no lists!)

e The End

Marius Kloft: Alg&DS, Summer Semester 2016

Large-Scale Sorting

e Imagine you are the IT head of a telco-company

e You have 30.000.000 customers each performing ~100
telephone calls per months, each call creating 200 bytes
— That's 30M*100*12*200=7.200.000.000.000 bytes per year
— Imagine the data is in one file, one line per call

e At the end of the year, management wants list of all
customers with aggregated revenue per day
— That's ~30M*12*30 ~ 10.000.000.000 real numbers

e Problem: How can we compute these 10.000.000.000
numbers?

Marius Kloft: Alg&DS, Summer Semester 2016 3

Approach 0: Load once and scan in memory

e This won't work
e Data is too big to load into main memory

Marius Kloft: Alg&DS, Summer Semester 2016

Approach Ob: Load into a database and formulate a
SQL Query

e This will work
e Not topic of our lecture

e [Will be slow — inserting is costly]

Marius Kloft: Alg&DS, Summer Semester 2016

Approach 1: Scan and Keep Intermediate Results

e Eventually, we need 10E9 real numbers

e Scan the file from start to end
— Build a table (how?) on every combination of customer and day
— When reading a record, look-up combination in table and update

e That's fast (if the table-look-up is fast)

e But we need ~80GB

e What if we want values for each day over 10 years?
e This won't scale

Marius Kloft: Alg&DS, Summer Semester 2016 6

Approach 2: Multiple Reads

e Assume we can keep 30M*30 ~ 1E9 numbers in memory
— Solve the problem month-by-month

— Read the call-file 12 times, each time computing aggregates for all
customers and the days of one month

— This will be slow

1st read

2nd read

3rd read

Meier, 10.1.2016
Miiller, 18.4.2016
Meier, 1.2.2016
Meier, 18.1.2016
Schmidt, 14.1.2016
Schmidt, 6.4.2016
Miiller, 27.2.2016
Miiller, 9.4.2016
Schmidt, 1.3.2016
Schmitt, 9.2.2016
Schmitt, 30.3.2016
Schmitt, 3.1.2016

Meier, 10.1.2016
Miiller, 18.4.2016
Meier, 1.2.2016
Meier, 18.1.2016
Schmidt, 14.1.2016
Schmidt, 6.4.2016
Miiller, 27.2.2016
Miiller, 9.4.2016
Schmidt, 1.3.2016
Schmitt, 9.2.2016
Schmitt, 30.3.2016
Schmitt, 3.1.2016

Meier, 10.1.2016
Miiller, 18.4.2016
Meier, 1.2.2016
Meier, 18.1.2016
Schmidt, 14.1.2016
Schmidt, 6.4.2016
Miller, 27.2.2016
Miiller, 9.4.2016
Schmidt, 1.3.2016
Schmitt, 9.2.2016
Schmitt, 30.3.2016
Schmitt, 3.1.2016

Meier, 10.1.2016
Mdller, 18.4.2016
Meier, 1.2.2016
Meier, 18.1.2016
Schmidt, 14.1.2016
Schmidt, 6.4.2016
Mdller, 27.2.2016
Mdller, 9.4.2016
Schmidt, 1.3.2016
Schmitt, 9.2.2016
Schmitt, 30.3.2016
Schmitt, 3.1.2016

Approach 3: Sorting

e Alternative?

Sort the file by customer and day

Read sorted file once and compute
aggregates on the fly

Whenever a pair (day, customer) is
finished (i.e., new ID values appear),
sum can be written out and next
day/customer starts

This will be very fast

Needs virtually no memory during
counting

e But: Can we sort the call file
using less than 12 reads?

