

Algorithms and Data Structures

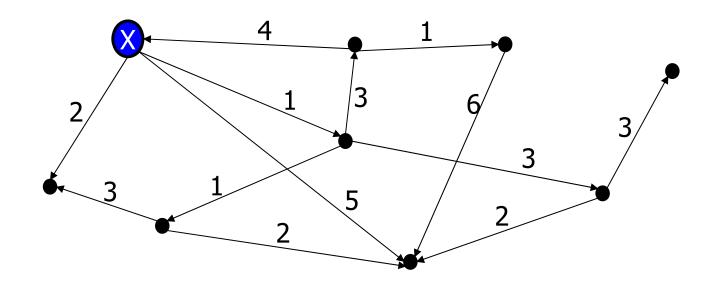
Priority Queues

Marius Kloft

Special Scenarios for Searching

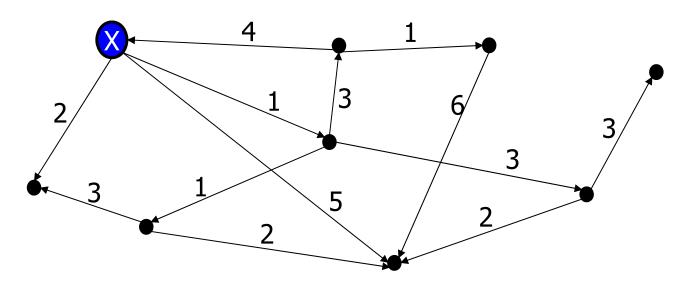
- Up to now, we assumed that all elements of a list are equally important and that any of them could be searched next (with varying probability)
- What if some elements are more important than others?
 - There is a (maybe partial) order on list elements
 - Most important elements are always (not mostly) retrieved next
 - Priority Queues
- Difference to Self-Organizing Lists
 - Most important element is always retrieved next should be O(1)
 - List should be kept ordered by importance
 - We look at a scenario where new elements are inserted all the time and the most important element is removed regularly

Shortest Paths in a Graph



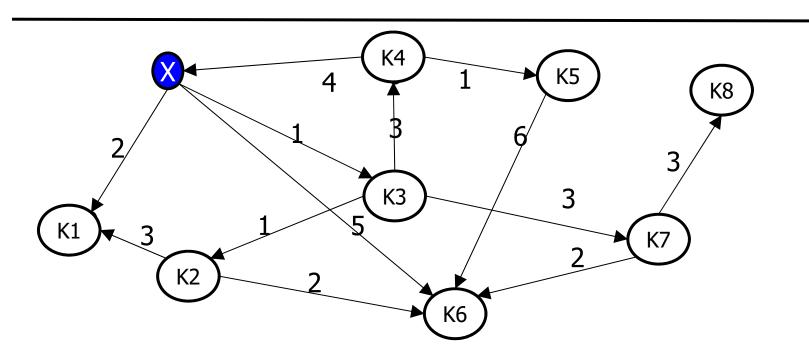
- Task: Find the distance between X and all other nodes
 - Classical problem: Single-Source-Shortest-Paths
 - Famous solution: Dijkstra's algorithm

Assumptions



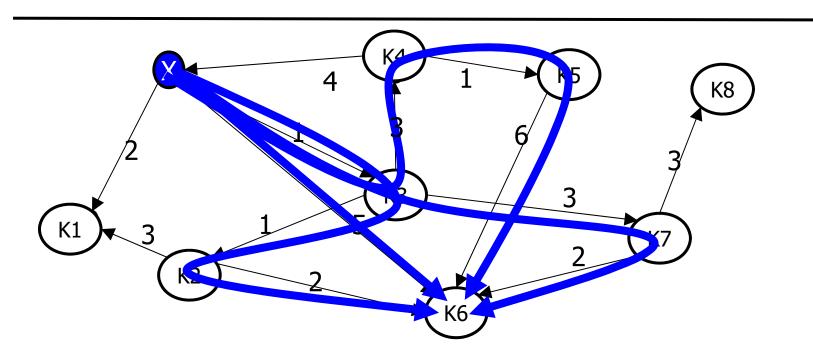
- We assume that there is at least one path between X and any other node (every node is reachable from X)
- We assume strictly positive edge weights
- Distance is the length (=sum of weights) of the shortest path
- There might be many shortest paths, but distance is unique
- We only want the distances and need no "witness paths"

Exhaustive Solution

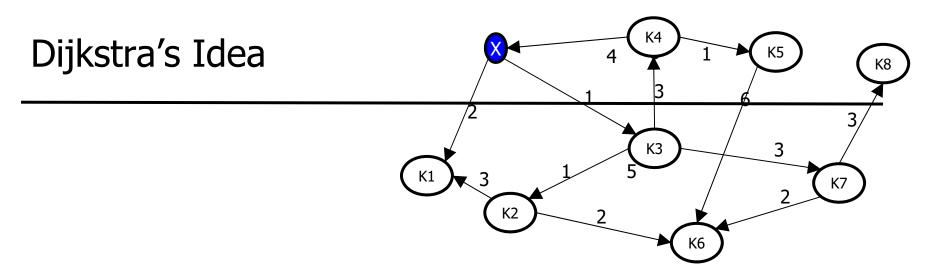


- First approach: Enumerate all paths
 - Need to break cycles (e.g. X K3 K4 X K3 ...)
 - Using DFS: X K3 K4 X [BT-K4] K5 K6 [BT-K5] [BT-K4]
 [BT-K3] K7 K8 [BT-K7] K6 [BT-K7] [BT-K3] K2 K6 [BT-K2]
 K1 [BT-K2] [BT-K3] [BT-X] K6 ...

Redundant work

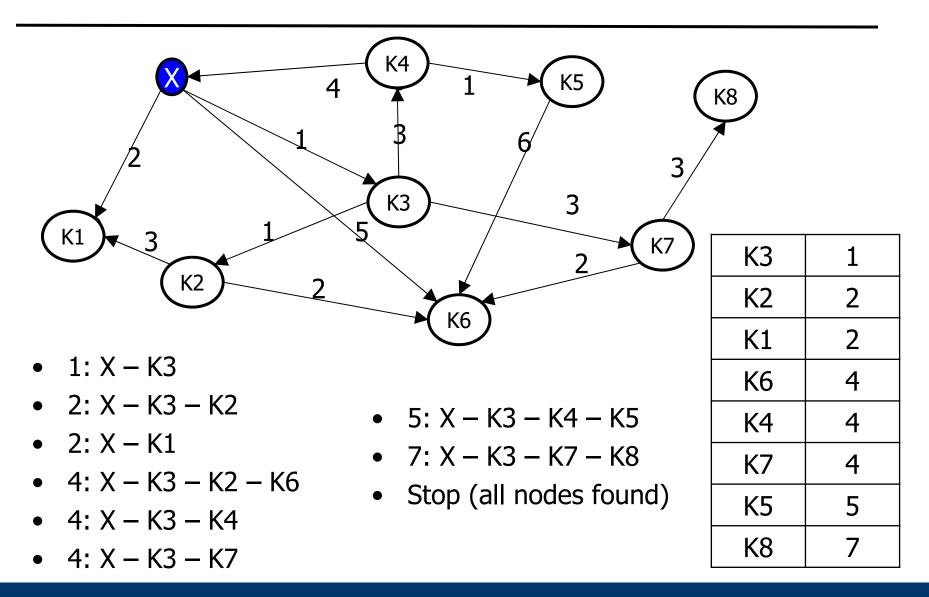


- First approach: Enumerate all paths
 - Need to break cycles (e.g. X K3 K4 X K3 ...)
 - Using DFS: X K3 K4 X [BT-K4] K5 K6 [BT-K5] [BT-K4]
 [BT-K3] K7 K8 [BT-K7] K6 [BT-K7] [BT-K3] K2 K6 [BT-K2]
 K1 [BT-K2] [BT-K3] [BT-X] K6 ...



