
Algorithms and Data Structures

Marius Kloft

Sorting beyond Value Comparisons

Marius Kloft: Alg&DS, Summer Semester 2016 2

Content of this Lecture

• Radix Exchange Sort
– Sorting bitstrings in linear time (almost)

• Bucket Sort

Marius Kloft: Alg&DS, Summer Semester 2016 3

Knowledge

• Until now, we did not use any knowledge on the nature of
the values we sort
– Strings, integers, reals, names, dates, revenues, person‘s age
– Only operation we used: “value1 < value2”
– Exception: Our (refused) suggestion (min+max)/2 for selecting the

pivot element in Quicksort (how can we do this for strings?)
• Use knowledge on data type: Positive integers
• First example

– Assume a list S of n different integers, i: 1≤S[i]≤n
– How can we sort S in O(n) time and with only n extra space?

Marius Kloft: Alg&DS, Summer Semester 2016 4

Sorting Permutations

• Very simple
– If we have all integers [1, n], then

the final position of value i must be i
– Obviously, we need only one scan

and only one extra array (B)
• Knowledge we exploited

– There are n different, unique values
– The set is „dense“ – no value

between 1 and n is missing
– It follows that the position of a value

in the sorted list can be derived from
the value

1. S: array_permuted_numbs;
2. B: array_of_size_|S|
3. for i:= 1 … |S|
4. B[S[i]] := S[i];
5. end for;

Marius Kloft: Alg&DS, Summer Semester 2016 5

Removing Pre-Requisites

• Assume S is not dense
– n different integers each between 1 and m with m>n
– For a given value S[i], we do not know any more its target position

• How many values are smaller?
• At most min(S[i], n)
• At least max(n-(m-S[i]), 0)

– This is almost the usual sorting problem, and we cannot do much
• Assume S has duplicates

– S contains n values, where each value is between 1 and m and
appears in S and m<n

– Again: We cannot directly infer the position of S[i] from i alone

Marius Kloft: Alg&DS, Summer Semester 2016 6

Second Example: Sorting Binary Strings

• Assume that all values are binary
strings (bitstrings) of equal length
– E.g., integers in machine

representation
• The most important position is

the left-most bit, and it can have
only two different values
– Alphabet size is 2 in bitstrings

• We can sort all values by first
position with a single scan
– All values with leading 0 => list B0
– All values with leading 1 => list B1

1. S: array_bitstrings;
2. B0: array_of_size_|S|
3. B1: array_of_size_|S|
4. j0 := 1;
5. j1 := 1;
6. for i:= 1 … |S|
7. if S[i][1]=0 then
8. B0[j0] := S[i];
9. j0 := j0 + 1;
10. else
11. B1[j1] := S[i];
12. j1 := j1 + 1;
13. end if;
14.end for;
15.return

B0[1..j0]+B1[1..j1];

Marius Kloft: Alg&DS, Summer Semester 2016 7

Improvement

• How can we do this in O(1)
additional space?

• Recall QuickSort
– Call divide*(S,1,1,|S|)
– k, l, r, and return value will be

used in a minute
– Note that we return (j) the

position of the last 0

1. func int divide*(S array;
2. k,l,r: int) {
3. i := l-1;
4. j := r+1;
5. while true
6. repeat
7. i := i+1;
8. until S[i][k]=1 or i≥j;
9. repeat
10. j := j-1;
11. until S[j][k]=0 or i≥j;
12. if S[j][k]=1 then j--;
13. if i≥j then
14. break while;
15. end if;
16. swap(S[i], S[j]);
17. end while;
18. return j;
19.}

Marius Kloft: Alg&DS, Summer Semester 2016 8

Sorting Complete Binary Strings

• We can repeat the same
procedure on the second,
third, … position

• When sorting the k’th
position, we need to take
care to not sort the entire S
again, but only the
subarrays with same values
in the (k-1) first positions
– Let m be the length (in bits)

of the values in S
– Call with

radixESort(S,1,1,|S|)

1. func radixESort(S array;
2. k,l,r: integer) {
3. if k>m then
4. return;
5. end if;
6. d := divide*(S, k, l, r);
7. radixESort(S, k+1, l, d);
8. radixESort(S, k+1, d+1, r);
9. }

Marius Kloft: Alg&DS, Summer Semester 2016 9

Complexity

• We count the overall
number of comparisons
– In divide*, we look at every

element S[l…r] exactly once
– Then we divide S[l…r] in two

disjoint halves
• First performs (d-l)

comparisons
• Second performs (r-d)

– Thus, every call to radixESort
yields 2*(r-l) comps

• We are in O(n)?

