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Special Scenarios for Searching

• Up to now, we assumed that all elements of a list are 
equally important and that any of them could be searched 
next (with varying probability)

• What if some elements are more important than others?
– There is a (maybe partial) order on list elements
– Most important elements are always (not mostly) retrieved next
– Priority Queues

• Difference to Self-Organizing Lists
– Most important element is always retrieved next – should be O(1)
– List should be kept ordered by importance
– We look at a scenario where new elements are inserted all the time 

and the most important element is removed regularly
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Shortest Paths in a Graph

• Task: Find the distance between X and all other nodes
– Classical problem: Single-Source-Shortest-Paths 
– Famous solution: Dijkstra’s algorithm
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Assumptions

• We assume that there is at least one path between X and any other 
node (every node is reachable from X)

• We assume strictly positive edge weights
• Distance is the length (=sum of weights) of the shortest path
• There might be many shortest paths, but distance is unique
• We only want the distances and need no “witness paths”
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Exhaustive Solution

• First approach: Enumerate all paths
– Need to break cycles (e.g. X – K3 – K4 – X – K3 - …)
– Using DFS: X – K3 – K4 – X [BT-K4] – K5 – K6 [BT-K5] [BT-K4] 

[BT-K3] – K7 – K8 [BT-K7] – K6 [BT-K7] [BT-K3] – K2 – K6 [BT-K2] 
– K1 [BT-K2] [BT-K3] [BT-X] K6 - … 
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Redundant work

• First approach: Enumerate all paths
– Need to break cycles (e.g. X – K3 – K4 – X – K3 - …)
– Using DFS: X – K3 – K4 – X [BT-K4] – K5 – K6 [BT-K5] [BT-K4] 

[BT-K3] – K7 – K8 [BT-K7] – K6 [BT-K7] [BT-K3] – K2 – K6 [BT-K2] 
– K1 [BT-K2] [BT-K3] [BT-X] K6 - … 
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Dijkstra’s Idea

• Enumerate paths from X by their length
– Neither DFS nor BFS

• Assume we reach a node Y by a path p of length l and we 
have already explored all paths from X with length l’ ≤ l 
and that Y was not reached yet

• Then p must be a shortest path between X and Y
– Because any p’ between X and Y would have a prefix of length at 

least l and (a) a continuation with length>0 or (b) would not need 
a continuation (then p is as short as p’)
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Example for Idea 

• 1: X – K3
• 2: X – K3 – K2
• 2: X – K1
• 4: X – K3 – K2 – K6
• 4: X – K3 – K4
• 4: X – K3 – K7
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• 5: X – K3 – K4 – K5
• 7: X – K3 – K7 – K8
• Stop (all nodes found)
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A Further Trick

• Enumerate paths by iteratively extending short paths by all 
possible extensions
– All edges outgoing from the end node of a short path

• These extensions 
– … either lead to a node which we didn’t reach before – then we 

found a path, but cannot yet be sure it is the shortest
– … or lead to a node which we already reached but we are not yet 

sure of we found the shortest path to it – update current best 
distance

– … or lead to a node which we already reached and for which we 
also surely found a shortest path already – these can be ignored

• Eventually, we enumerate nodes by their distance
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Algorithm

• Assumptions
– Nodes have IDs between 1 … |V|
– Edges are (from, to, weight)

• We enumerate nodes by length 
of their shortest paths
– In the first loop, we pick x and update 

distances (A) to all adjacent nodes
– When we pick a node k, we already 

have computed its distance to x in A
– We adapt the current best distances 

to all neighbors of k we haven’t 
picked yet

• Once we picked all nodes, we 
are done

1. G = (V, E);
2. x : start_node;    # x∈V
3. A : array_of_distances;
4. ∀i: A[i]:= ∞;
5. L := V;
6. A[x] := 0;
7. while L≠∅
8. k := L.get_closest_node();
9. L := L \ k;
10. forall (k,f,w)∈E do
11. if f∈L then 
12. new_dist := A[k]+w;
13. if new_dist < A[f] then
14. A[f] := new_dist;
15. end if;
16. end if;
17. end for;
18.end while;
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Example for Algorithm
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Example for Algorithm
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• Pick x
• Adapt distances to all neighbors
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Example for Algorithm
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• Pick K3 (closest to x)
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Example for Algorithm
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• Adapt distances (from x) to all neighbors 

(of K3)



Marius Kloft: Alg&DS, Summer Semester 2016 15

Example for Algorithm
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Example for Algorithm
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• Pick K1
• Adapt distances to all neighbors

– There are none
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Example for Algorithm
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Example for Algorithm
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• Pick K2
• Adapt distances to all neighbors

– K1 was picked already – ignore
– We found a shorter path to K6
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Example for Algorithm
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• Pick K6 (or K4 or K7)
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Example for Algorithm
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• Adapt distances to all neighbors

