
Algorithms and Data Structures

Marius Kloft

Searching in Lists

Marius Kloft: Alg&DS, Summer Semester 2016 2

Topic of Next Lessons

• Search: Given a (sorted or unsorted) list A with |A|=n
elements (integers). Check whether a given value c is
contained in A or not
– Search returns true or false
– If A is sorted, we can exploit transitivity
– Fundamental problem with a zillion applications

• Select: Given an unsorted list A with |A|=n elements
(integers). Return the i‘th largest element of A.
– Returns an element of A
– The sorted case is trivial – return A[i]
– Interesting problem (especially for median) with many applications
– [Interesting proof]

Marius Kloft: Alg&DS, Summer Semester 2016 3

Content of this Lecture

• Searching in Unsorted Lists
• Searching in Sorted Lists
• Selecting in Unsorted Lists

Marius Kloft: Alg&DS, Summer Semester 2016 4

Searching in an Unsorted List

• No magic
• Compare c to every

element of A
• Worst case (cA): O(n)
• Average case (c∈A)

– If c is at position i, we require
i tests

– All positions are equally
likely: probability 1/n

– This gives

1. A: unsorted_int_array;
2. c: int;
3. for i := 1.. |A| do
4. if A[i]=c then
5. return true;
6. end if;
7. end for;
8. return false;

 nOnnn
n

i
n

n

i

 2
1

2
*11 2

1

Marius Kloft: Alg&DS, Summer Semester 2016 5

Content of this Lecture

• Searching in Unsorted Lists
• Searching in Sorted Lists

– Binary Search
– Fibonacci Search
– Interpolation Search

• Selecting in Unsorted Lists

Marius Kloft: Alg&DS, Summer Semester 2016 6

Binary Search (binsearch)

• If A is sorted, we can be
much faster

• Binsearch: Exploit
transitivity

1. func bool binsearch(A: sorted_array;
c,l,r : int) {

2. If l>r then
3. return false;
4. end if;
5. m := (l+r) div 2;
6. If c<A[m] then
7. return binsearch(A, c, l, m-1);
8. else if c>A[m] then
9. return binsearch(A, c, m+1, r);
10. else
11. return true;
12. end if;
13.}

Source: railspikes.com

Marius Kloft: Alg&DS, Summer Semester 2016 7

Iterative Binsearch

• Binsearch uses only end-
recursion

• Equivalent iterative program
– No call stack
– We don’t need old values for l,r
– O(1) additional space

1. A: sorted_int_array;
2. c: int;
3. l := 1;
4. r := |A|;
5. while l≤r do
6. m := (l+r) div 2;
7. if c<A[m] then
8. r := m-1;
9. else if c>A[m] then
10. l := m+1;
11. else
12. return true;
13.end while,
14.return false;

Marius Kloft: Alg&DS, Summer Semester 2016 8

Complexity of Binsearch

• In every call to binsearch (or every while-loop), we only do
constant work

• With every call, we reduce the size of sub-array by 50%
– We call binsearch once with n, with n/2, with n/4, …

• Binsearch has worst-case complexity O(log(n))
• Average case only marginally better

– Chances to “hit” target in the middle
of an interval are low in most cases

– See Ottmann/Widmayer

Source: railspikes.com

Marius Kloft: Alg&DS, Summer Semester 2016 9

Content of this Lecture

• Searching in Unsorted Lists
• Searching in Sorted Lists

– Binary Search
– Fibonacci Search
– Interpolation Search

• Selecting in Unsorted Lists

Marius Kloft: Alg&DS, Summer Semester 2016 10

Searching without Divisions

• If we want to be ultra-fast, we should use only simple
arithmetic operations

• Fibonacci search: O(log(n)) without division/multiplication
– Note: Bin-search usually uses bit shift (div 2) – very fast
– Fibonacci search also has slightly better access locality (cache)
– Also interesting: O(log(n)) without the “always 50%” trick