- Enumerate paths from X by their length
 - Neither DFS nor BFS
- Assume we reach a node Y by a path p of length I and we have already explored all paths from X with length I' ≤ I and that Y was not reached yet
- Then p must be a shortest path between X and Y
 - Because any p' between X and Y would have a prefix of length at least I and (a) a continuation with length>0 or (b) would not need a continuation (then p is as short as p')

Example for Idea



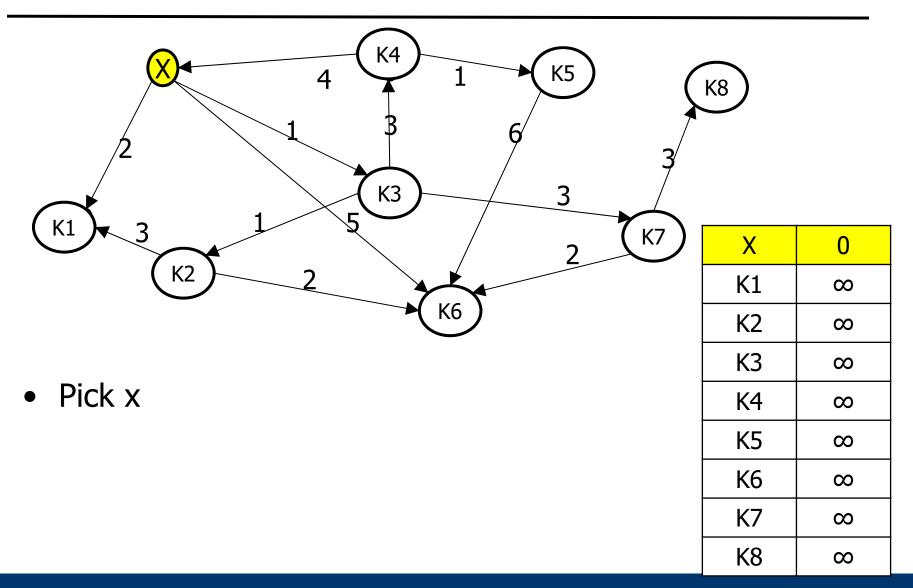
A Further Trick

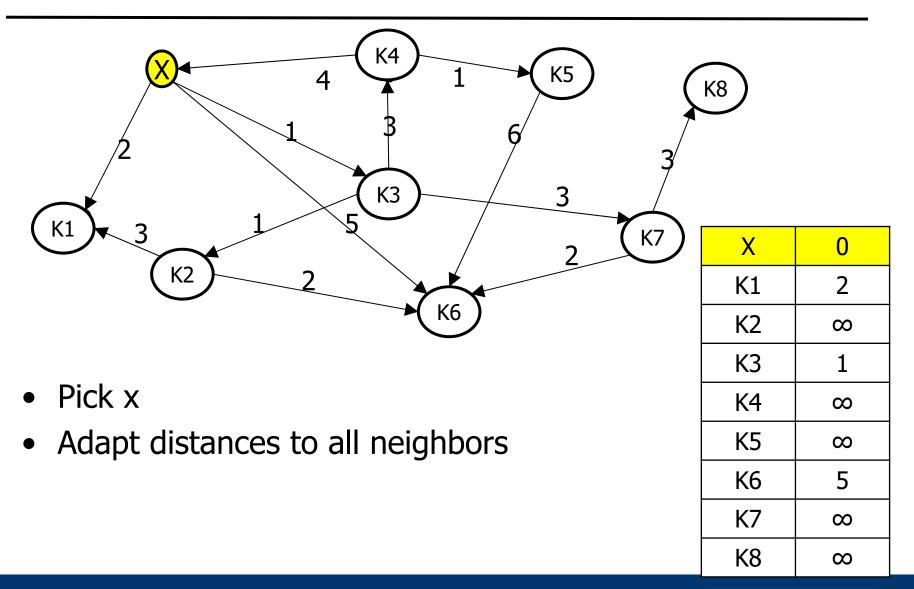
- Enumerate paths by iteratively extending short paths by all possible extensions
 - All edges outgoing from the end node of a short path
- These extensions
 - ... either lead to a node which we didn't reach before then we found a path, but cannot yet be sure it is the shortest
 - ... or lead to a node which we already reached but we are not yet sure of we found the shortest path to it – update current best distance
 - ... or lead to a node which we already reached and for which we also surely found a shortest path already – these can be ignored
- Eventually, we enumerate nodes by their distance