– There are none
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Example for Algorithm
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Example for Algorithm
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• Pick K7
• Adapt distances to all neighbors

– K6 was visited already
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Example for Algorithm
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Example for Algorithm
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• Pick K4
• Adapt distances to all neighbors

– X was visited already
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Example for Algorithm
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• Pick K5 … Pick K8 
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A Closer Look

• Algorithm seems to work
– Proof and analysis will follow later

• Central: get_closest_node()
– Needs to find the node k in L for 

which A[k] is the smallest
– A[k] is changed a lot during a run

• Searching A? Resorting A?
• Better: Priority queue

– List of tuples (o, v) (object,value)
– Central operation: Return tuple 

where v is smallest

1. G = (V, E);
2. x : start_node;    # x∈V
3. A : array_of_distances;
4. ∀i: A[i]:= ∞;
5. L := V;
6. A[x] := 0;
7. while L≠∅
8. k := L.get_closest_node();
9. L := L \ k;
10. forall (k,f,w)∈E do
11. if f∈L then 
12. new_dist := A[k]+w;
13. if new_dist < A[f] then
14. A[f] := new_dist;
15. end if;
16. end if;
17. end for;
18.end while;
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Content of this Lecture

• Priority Queues
• Using Heaps
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Priority Queues

• A priority queue (PQ) is an ADT with 3 essential operations
– add(o,v): Add element o with value (priority) v
– getMin(): Retrieve element with highest priority
– removeMin(): Remove element with highest priority

• Typical additional operations
– merge(p1, p2): Merge two PQs into one (properly sorted)
– create (L): Convert a list in a priority queue 
– delete(o): Delete o from PQ
– changeValue(o,v): Change value of o to v
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Other Applications

• Games (e.g. chess)
– The machine explores next movements but cannot look at all of 

them; give each move an assumed benefit and explore moves with 
probably highest benefit first (see also A* algorithm)

• Multi-modal route planning
– Find fastest route through a map (network) with multiple ways of 

transportation (feet, bus, train, …) between edges where edge 
weights change dynamically (delay, congestion, …)

• And departure times may depend on arrival: Timetable-based routing 

• Quality of Service in a network
– When bandwidth is limited, sort all transmission requests in a PQ 

and transmit by highest priority
• …
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Naive Implementations (with |Q|=n)

• Using a linked list
– add requires O(1) (at the end or start or anywhere)
– getMin requires O(n) [bad]
– deleteMin requires O(1) (if we keep the pointer after a getMin)
– merge requires O(1)

• Using a linked list sorted by priority
– add requires O(n) [bad]
– getMin requires O(1)
– deleteMin requires O(1)
– merge requires O(n+m)



Marius Kloft: Alg&DS, Summer Semester 2016 31

Maybe Arrays?

• Using a sorted array
– add requires O(n) [bad - we find the position in log(n), but then 

have to free a cell by moving all elements after this cell]
– getMin requires O(1)
– deleteMin requires O(n) [bad]

• PQs are typically used in applications where elements are 
inserted and removed all the time

• We need a DS that can change its size dynamically at very 
low cost while keeping a certain order (min element)

• We want constant or at most log-time for all operations
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Content of this Lecture

• Priority Queues
• Using Heaps

– Heaps
– Operations on Heaps
– Heap Sort
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Heap-based PQ

• Unsorted lists require O(n) for getMin()
– We don‘t know where the smallest element is

• Sorted lists require O(n) for add()
– We don‘t know where to put the new element

• Can we find a way to keep the list “a little sorted”?
– Actually, we only need the smallest element at a fixed position
– All other elements can be at arbitrary places
– add() / deleteMin() could be faster than O(n), if they don’t 

need to keep the entire list sorted
• One such structure is called a heap
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Heaps

• Definition
A heap is a labeled binary tree for which the following 
holds
– Form-constraint (FC): The tree is complete except the last level

• I.e.: Every node  at level  l<d-1 has exactly two children
• The last level is filled from left to right

– Heap-constraint (HC): The label of any node is smaller than that of 
its children
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Properties

• Order
– A heap is “a little” sorted: We know the smallest element (root)
– We know the order for some pairs of elements (parent-child), but 

for many pairs we don’t know which is bigger (e.g. nodes in the 
same level)

• Size
– A complete binary tree with m levels has

2m-1 nodes
– A heap with m levels thus has 

between 2m-1+1 and 2m-1 nodes
– A heap with n nodes 

has ceil(log(n+1)) levels 
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Operations

• Assume we store our PQ as a heap
• Clearly, getMin() is possible in O(1)

– Keep a pointer to the root
• But …

– How can we perform deleteMin() – such that the new structure 
again is a heap?

– How can we add an element to a heap – such that the new 
structure again is a heap?