• Recall Fibonacci numbers
– fib(1)=fib(2)=1; fib(i)=fib(i-1)+fib(i-2)
– 1, 1, 2, 3, 5, 8, 13, 21, 34, …
– Thus, fib(i-2) is roughly 1/3, fib(i-1) roughly 2/3 of fib(i)

Marius Kloft: Alg&DS, Summer Semester 2016 11

Fibonacci Search: Idea

fib(i)

fib(i-2) fib(i-1)

• Let fib(i) be the
smallest fib-number
>|A|

• If A[fib(i-2)]=c: stop
• Otherwise, continue

searching in [1 …
fib(i-2)] or [fib(i-
2)+1 … n]

• Beware out-of-range
part A[n+1…fib(i)]

• No divisions

fib(i-1)

Marius Kloft: Alg&DS, Summer Semester 2016 12

Algorithm (assume |A|=fib(n)-1)

• 3-6: Search at A[fib(i-2)]
– With fib1, fib2 we can compute

all all other fib’s
– fib(i)=fib(i-1)+fib(i-2)
– fib(i-1)=fib(i-2)+fib(i-3)
– …

• 7-24: Break A at descending
Fibonacci numbers

• After each comparison,
update fib1 and fib2

1. A: sorted_int_array;
2. c: int;
3. compute i;
4. fib1 := fib(i-3);
5. fib2 := fib(i-2);
6. m := fib2;
7. repeat
8. if c>A[m] then
9. if fib1=0 then return false
10. else
11. m := m+fib1;
12. tmp := fib1;
13. fib1 := fib2-fib1;
14. fib2 := tmp;
15. end if;
16. else if c<A[m]
17. if fib2=1 then return false
18. else
19. m := m-fib1;
20. fib2 := fib2 – fib1;
21. fib1 := fib1 – fib2;
22. end if;
23. else return true;
24.until true;

Marius Kloft: Alg&DS, Summer Semester 2016 13

Example

fib2 fib1 m
2 1 2
1 1 3

Search 3
in {1,2,3}

fib2 fib1 m
2 1 2
1 1 3
1 0 4

Search 6 in
{1,2,3,4}

true

false

Search 100 in
{1…10000}

fib2 fib1 m
4181 2584 4181
1597 987 1597

… … …

1. A: sorted_int_array;
2. c: int;
3. compute i;
4. fib1 := fib(i-3);
5. fib2 := fib(i-2);
6. m := fib2;
7. repeat
8. if c>A[m] then
9. if fib1=0 then return false
10. else
11. m := m+fib1;
12. tmp := fib1;
13. fib1 := fib2-fib1;
14. fib2 := tmp;
15. end if;
16. else if c<A[m]
17. if fib2=1 then return false
18. else
19. m := m-fib1;
20. fib2 := fib2 – fib1;
21. fib1 := fib1 – fib2;
22. end if;
23. else return true;
24.until true;

Marius Kloft: Alg&DS, Summer Semester 2016 14

Complexity

• Worst-case: C is always in the larger (fib1) fraction of A
– We roughly call once for n, once for 2n/3, once for 4n/9, …

• Formula of Moivre-Binet:
– fib(i) = round థ

	 ହ
ൎ థ

	 ହ
ൎ ܿ ∗ 1,62i

– Where ߶ ≔ golden ratio ≈ 1.62
• We find fib such that fib(i-1)≤n≤fib(i)~c*1,62i

• In worst-case, we make ~i comparisons
– We break the array i times

• Since i=log1,62(n/c), we are in O(log(n))

Marius Kloft: Alg&DS, Summer Semester 2016 15

Outlook: Searching without Math (later in this course)

• Will turn out that we actually can solve the search problem
in O(log(n)) using only comparisons (no additions etc.)