1. func radixESort(S array;
2. k,l,r: integer) {
3. if k>m then
4. return;
5. end if;
6. d := divide*(S, k, l, r);
7. radixESort(S, k+1, l, d);
8. radixESort(S, k+1, d+1, r);
9. }

1. func int divide*(S array;
2. k,l,r: int) {
3. …
4. while true
5. repeat
6. i := i+1;
7. until S[i][k]=1 or i≥j;
8. repeat
9. j := j-1;
10. until S[j][k]=0 or i≥j;
11. …
12. end while;
13. return j;
14.}

Marius Kloft: Alg&DS, Summer Semester 2016 10

Complexity

• We count the overall
number of comparisons for
– In divide*, we look at every

element S[l…r] exactly once
– Then we divide S[l…r] in two

disjoint halves
• First performs (d-l)

comparisons
• Second performs (r-d)

– Thus, every call to radixESort
yields 2*(r-l) comps

• We are in O(n)?

1. func radixESort(S array;
2. k,l,r: integer) {
3. if k>m then
4. return;
5. end if;
6. d := divide*(S, k, l, r);
7. radixESort(S, k+1, l, d);
8. radixESort(S, k+1, d+1, r);
9. }

1. func int divide*(S array;
2. k,l,r: int) {
3. …
4. while true
5. repeat
6. i := i+1;
7. until S[i][k]=1 or i≥j;
8. repeat
9. j := j-1;
10. until S[j][k]=0 or i≥j;
11. …
12. end while;
13. return j;
14.}

Marius Kloft: Alg&DS, Summer Semester 2016 11

Complexity (Correct)

• We count …
– Every call to radixESort first

performs (r-l) comps and then
divides S[l…r] in two disjoint
halves

• 1st makes (d-l) comps
• 2nd makes (r-d) comps

– Every call to radixESort yields
r-l comps

• Recurs. depth is fixed to m
• Thus: O(m*|S|) comps

1. func radixESort(S array;
2. k,l,r: integer) {
3. if k>m then
4. return;
5. end if;
6. d := divide*(S, k, l, r);
7. radixESort(S, k+1, l, d);
8. radixESort(S, k+1, d+1, r);
9. }

1. func int divide*(S array;
2. k,l,r: int) {
3. …
4. while true
5. repeat
6. i := i+1;
7. until S[i][k]=1 or i≥j;
8. repeat
9. j := j-1;
10. until S[j][k]=0 or i≥j;
11. …
12. end while;
13. return j;
14.}

Marius Kloft: Alg&DS, Summer Semester 2016 12

Illustration

1110101011010
1110101011010
0011010101011
0101010100101
0111010101001
1110101010110
1010101111010
1000001100101
1010101110110
1000101101011

• For every k, we look at every S[i][k] once to see whether it
is 0 or 1 – together, we have at most m*|S| comparisons
– Of course, we can stop at every interval with (r-l)=1
– m*|S| is the worst case

0111010101001
0011010101011
0101010100101
1110101011010
1110101011010
1110101010110
1010101111010
1000001100101
1010101110110
1000101101011

0011010101011
0111010101001
0101010100101
1000101101011
1010101110110
1010101111010
1000001100101
1110101010110
1110101011010
1110101011010

Marius Kloft: Alg&DS, Summer Semester 2016 13

RadixESort or QuickSort?

• Assume we have data that can be represented as bitstrings
such that more important bits are left (or right – but
consistent)
– Integers, strings, bitstrings, …
– Equal length is not necessary, but „the same“ bits must be at the

same position in the bitstring (otherwise, one may pad with 0)
• Decisive: m<log(n) or m>log(n)?

– If S is large / maximal bitstring length is small: RadixESort
– If S is small / maximal bitstring length is large: QuickSort

Marius Kloft: Alg&DS, Summer Semester 2016 14

Content of this Lecture

• Quick Sort
• Radix Exchange Sort
• Bucket Sort

– Generalizing the Idea of Radix Exchange Sort to arbitrary alphabets

Marius Kloft: Alg&DS, Summer Semester 2016 15

Bucket Sort

• Representing “normal” Strings as bitstrings is a bad idea
– One byte per character -> 8*length bits (large m for RadixESort)
– But: There are only 29 different values (A-Z,Ä,Ö,Ü; no caps)

• Bucket Sort generalizes RadixESort
– Assume |S|=n, m being the length of the largest value, alphabet ∑

with |∑|=k and a lexicographical order (e.g., “A” < “AA”)
– We first sort S on first position into k buckets (with a single scan)
– Then sort every bucket again for second position
– Etc.
– After at most m iterations, we are done
– Time complexity (ignoring space issues): O(m*|S+k)
– But space is a problem

Marius Kloft: Alg&DS, Summer Semester 2016 16

Space in Bucket Sort

• A naïve implementation reserves k*|S| values for every
phase of sorting into each bucket B
– We do not know how many values start with a given character
– Can be anything between 0 and |S|