– How can we turn a list into a heap?
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DeleteMin()

• We first remove the root
– Creates two heaps 
– We must connect them again

• We take the „last“ node, 
place it in root, and “sift” it 
down the tree
– Last node: right-most in the 

last level
– Sifting down: Exchange with 

smaller of both children as 
long as at least one child is 
smaller than the node itself
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Analysis - Correctness

• We need to show that FC and HC still hold
• HC: Look at the tree after we moved a node k. k may

– … be smaller than its children. Then HC holds and we are done
– … be larger than at least one child k2. Assume that k2 is the 

smaller of the two children (k1, k2) of k. We next swap k and k2. 
The new parent (k2) now is smaller than its children (k1, k), so the 
HC holds

– After the last swap, k has no children – HC holds
• FC: We remove one node, then we sift down 

– Removing last node doesn’t affect FC as we remove in the last level
– Sifting does not change the topology of the tree (we only swap)
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Analysis - Complexity

• Recall that a heap with n nodes has ceil(log(n+1)) levels
• During sifting, we perform at most one comparison and 

one swap in every level
• Thus: O(ceil(log(n+1))) = O(log(n))
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Add() on a Heap

• Cannot simply add on top 
• Idea: We add new element 

somewhere in last level 
and sift up
– We might need a new level
– Sifting up: Compare to 

parent and swap if parent is 
larger
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Analysis

• Correctness
– HC

• If parent has only one child, HC holds after each swap
• Assume a parent k has children k1 and k2, k2 was swapped there in 

the last move, and k2<k. Since HC held before, k<k1, thus k2<k<k1. 
We swap k2 and k, and thus the new parent is smaller than its 
children. On the other hand, if k2≥k, HC holds immediately (and we 
don’t swap).

– FC: See deleteMin()
• Complexity: O(log(n))

– See deleteMin()
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How to Find the Next Free / Last Occupied Node

• What do we need to find?
– For deleteMin, we use the right-most leaf on the last level 
– For add, we add the leaf right to the last leaf

• We actually need the parent k
– From n, we can compute in O(1) the position p of the last leaf in 

the last level: p = n – 2^(floor(log(n)))
• Or log(n+1) for add

– The parent k of the node at p has index floor(p/2)’th in level d-1
– The parent k’ of k has index floor(p/4)’th in level d-2
– …
– Now, in each node, we can decide whether to go left or right
– Fast trick: Use the binary representation of p
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Illustration

• For deleteMin, we need x (or 
x’); for add, we need y (or y’)
– p(x)=0, p(y)=1, p(x’)=4, p(y’)=5
– Binary: 000, 001, 100, 101

• Go through bitstring from left-
to-right

• Next bit=0: Go left
• Next bit=1: Go right

• Allows finding k in O(log(n))

p’

p

x y

0 1

00 01 10 11

000 001

010 011

100 101

110 111

x’ y’
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Summary

Linked list Sorted linked list Heap
getMin() O(n) O(1) O(1)
deleteMin() O(1) O(1) O(log(n))
add() O(1) O(n) O(log(n))
merge() O(1) O(n1+n2) O(log(n1)*log(n2))
Space n add. pointer n add. pointer n add. pointer

Heaps can also be kept efficiently in 
an array – no extra space, but limit 

to heap size
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Creating a Heap

• We start with an unsorted list with n elements
• Naïve algorithm: Start with empty heap and perform n 

additions
– Obviously requires O(n*log(n)) 

• Better: Bottom-Up-Sift-Down
– Build a tree from the n elements fulfilling the FC (but not HC)

• Simple fill a tree level-by-level – this is in O(n)
– Sift-down all nodes on the second-last level
– Sift-down all nodes on the third-last level
– …
– Sift down root
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Illustration

• Start with right most inner node at second-to-last level: 8
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Illustration

• Sift down 8 (swap with smallest child)
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Illustration

• Done with second-to-last level
• Next, work on third-to-last level, from right to left
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Illustration

• Sift down 18
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Illustration

• Sift down 10
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Illustration

• Sift down 10
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Illustration

• Sift down 10
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Illustration

• Sift down 15
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Illustration

• Sift down 15
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Illustration

• Done

3

5 9

8 15 12 18

11 10
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Analysis

• Correctness
– After finishing one level, all subtrees starting in this level are heaps 

because sifting-down ensures FC and HC (see deleteMin())
– Thus, when we are done with the first level (root), we have a heap

• Analysis
– We look at the cost per level h (1 … log(n)=d)
– For every node at level h, we need at most d-h operations
– At level h≠d, there are 2h-1 nodes

• For nodes at level d, we don’t do anything
– Over all levels, this yields
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Heap Sort

• Heaps also are a suitable data structure for sorting
• Heap-Sort (a classical sorting algorithm)

– Given an unsorted list, first create a heap in O(n)
– Repeat

• Take the smallest element and store in array in O(1)
• Re-build heap in O(log(n))

– Call deleteMin( root)

– Until heap is empty – after n iterations
• Thus: O(n*log(n))

– Average-case only slightly better
• Can be implemented in-place when heap is stored in array

– See [OW93] for details