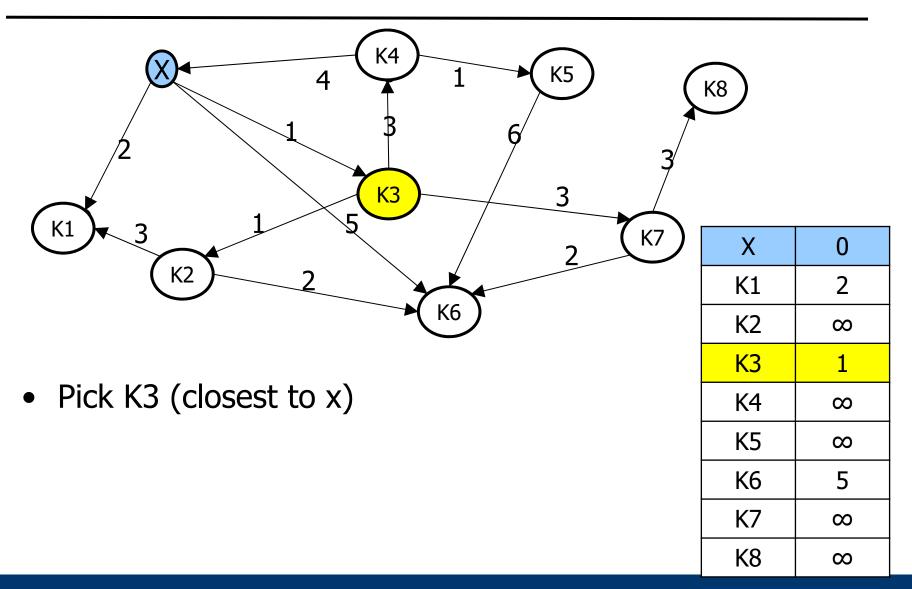
Algorithm

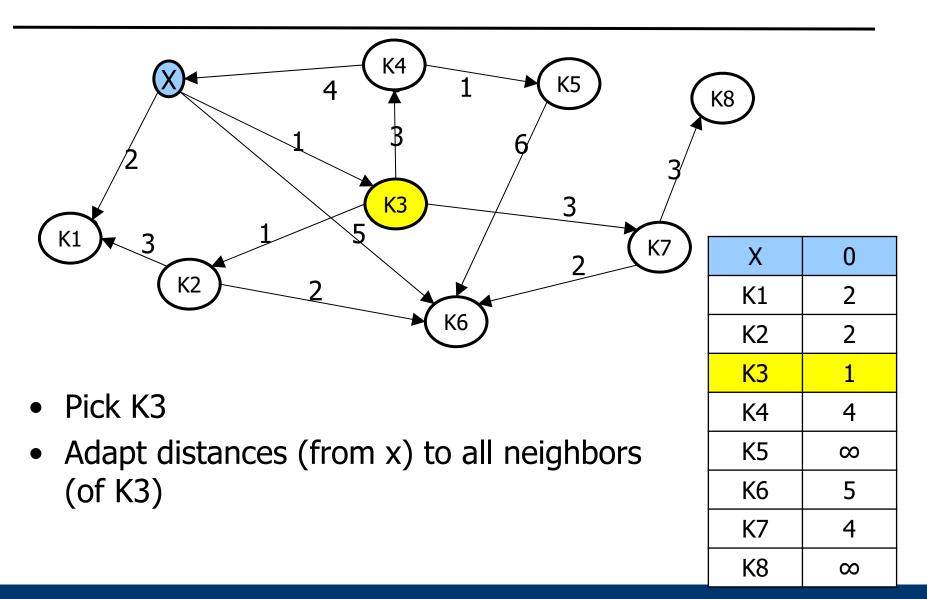
```
1. G = (V, E);
2. x : start node;
                       # x∈V
3. A : array of distances;
4. \forall i: A[i] := \infty;
5. L := V;
6. A[x] := 0;
7. while L \neq \emptyset
8. k := L.get closest node();
9. L := L \setminus k;
10. forall (k, f, w) \in E do
11.
       if fEL then
12. new dist := A[k]+w;
13. if new dist < A[f] then
14.
           A[f] := new dist;
15. end if:
       end if;
16.
     end for;
17.
18. end while;
```

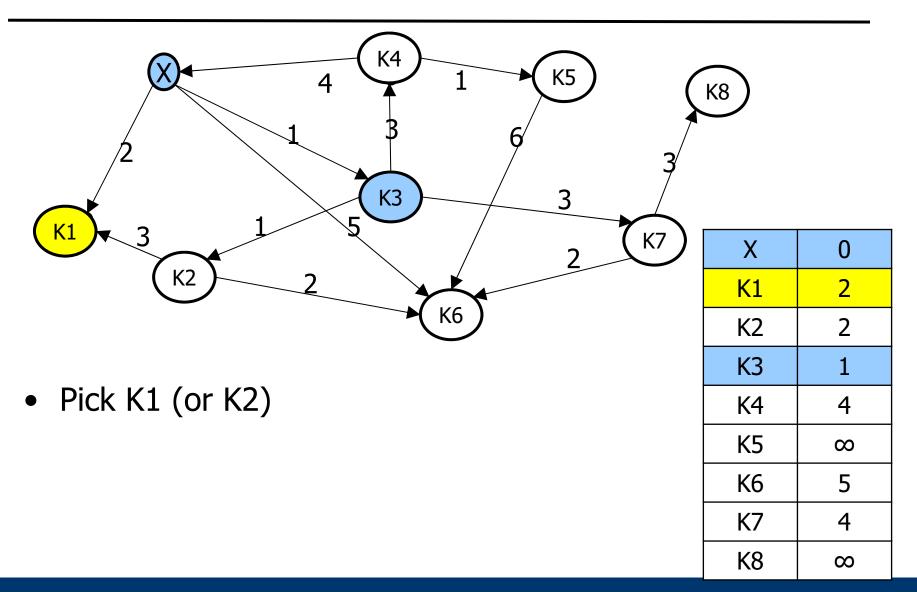
- Assumptions
 - Nodes have IDs between 1 ... |V|
 - Edges are (from, to, weight)
- We enumerate nodes by length of their shortest paths
 - In the first loop, we pick x and update distances (A) to all adjacent nodes
 - When we pick a node k, we already have computed its distance to x in A
 - We adapt the current best distances to all neighbors of k we haven't picked yet
- Once we picked all nodes, we are done