• This would need O(m*k*|S|) additional space – too much
• We reduce this to O(k*|S|) and then O(k+|S|)

– Requires a stable sorting method for single characters
– 1-phase Bucket Sort is stable (if implemented that way)

Marius Kloft: Alg&DS, Summer Semester 2016 17

Bucket Sort

• If we sort from back-to-front and keep the order of once
sorted suffixes, we can (re-)use the additional space
– Order was not preserved in RadixESort, but there we could sort

in-place – other problems
GTT AAC GCT ATA AAC TGA TCT TTA TGG GTA TAG GGA CCG GAC GTA CAC

ATA TGA TTA GTA GGA GTA

AAC AAC GAC CAC

TGG TAG CCG

GTT GCT TCT

Marius Kloft: Alg&DS, Summer Semester 2016 18

Bucket Sort

• If we sort from back-to-front and keep the order of once
sorted suffixes, we can (re-)use the additional space

GTT AAC GCT ATA AAC TGA TCT TTA TGG GTA TAG GGA CCG GAC GTA CAC

ATA TGA TTA GTA GGA GTA AAC AAC GAC CAC TGG TAG CCG GTT GCT TCT

ATA TGA TTA GTA GGA GTA

AAC AAC GAC CAC

TGG TAG CCG

GTT GCT TCT

Marius Kloft: Alg&DS, Summer Semester 2016 19

Bucket Sort

• If we sort from back-to-front and keep the order of once
sorted suffixes, we can (re-)use the additional space

AAC AAC GAC CAC TAG CCG GCT TCT TGA GGA TGG ATA TTA GTA GTA GTT

AAC AAC ATA CAC CCG GAC GCT GGA GTA GTA GTT TAG TCT TGA TGG TTA

AAC AAC GAC CAC TAG CCG GCT TCT TGA GGA TGG ATA TTA GTA GTA GTT

GTT AAC GCT ATA AAC TGA TCT TTA TGG GTA TAG GGA CCG GAC GTA CAC

ATA TGA TTA GTA GGA GTA AAC AAC GAC CAC TGG TAG CCG GTT GCT TCT

ATA TGA TTA GTA GGA GTA AAC AAC GAC CAC TGG TAG CCG GTT GCT TCT

Marius Kloft: Alg&DS, Summer Semester 2016 20

Magic? Proof

• By induction
• Assume that before phase t we have sorted all values by

the (t-1)-suffix (right-most, least important for order)
– True for t=2 – we sorted by the last character ((t-1)-suffixes)

• If phase t, we sort by the t‘th character (from the right)
• This will group all values from S with the same value in

S[i][m-t+1], i=1,…,n, together and keep them sorted wrt.
(t-1)-suffixes
– Assuming a stable sorting algorithm

• Since we sort by S[i][m-t+1], the array after phase t will
be sorted by the t-suffix

• qed.

Marius Kloft: Alg&DS, Summer Semester 2016 21

Saving More Space

• The example has shown that we actually never need more
than |S|+k additional space (all buckets together)
– Use a linked-list for each bucket
– Keep pointer to start (for copying) and end (for extending) of each

list – this requires 2*k space
– All lists together only store |S| elements

Marius Kloft: Alg&DS, Summer Semester 2016 22

A Word on Names

• Names of these algorithms are not consistent
– Radix Sort generally depicts the class of sorting algorithms which

look at single keys and partition keys in smaller parts
– RadixESort is also called binary quicksort (Sedgewick)
– Bucket Sort is also called „Sortieren durch Fachverteilen“ (OW),

RadixSort (German WikiPedia and Cormen et al.), or MSD Radix
Sort (Sedgewick), or distribution sort

– Cormen et al. use Bucket Sort for a variation of our Bucket Sort
(linear only if keys are equally distributed)

– …

Marius Kloft: Alg&DS, Summer Semester 2016 23

Summary

Comps
worst case avg. case best case

Additional
space

Moves
(wc / ac)

Selection
Sort

O(n2) O(n2) O(1) O(n)

Insertion
Sort

O(n2) O(n) O(1) O(n2)

Bubble Sort O(n2) O(n) O(1) O(n2)
Merge Sort O(n*log(n)) O(n*log(n)) O(n) O(n*log(n))
QuickSort O(n2) O(n*log(n) O(n*log(n) O(log(n)) O(n2) /

O(n*log(n))
BucketSort
(m= …)

O(m*(n+k)) O(n+k)

Marius Kloft: Alg&DS, Summer Semester 2016 24

Exemplary Questions

• What is the best case complexity of BucketSort?
• What is the space complexity of RadixESort?
• What is a stable sorting algorithm?
• Which of the following sorting algorithms are stable:

BubbleSort, InsertionSort, MergeSort?
• BucketSort needs a data structure for building and using

buckets. Give an implementation using (a) a heap, (b) a
queue.