Marius Kloft: Alg&DS, Summer Semester 2016

Meier, 10.1.2016
Meier, 10.1.2016 —
Meier, 1.2.2016 ——
Miller, 27.2.2016 —
Miller, 9.4.2016
Miller, 9.4.2016 —
Schmidt, 14.1.2016
Schmidt, 1.3.2016
Schmidt, 6.4.2016
Schmitt, 3.1.2016
Schmitt, 3.1.2016

> Sum

> Sum
> Sum

> Sum

Schmitt, 30.3.2016

Content of this Lecture

e Sorting
e Simple Methods
e Lower Bound

Marius Kloft: Alg&DS, Summer Semester 2016

Sorting

e Assumptions
— We have n values (integer) that should be sorted
— Values are stored in an array S (i.e., O(1) access to i'th element)
— Comparing two values costs O(1)
— We usually count # of comparisons; sometimes also # of swaps

— Values are not interpreted

e We do not know what a “big” value is or how many percent of all
values are probably smaller than a given value

— All we can do is compare two values
e We seek a permutation = of the indexes of S such that
Vi, j<n with n(i)<n(j) : S[n(i)] £ S[=(j)]

Marius Kloft: Alg&DS, Summer Semester 2016

Variations

e External versus internal sorting
— Internal sorting: S fits into main memory
— External sorting: There are too many records to fit into memory
— We only look at internal sorting

e In-place or with additional memory

— In-place sorting only requires a constant (independent of n)
amount of additional memory on top of S

— We will look at both
e Pre-Sorting

— Some algorithms can take advantage of an existing (incomplete,
erroneous) order in the data, some not

— We will not exploit pre-sorting

Marius Kloft: Alg&DS, Summer Semester 2016

11

Applications

e Sorting is a ubiquitous task in computer science
— [OW93] claims that 25% of all computing times is spent on sorting

e Second example: Information Retrieval
— Imagine you want to build Goo***++

— Fundamental operation: In a very large set of documents, find
those that contain a given set of keywords

e [Note: That's not what a search engine does!]
— Popular way of doing this: Build an inverted index

Marius Kloft: Alg&DS, Summer Semester 2016 12

Inverted Index

oltec m

Baseball is played during summer months. baseball
Summer is the time for picnics here. during

Months later we found out why. found

B oW N e

Why is summer so hot here? here
hot

is
months
summer
the

why

Marius Kloft: Alg&DS, Summer Semester 2016

1
1
1
2
1
3
2
3
1
2

[1]

(3]

(2], [4]

[4]

[1], [2], [4]
(1], [3]
[1], [2], [4]
2]

3], [4]

Source: http://docs.lucidworks.com

13

Answering a IR-style Query

e A query is a set of keywords

e Finding the answer

— For each keyword k; of the query, load list d; of docs containing k;
from inverted index

— Build intersection of all d
— Docs in this list are your answer

e Imagine the query “the man eats a bread” on the Web
— Doc-list for “the” and “a” will contain >10 billion documents

e How do we compute the intersection of two sets of 10
billion IDs?

Marius Kloft: Alg&DS, Summer Semester 2016

Intersection of Two Sets

With non-sorted sets: With sorted sets:
O(m*n) O(n+m)
1 _ D
4 — 3
7 \: 8
8 /?/ 9
12 11

Marius Kloft: Alg&DS, Summer Semester 2016

Content of this Lecture

e Sorting

e Simple Methods
— Selection sort

— Insertion sort
— Bubble sort

e |Lower Bound

Marius Kloft: Alg&DS, Summer Semester 2016

Recall: Selection Sort

S: array_of _names;
n = |S]
for 1 = 1..n-1 do
for j = 1+1l..n do
iT S[i]>S[j] then

tmp = S[1;
sl := SLi];
S[1] := tmp;
end if;
end for;
end for;

Marius Kloft: Alg&DS, Summer Semester 2016

e Analysis showed that
selection sort is in O(n2)

e Jtis easy to see that
selection sort also is in
Q(n2)

e How often do we swap
values?

— That depends a lot on the
pre-sorted’ness of the array

— But actually we can do a bit
better

17

Selection Sort Improved

S: array_of _names;
n = |S]
for 1 = 1..n-1 do
min_pos := i; e How often do we swap
for j = 1+1l..n do
iIT S[min_pos]>S[j] then ValueS?
min_pos := j; — Once for every position
end i1f; .
end for-: Thus: O(n)
tmp = S[i];
S[1] := S[min_pos];
S[min_pos] := tmp;
end for;

Marius Kloft: Alg&DS, Summer Semester 2016

Analogy

e |et's assume you keep your
cards sorted

e How to get this order?