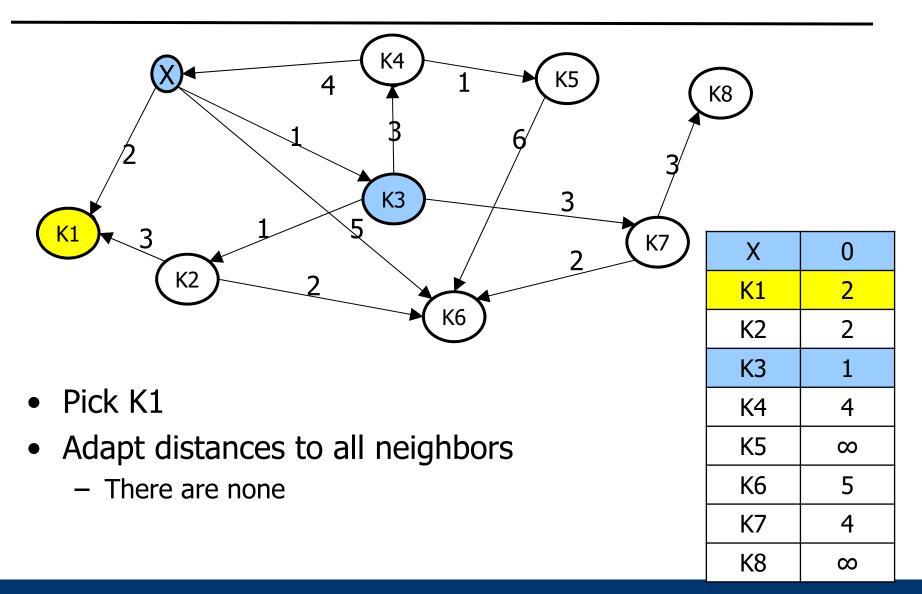


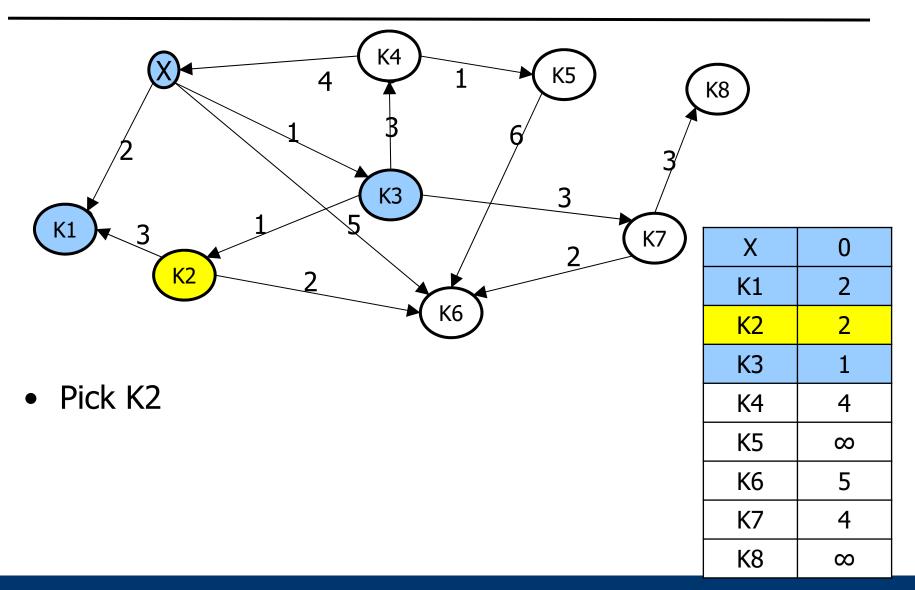


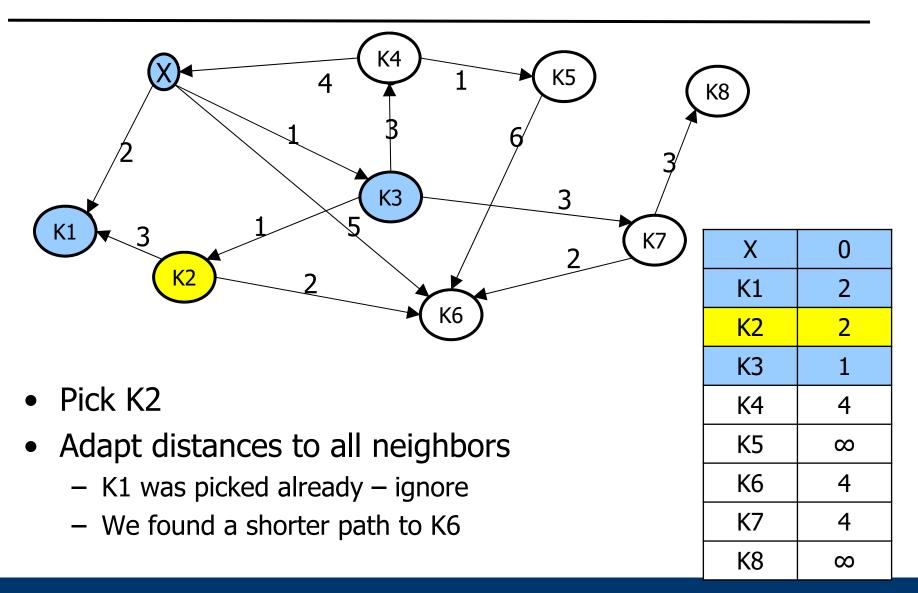


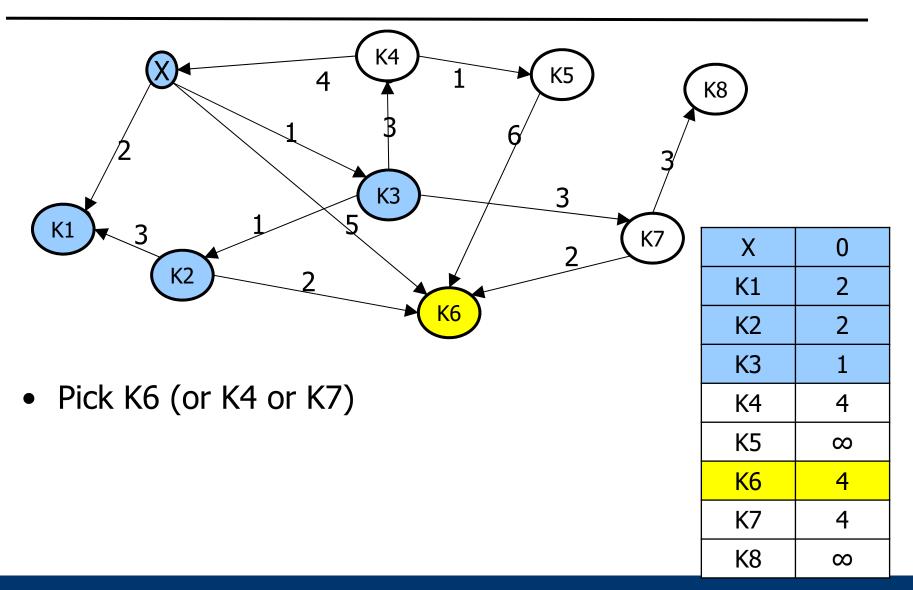


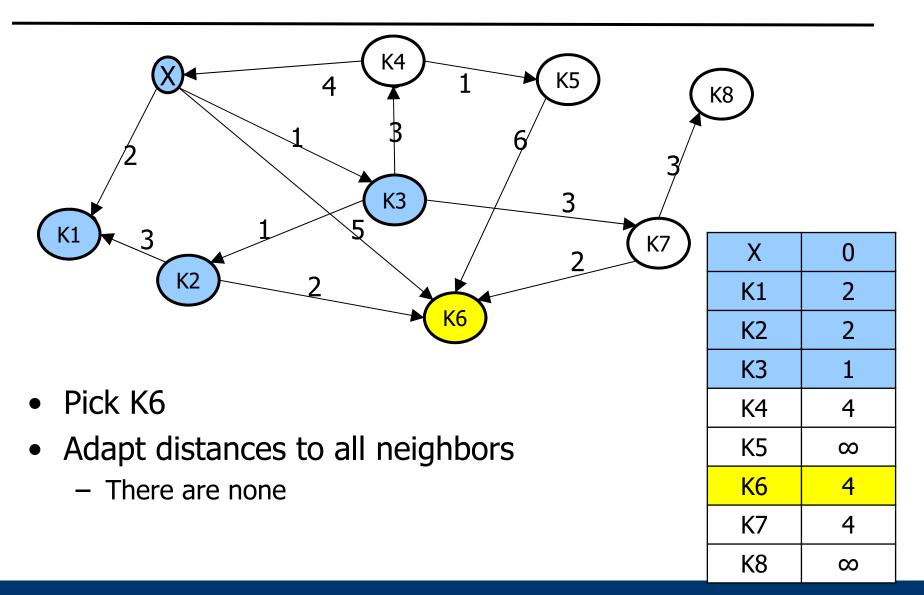


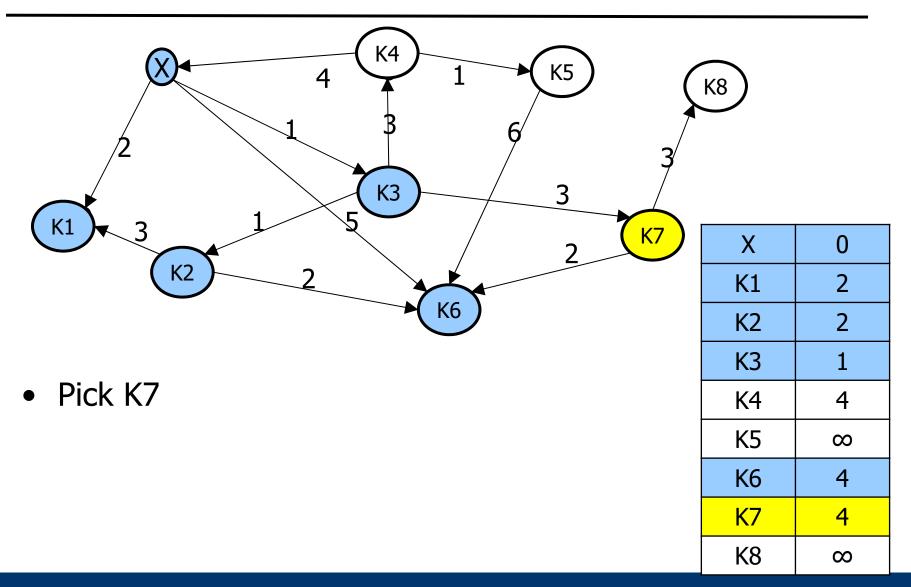


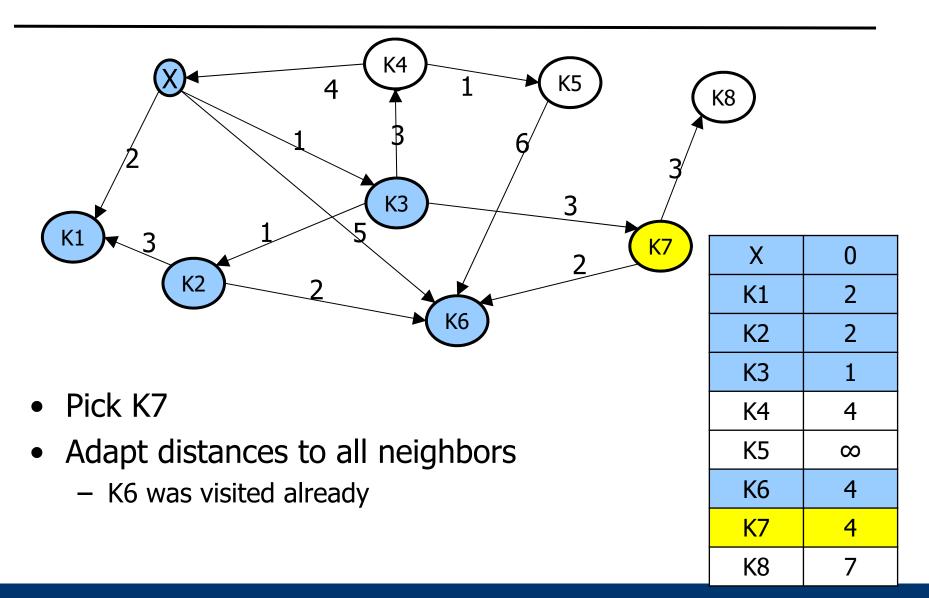


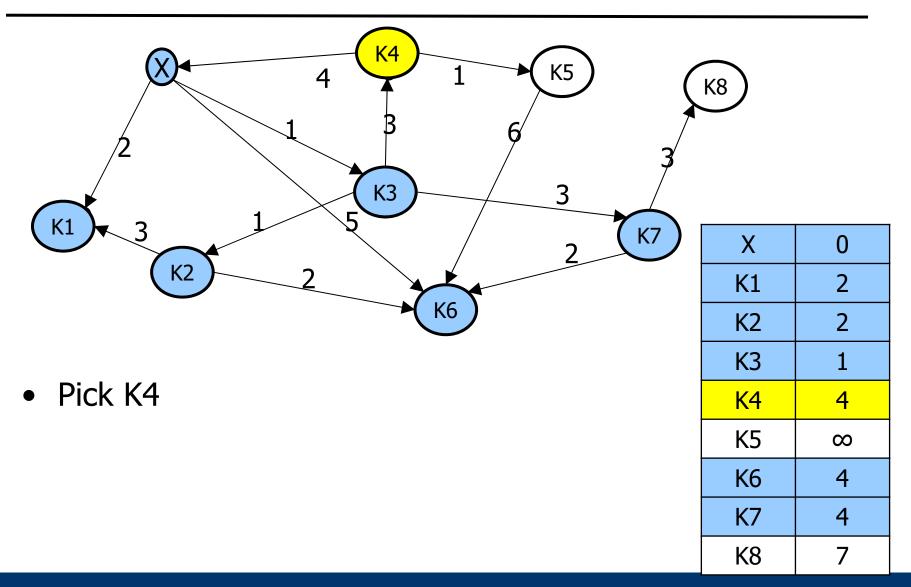


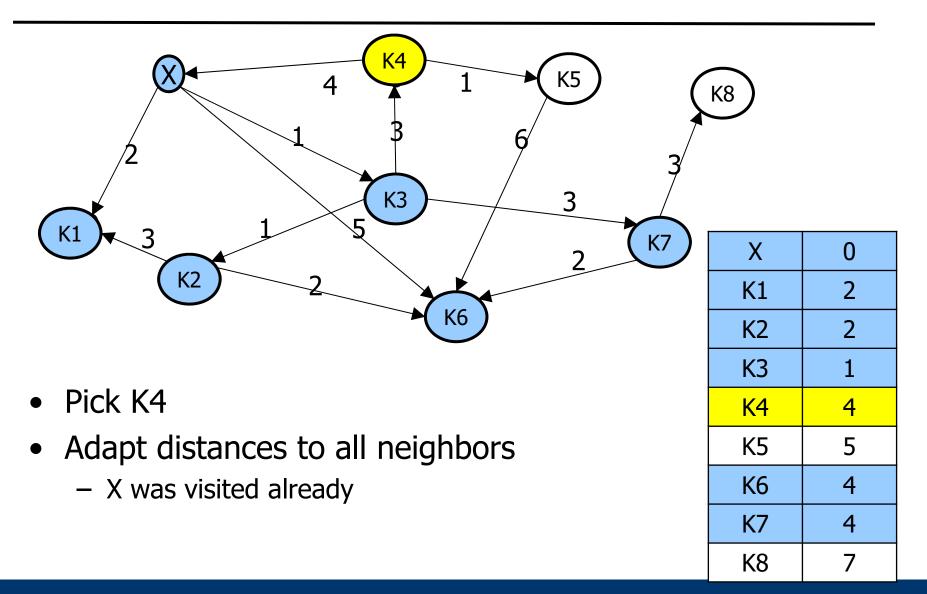


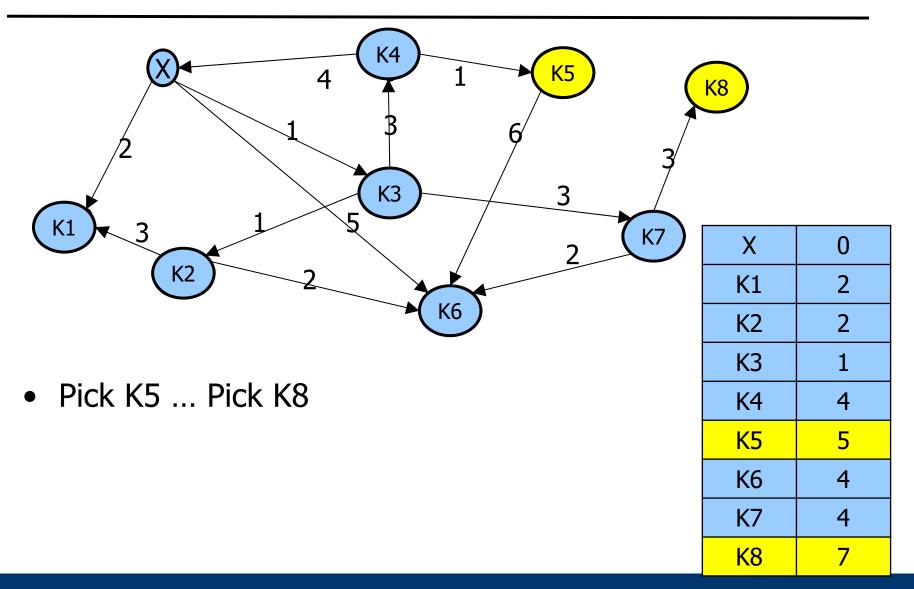












A Closer Look

```
1. G = (V, E);
2. x : start node;
                        # x∈V
3. A : array of distances;
4. \forall i: A[i] := \infty;
5. L := V;
6. A[x] := 0;
7. while L \neq \emptyset
8. k := L.get closest node();
9. L := L \setminus k;
10. forall (k, f, w) \in E do
11.
       if fEL then
12. new dist := A[k]+w;
13. if new dist < A[f] then
14.
           A[f] := new dist;
15.
         end if:
       end if:
16.
     end for;
17.
18. end while;
```

- Algorithm seems to work
 - Proof and analysis will follow later
- Central: get_closest_node()
 - Needs to find the node k in L for which A[k] is the smallest
 - A[k] is changed a lot during a run
- Searching A? Resorting A?
- Better: Priority queue
 - List of tuples (o, v) (object,value)
 - Central operation: Return tuple where v is smallest

- Priority Queues
- Using Heaps

Priority Queues

- A priority queue (PQ) is an ADT with 3 essential operations
 - add (o, v): Add element o with value (priority) v