• Transform A into a balanced binary search tree
– At every node, the depth of the two subtrees differ by at most 1
– At every node n, all values in the left (right) subtree are smaller

(larger) than n
• Search

– Recursively compare c to node
labels and descend left/right

– Balanced bin-tree has
depth O(log(n))

– We need at most log(n)
comparisons – and nothing else

Marius Kloft: Alg&DS, Summer Semester 2016 16

Content of this Lecture

• Searching in Unsorted Lists
• Searching in Sorted Lists

– Binary Search
– Fibonacci Search
– Interpolation Search

• Selecting in Unsorted Lists

Marius Kloft: Alg&DS, Summer Semester 2016 17

Interpolation Search

• Imagine you have a telephone book and search for
„Zacharias“

• Will you open the book in the middle?
• We can exploit additional knowledge about our values
• Interpolation Search: Estimate where c lies in A based on

the distribution of values in A
– Simple: Use max and min values in A and assume equal distribution
– Complex: Approximation of real distribution (histograms, …)

Marius Kloft: Alg&DS, Summer Semester 2016 18

Simple Interpolation Search

• Assume equal distribution – values within A are equally
distributed in range [A[1], A[n]]

• Best guess for the rank of c

• Idea: Use m=rank(c) and proceed recursively
• Example: “Xylophon”

][][
][*)()(
lArA

lAclrlcrank

Marius Kloft: Alg&DS, Summer Semester 2016 19

Analysis

• On average, Interpolation Search on equally distributed
data requires O(log(log(n)) comparison (proof: see [OW])

• But: Worst-case is O(n)
– If concrete distribution deviates heavily from expected distribution
– E.g., A contains only names>”Xanthippe”

• Further disadvantage: In each phase, we perform ~4
adds/subs and 2*mults/divs
– Assume this takes 12 cycles (1 mult/div = 4 cycles)
– Binsearch requires 2*adds/subs + 1*div ~6 cycles
– Even for n=232~4E9, this yields 12*log(log(4E9))~72 ops versus

6*log(4E9)~180 ops – not that much difference

Marius Kloft: Alg&DS, Summer Semester 2016 20

Content of this Lecture

• Searching in Unsorted Lists
• Searching in Sorted Lists
• Selecting in Unsorted Lists

– Naïve or clever

Marius Kloft: Alg&DS, Summer Semester 2016 21

Quantiles

• The median of a list A is its middle value
– Sort all values and take the one in the middle

• Generalization: q-quantiles
– Sort all values and partition the list into subsequent bins of size

q%*|A|
– 25%, 50%, 75% are called quartiles
– Median = 2-quantile

Marius Kloft: Alg&DS, Summer Semester 2016 22

Selection Problem

• Definition
The selection problem is to find the x%-quantile of a set A
of unsorted values

• We can sort A and then access the quantile directly
• Thus, O(n*log(n)) is easy
• Can we solve this problem in linear time?
• It is easy to see that we have to look at least at each value

once; thus, the problem is in (n)

Marius Kloft: Alg&DS, Summer Semester 2016 23

Top-k Problem

• Top-k: Find the k largest values in A
• For constant k, a naïve solution is linear (and optimal)

– repeat k times
– go through A and find largest value v;
– remove v from A;
– return v
– Requires k*|A|=O(|A|) comparisons

• But if k=x*|A|, we are in O(x*|A|*|A|)=O(|A|2)
– We measure complexity in size of the input
– It is decisive whether k is part of the input or not

Marius Kloft: Alg&DS, Summer Semester 2016 24

Selection Problem in Linear Time

• We sketch an algorithm which solves the problem for
arbitrary x in linear time
– Actually, we solve the equivalent problem of returning the k’th

value in the sorted A (without sorting A)
• Interesting from a theoretical point-of-view
• Practically, the algorithm is of no importance because the

linear factor gets enormously large
• It is instructive to see why (and where)

Marius Kloft: Alg&DS, Summer Semester 2016 25

Algorithm

• Recall QuickSort: Chose
pivot element p, divide
array wrt p, recursively
sort both partitions
using the same trick

• We reuse the idea:
Chose pivot element p,
divide array wrt p,
recursively select in the
one partition that must
contain the k’th element