— Selection sort: Take up all cards at
once and build sorted prefixes of
increasing length

— Insertion sort: Take up cards one
by one and sort every new card
into the sorted subset in your hand

— Bubble sort: Take up all cards at
once and swap neighbors until
everything is fine

Marius Kloft: Alg&DS, Summer Semester 2016

Insertion Sort

S: array_of _names;
n = |S|
for 1 = 2..n do
J = 1i;
key = S[}]:;
while (S[j-1]>key) and (J>1) do
sl := sh-11;
3 =13-1;
end while;
S[1 := key;
end for;

After each loop of i, the
prefix S[1..i] of S is sorted

While-loop runs backwards
from current position (to be
inserted) until values get too
small (smaller than S[j])

Example: 54816

One problem is the required
movement of many values
until correct place is found

— Could be implemented much
better with a double-linked list

Marius Kloft: Alg&DS, Summer Semester 2016

Complexity (Worst Case)

e Comparisons (worst-case)

i:::r:ZT‘Of‘names; — Outer loop: n times
for 1 = 2..ndo — Inner-loop: n-i times

Koy = S[HT: — Thus, O(n2)

Wh;'[?](f’?;gfﬁf) and (J>1) do e How many swaps?

j == j-1: — (We move and don't swap, but

end while; both are in O(1))

enj[igr;: key: — In worst-case, every comparison
incurs a swap
— Thus: O(n?)

Marius Kloft: Alg&DS, Summer Semester 2016

Complexity (Best Case)

S: array_of _names;
n = |S|
for 1 = 2..n do
J = 1i;
key = S[}]:;
while (S[j-1]>tkey) and (J>1) do
sl := sh-11;
3 =13-1;
end while;
S[1 := key;
end for;

Marius Kloft: Alg&DS, Summer Semester 2016

Assume the best case
— Array is already sorted

Comparisons

— Outer loop: n times
— Inner-loop: 1 time
— Thus, O(n)

Swaps

— None

We might be better!

22

Bubble Sort

e Go through array again and again
e Compare all direct neighbors
e Swap if in wrong order

o Repeat until a loop finishes
without a single swaps

577 ® Analysis: About as good/bad as

sT7] the others (so far)

: — Worst case O(n2) comparisons and
O(n2) swaps

— Best case O(n) comparisons and 0
moves / swaps

Source: HKI, Koéln

Marius Kloft: Alg&DS, Summer Semester 2016

Content of this Lecture

e Sorting
e Simple Methods
e Lower Bound

Marius Kloft: Alg&DS, Summer Semester 2016

24

Lower Bound

e We found three algorithms with WC-complexity O(n?)
e Maybe there is no better algorithm?
e Maybe the problem is Q(n?2)?

e Let's see if we can find a lower bound on the number of
comparisons

Marius Kloft: Alg&DS, Summer Semester 2016

Lemma

e Lemma
To sort a list of n distinct values using only comparisons,
every algorithm needs Q(n*log(n)) comp’s in worst case

e Proof structure
— We argue about all possible ways to find the right permutation =
— Observe that there are n! different permutations
— Each could be the right one (and there is only one “right one")
— To decide which, we are only allowed to compare two values

— Every comparison splits the group of all permutations into two
disjoint partitions

— How often do we need to compare such that every partition has
size 1 — in the best of all worlds?

Marius Kloft: Alg&DS, Summer Semester 2016

26

Decision Tree

S 1<S[.17
Ty Ty T3 e
186359317
537183671
961532486
4 43616832
725845925
27 49982909
318477154
659114745
895261533

Some exemplary
permutations of an arbitrary
list L with |L|=9

Marius Kloft: Alg&DS, Summer Semester 2016

Decision Tree

S A<sy.1?

/\

186 3 59317

5371 83671

9615 32486

4 4 36 16832

7 258 45925

27 49 98299

31814 771514

6 591 147 45

8 952 61533
All permutations of L where All permutations of L where
the value at position i; stays the value at position i; stays
before the value at position j, after the value at position j,

Marius Kloft: Alg&DS, Summer Semester 2016

Decision Tree

S A<sy.1?