 - getMin(): Retrieve element with highest priority
 - **removeMin()**: Remove element with highest priority
- Typical additional operations
 - merge(p1, p2): Merge two PQs into one (properly sorted)
 - create (L): Convert a list in a priority queue
 - delete (o): Delete o from PQ
 - changeValue(o,v): Change value of 0 to v

- Games (e.g. chess)
 - The machine explores next movements but cannot look at all of them; give each move an assumed benefit and explore moves with probably highest benefit first (see also A* algorithm)
- Multi-modal route planning
 - Find fastest route through a map (network) with multiple ways of transportation (feet, bus, train, ...) between edges where edge weights change dynamically (delay, congestion, ...)
 - And departure times may depend on arrival: Timetable-based routing
- Quality of Service in a network
 - When bandwidth is limited, sort all transmission requests in a PQ and transmit by highest priority

• ...

- Using a linked list
 - add requires O(1) (at the end or start or anywhere)
 - getMin requires O(n) [bad]
 - deletemin requires O(1) (if we keep the pointer after a getMin)
 - merge requires O(1)
- Using a linked list sorted by priority
 - add requires O(n) [bad]
 - getMin requires O(1)
 - deleteMin requires O(1)
 - merge requires O(n+m)

- Using a sorted array
 - add requires O(n) [bad we find the position in log(n), but then have to free a cell by moving all elements after this cell]
 - getMin requires O(1)
 - deleteMin requires O(n) [bad]
- PQs are typically used in applications where elements are inserted and removed all the time
- We need a DS that can change its size dynamically at very low cost while keeping a certain order (min element)
- We want constant or at most log-time for all operations

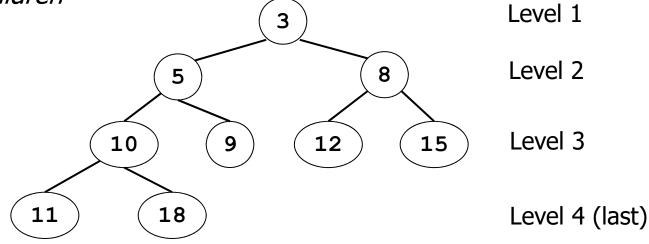
- Priority Queues
- Using Heaps
 - Heaps
 - Operations on Heaps
 - Heap Sort

- Unsorted lists require O(n) for getMin()
 - We don't know where the smallest element is
- Sorted lists require O(n) for add()
 - We don't know where to put the new element
- Can we find a way to keep the list "a little sorted"?
 - Actually, we only need the smallest element at a fixed position
 - All other elements can be at arbitrary places
 - add() / deleteMin() could be faster than O(n), if they don't need to keep the entire list sorted
- One such structure is called a heap

• Definition

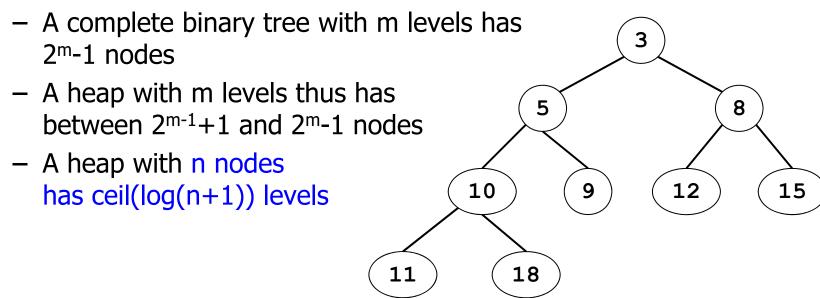
A heap is a labeled binary tree for which the following holds

- Form-constraint (FC): The tree is complete except the last level
 - I.e.: Every node at level I<d-1 has exactly two children
 - The last level is filled from left to right
- Heap-constraint (HC): The label of any node is smaller than that of its children