1. func integer divide(A array;
2. l,r integer) {
3. …
4. while true
5. repeat
6. i := i+1;
7. until A[i]>=val;
8. repeat
9. j := j-1;
10. until A[j]<=val or j<i;
11. if i>j then
12. break while;
13. end if;
14. swap(A[i], A[j]);
15. end while;
16. swap(A[i], A[r]);
17. return i;
18.}

1. func int quantile(A array;
2. k, l, r int) {
3. if r≤l then
4. return A[l];
5. end if;
6. pos := divide(A, l, r);
7. if (k ≤ pos-l) then
8. return quantile(A, k, l, pos-1);
9. else
10. return quantile(A, k-pos+l, pos, r);
11. end if;
12.}

Marius Kloft: Alg&DS, Summer Semester 2016 26

Analysis

• Worst-case: Assume
arbitrarily badly
chosen pivot elements

• pos always is r-1 (or l+1)
• Gives O(n2)
• Need to chose the pivot element p more carefully

1. func int quantile(A array;
2. k, l, r int) {
3. if r≤l then
4. return A[l];
5. end if;
6. pos := divide(A, l, r);
7. if (k ≤ pos-l) then
8. return quantile(A, k, l, pos-1);
9. else
10. return quantile(A, k-pos+l, pos, r);
11. end if;
12.}

Marius Kloft: Alg&DS, Summer Semester 2016 27

Choosing p

• Assume we can chose p such that we always continue
with at most q=y% of A
– “y%” means: Extend of reduction depends on n

• We perform at most T(n) = T(q*n) +c*n comparisons
– T(q*n) – recursive descent
– c*n – function “divide”

• T(n) = T(q*n)+c*n = T(q2*n)+q*c*n+c*n =
T(q2n)+(q+1)*c*n = T(q3n)+(q2+q+1)*c*n = …

)(
1
1******)(

00

nO
q

ncqncqncnT
i

i
n

i

i

n

Marius Kloft: Alg&DS, Summer Semester 2016 28

Discussion

• Our algorithm has worst-case complexity O(n) when we
manage to always reduce the array by a fraction of its size
– no matter, how large the fraction

• This is not an average-case. We must always (not on
average) cut some fraction of A

• Eh – magic?
• No – follows from the way we defined complexity and what

we consider as input
• Many ops are “hidden” in the linear factor

– q=0.9: c*10*n
– q=0.99: c*100*n
– q=0.999: c*1000*n

Marius Kloft: Alg&DS, Summer Semester 2016 29

Median-of-Median (Assume |A|= 5l)

• How can we guarantee to always cut a fraction of A?
• Median-of-median algorithm

– Partition A in stretches of length 5
– Compute the median vi for each partition
– Use the (approximated) median v of all vi as pivot element

v1 v2 v3 v4 v5 v6

v

Marius Kloft: Alg&DS, Summer Semester 2016 30

Complexity

• Run through A in jumps of length 5
• Find each median in constant time

– Runtime of sorting a list of length 5 does not depend on n
• Call algorithm recursively on all medians
• Since we always reduce the range of values to look at by

80%, this requires O(n) time

v1 v2 v3 v4 v5 v6

v11

v
v12…

Marius Kloft: Alg&DS, Summer Semester 2016 31

Why Does this Help?

• We have n/5 first-level medians vi
• v (as median of medians) is smaller than halve of them

and greater than the other half (both are n/10 values)
• Each vi itself is smaller than (and greater than) 2 values
• Thus v is smaller than (and greater than) at least 3*n/10

elements

Marius Kloft: Alg&DS, Summer Semester 2016 32

Illustration (source: Wikipedia)

• Median-of-median of a randomly permuted list 0..99
• For clarity, each 5-tuple is sorted (top-down) and all 5-

tuples are sorted by median (left-right)
• Gray/white: Values with actually smaller/greater than med-

of-med 47
• Blue: Range with certainly smaller / larger values