/\

We test thisin L

l

Only one partition
can contain the
correct permutation

11

The size of the
partitions depends on L

COCOWNSNPOO PR
CUORLP~NNPAO WO
OO, wWwEL~NO
NFP,MNOOOOI LW

Marius Kloft: Alg&DS, Summer Semester 2016

OFRP~NOR~PEFE WOWO
P A~NOOOITODNWO
O~NEFEPNOO0OP~OW
WPhOOTONWOLOWNLPE
WOaOrOOONOPEFPN

29

Decision Tree

59317
83671
32486
16832
45925

98299

77154
14745
61533

1<sbh.1?

K

SL

1<S0J617?

I

SL

1863
5371

9615

4 4 36

7258
27409
3184
6591

8 95 2

1<shi.17?

E

S[

o}
i
o
o
—
()
-~
0
()
=
()
9]
—
()
=
£
3
0p)}
S’
()
3
o)
<
&£
S
4
()]
=
=
[1%]
=

Decision Tree

S A<sy.1?

SLi,1<SLi,]°?

e

\

SLicd<SJel?

T~

S[iz1<S[i:1? S[Li,1<S[3.417 SLis1<SJs17? SLi;1<SLi-17

NFPR~AOOO U FW
COOWNSNPOOG PR
©CURFRL~NNPMO WO
OO p,~,oTwWwrErLr~NO

WPHhOTONWOWOWNLPER
WOaOrOONOOPRFRN
OFRP~NOPR~PE WOWO
RPh~NOOOITODNWO
OO NEFEPDNOOR~OW

Non-optimal choice

of iy, j;

Marius Kloft: Alg&DS, Summer Semester 2016

31

Full Decision Tree

S A<sy.1?

\

S[i,1<S[i,1? S[is1<SLiel?

S[iz1<S[i:1? S[Li,1<S[3.417 SLis1<SJs17? SLi;1<SLi-17

AN VAN VANS

NP, M~AOOOO O F W

OFRP~NODME WOLOU

GO p,~,oTwWwrErLr~NO

WO hr~hOOITNOPEFLN
WHAOTODNWOWSNP

1
5
9
4
7
2
3
6

Marius Kloft: Alg&DS, Summer Semester 201 J¥s! 32

OO, NNPMOWO
OONFEPDNOOMOW
RPhr~NOOTODNWO

Optimal Sequence of Comparisons

e We have no clue about which concrete series of
comparisons is optimal for a given list

e But: Here we are looking for a lower bound
— We may always assume to take the best choice

e Best choice: Creating 1-partitions with as few comparisons
as possible

e Thus, we want to know the length of the longest path
through the optimal decision tree

— Even in the best of all worlds we may need to make this number of
comparisons to find the correct permutation

e The optimal tree is the one with the shortest longest path

Marius Kloft: Alg&DS, Summer Semester 2016 33

Intuition

Good Bad

Marius Kloft: Alg&DS, Summer Semester 2016

Shortest Longest Path

e Definition
The height of a binary tree is the length of its longest path.

e Lemma
A binary tree with k leaves has at least height log(k).

e Proof
— Every inner node has at most two children

— To cover as many leaves as possible in the level above the leaves,
we need ceil(k/2) nodes

— In the second level, we need ceil(k/2/2) nodes, etc.
— After log(k) levels, only one node remains (root)
— Qed.

Marius Kloft: Alg&DS, Summer Semester 2016

Putting it all together

e QOur decision tree has n! leaves (all permutations)
e The height of a binary tree with n! leaves is at least log(n!)

e Thus, the longest path in the optimal tree has at least
log(n!) comparisons

e Since n!'>(n/2)"2: log(n!) = log((n/2)V2) = n/2*log(n/2)

e This gives the overall lower bound Q(n*log(n))

e Qed. =

2 :) 101214 | log(n!) in
O(n*log(n))

Y
n! leaves

Marius Kloft: Alg&DS, Summer Semester 2016

Summary

Comparisons | Comparisons Additional Moves
worst case best case space worst/best
Selection Sort O(n?) O(n?) O(1) O(n)
Insertion Sort O(n?) O(n) O(1) O(n2) / O(n)
Bubble Sort O(n?) O(n) O(1) O(n?) / O(1)
Merge Sort O(n*log(n)) O(n*log(n)) O(n) O(n*log(n))

Marius Kloft: Alg&DS, Summer Semester 2016

37