Properties

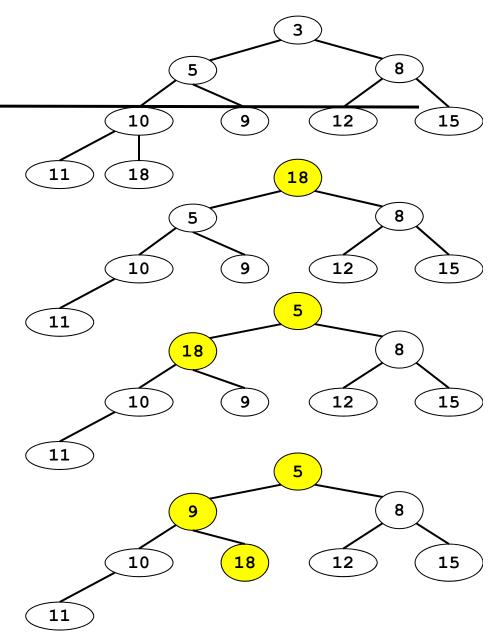
- Order
 - A heap is "a little" sorted: We know the smallest element (root)
 - We know the order for some pairs of elements (parent-child), but for many pairs we don't know which is bigger (e.g. nodes in the same level)
- Size



- Assume we store our PQ as a heap
- Clearly, getMin() is possible in O(1)
 - Keep a pointer to the root
- But ...
 - How can we perform deleteMin() such that the new structure again is a heap?
 - How can we add an element to a heap such that the new structure again is a heap?
 - How can we turn a list into a heap?

DeleteMin()

- We first remove the root
 - Creates two heaps
 - We must connect them again
- We take the "last" node, place it in root, and "sift" it down the tree
 - Last node: right-most in the last level
 - Sifting down: Exchange with smaller of both children as long as at least one child is smaller than the node itself

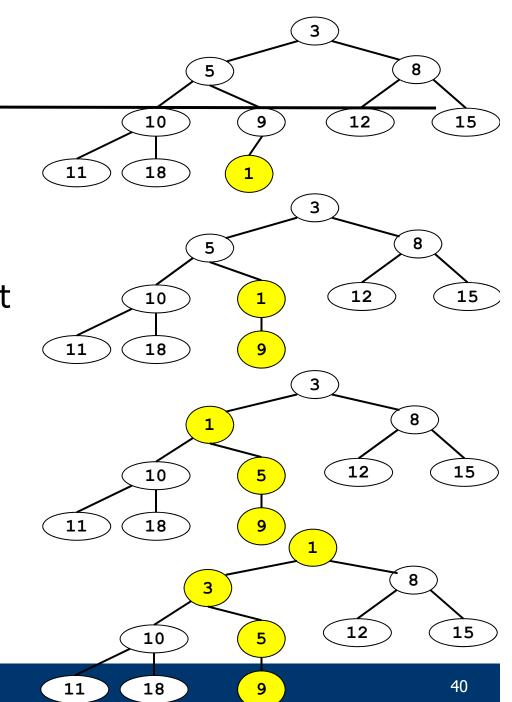


- We need to show that FC and HC still hold
- HC: Look at the tree after we moved a node k. k may
 - ... be smaller than its children. Then HC holds and we are done
 - ... be larger than at least one child k2. Assume that k2 is the smaller of the two children (k1, k2) of k. We next swap k and k2. The new parent (k2) now is smaller than its children (k1, k), so the HC holds
 - After the last swap, k has no children HC holds
- FC: We remove one node, then we sift down
 - Removing last node doesn't affect FC as we remove in the last level
 - Sifting does not change the topology of the tree (we only swap)

- Recall that a heap with n nodes has ceil(log(n+1)) levels
- During sifting, we perform at most one comparison and one swap in every level
- Thus: O(ceil(log(n+1))) = O(log(n))

Add() on a Heap

- Cannot simply add on top
- Idea: We add new element somewhere in last level and sift up
 - We might need a new level
 - Sifting up: Compare to parent and swap if parent is larger



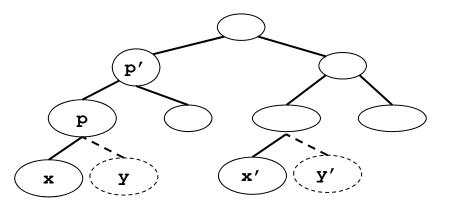
Analysis

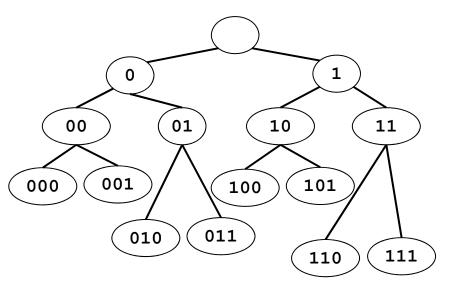
- Correctness
 - HC
 - If parent has only one child, HC holds after each swap
 - Assume a parent k has children k1 and k2, k2 was swapped there in the last move, and k2<k. Since HC held before, k<k1, thus k2<k<k1. We swap k2 and k, and thus the new parent is smaller than its children. On the other hand, if k2≥k, HC holds immediately (and we don't swap).
 - FC: See deleteMin()
- Complexity: O(log(n))
 - See deleteMin()

How to Find the Next Free / Last Occupied Node

- What do we need to find?
 - For deleteMin, we use the right-most leaf on the last level
 - For add, we add the leaf right to the last leaf
- We actually need the parent k
 - From n, we can compute in O(1) the position p of the last leaf in the last level: $p = n 2^{(floor(log(n)))}$
 - Or log(n+1) for add
 - The parent k of the node at p has index floor(p/2)'th in level d-1
 - The parent k' of k has index floor(p/4)'th in level d-2
 - ...
 - Now, in each node, we can decide whether to go left or right
 - Fast trick: Use the binary representation of p

- For deleteMin, we need x (or x'); for add, we need y (or y')
 p(x)=0, p(y)=1, p(x')=4, p(y')=5
 - Binary: 000, 001, 100, 101
- Go through bitstring from leftto-right
- Next bit=0: Go left
- Next bit=1: Go right
- Allows finding k in O(log(n))

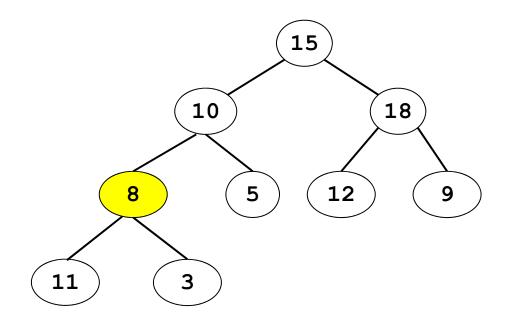




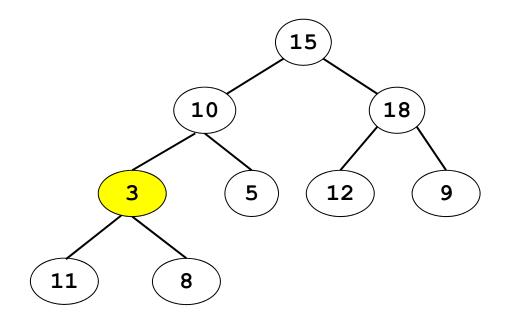
Summary

	Linked list	Sorted linked list	Неар
getMin()	O(n)	O(1)	O(1)
deleteMin()	O(1)	O(1)	O(log(n))
add()	O(1)	O(n)	O(log(n))
merge()	O(1)	O(n1+n2)	O(log(n1)*log(n2))
Space	n add. pointer	n add. pointer	n add. pointer
Heaps can also be kept efficiently in an array – no extra space, but limit to heap size			

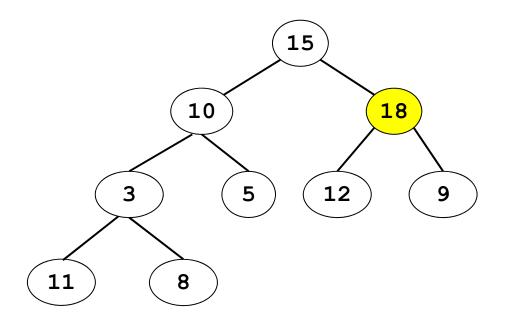
- We start with an unsorted list with n elements
- Naïve algorithm: Start with empty heap and perform n additions
 - Obviously requires O(n*log(n))
- Better: Bottom-Up-Sift-Down
 - Build a tree from the n elements fulfilling the FC (but not HC)
 - Simple fill a tree level-by-level this is in O(n)
 - Sift-down all nodes on the second-last level
 - Sift-down all nodes on the third-last level
 - ...
 - Sift down root



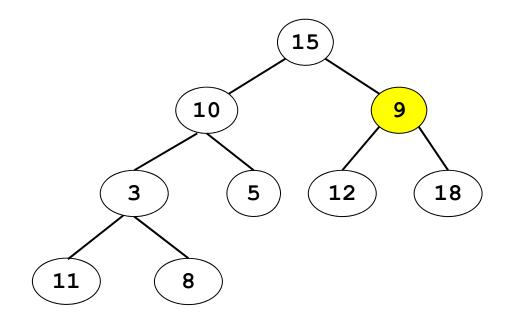
• Start with right most inner node at second-to-last level: 8

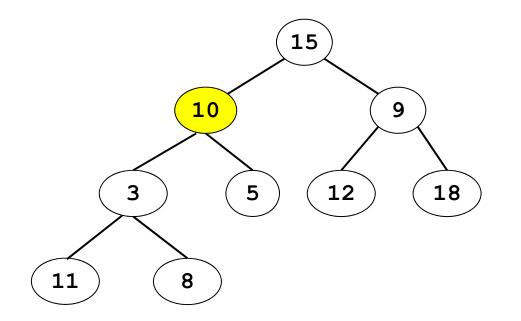


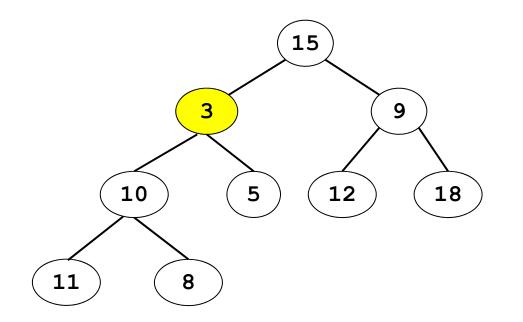
• Sift down 8 (swap with smallest child)

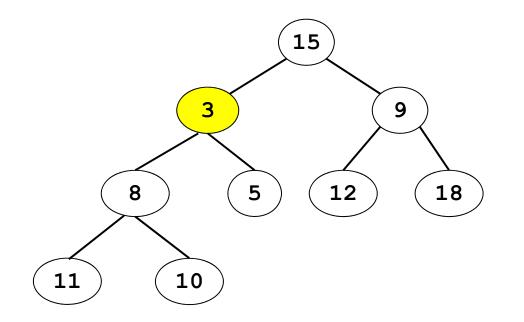


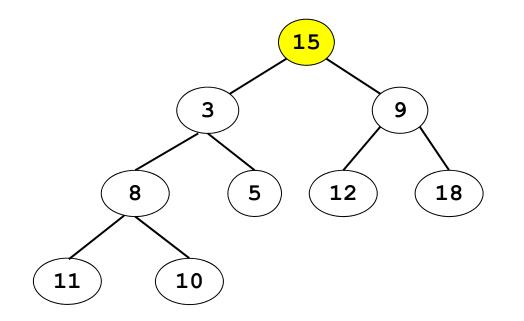
- Done with second-to-last level
- Next, work on third-to-last level, from right to left

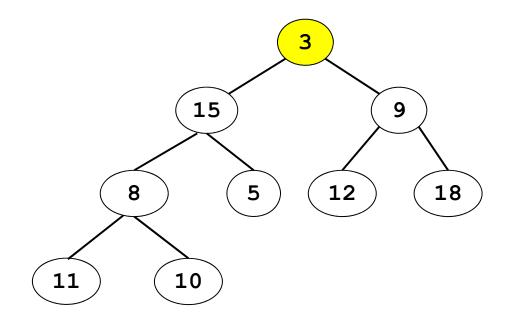


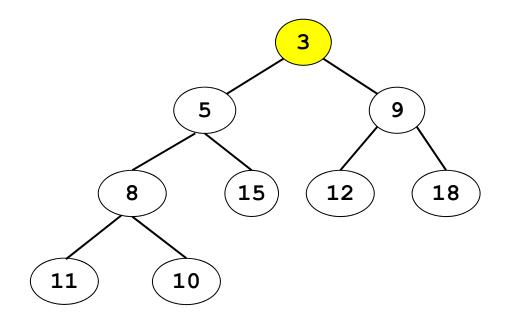












Analysis

- Correctness
 - After finishing one level, all subtrees starting in this level are heaps because sifting-down ensures FC and HC (see deleteMin())
 - Thus, when we are done with the first level (root), we have a heap
- Analysis
 - We look at the cost per level h $(1 \dots \log(n)=d)$
 - For every node at level h, we need at most d-h operations
 - At level $h \neq d$, there are 2^{h-1} nodes
 - For nodes at level d, we don't do anything
 - Over all levels, this yields

$$T(n) = \sum_{h=1}^{d-1} 2^{h-1} * (d-h) = \sum_{h=1}^{d-1} h * 2^{d-h-1} = 2^{d-1} \sum_{h=1}^{d-1} \frac{h}{2^h} \le n \sum_{h=1}^{\infty} \frac{h}{2^h} = n * 2 = O(n)$$

- Heaps also are a suitable data structure for sorting
- Heap-Sort (a classical sorting algorithm)
 - Given an unsorted list, first create a heap in O(n)
 - Repeat
 - Take the smallest element and store in array in O(1)
 - Re-build heap in O(log(n))
 - Call deleteMin(root)
 - Until heap is empty after n iterations
- Thus: O(n*log(n))
 - Average-case only slightly better
- Can be implemented in-place when heap is stored in array
 - See [OW93] for details