
Algorithms and Data Structures

Marius Kloft

(Overflow) Hashing

Marius Kloft: Alg&DS, Summer Semester 2016 2

This Module

• Introduction 2
• Abstract Data Types 1
• Complexity analysis 1
• Styles of algorithms 1
• Lists, stacks, queues 2
• Sorting (lists) 3
• Searching (in lists, PQs, SOL) 5
• Hashing (to manage lists) 2
• Trees (to manage lists) 4
• Graphs (no lists!) 5
• Sum 15/26

Marius Kloft: Alg&DS, Summer Semester 2016 3

How fast can we Search Elements?

Searching by
Key

Inserting Pre-processing

Unsorted array O(n) O(1) 0

Sorted array O(log(n)) O(n) O(n*log(n))

Sorted linked list O(n) O(n) O(n*log(n))

Priority Queue
O(1) for min,
O(log(n)) all

others
O(log(n)) O(n)

Marius Kloft: Alg&DS, Summer Semester 2016 4

Beyond log(n) in Searching

• Assume you have a company and ~2000 employees
• You often search employees by name to get their ID
• No employee is more important than any other

– No differences in access frequencies, self-organizing lists don’t help
• Best we can do until now

– Sort list in array
– Binsearch will require log(n)~13 comparisons per search

• Can’t we do better?

Marius Kloft: Alg&DS, Summer Semester 2016 5

Recall Bucket Sort

• Bucket Sort
– Assume |A|=n, m being the length of the longest value in A, values

from A over an alphabet ∑ with |∑|=k
– We first sort A on first position into k buckets
– Then sort every bucket again for second position
– Etc.
– After at most m iterations, we are done
– Time complexity: O(m*|A|)

• Fundamental idea: For finite alphabets, the characters give
us a partitioning of all possible values in linear time such
that the partitions are sorted in the right order

Marius Kloft: Alg&DS, Summer Semester 2016 6

Bucket Sort Idea for Searching

• Fix an m (e.g. m=3)
• There are “only” 263~18.000 different prefixes of length 3

that a (German) name can start with (ignoring case)
• Thus, we can “sort” a name s with prefix s[1..m] in

constant time into an array A with |A|=km

– Index in A: A[(s[1]-1)*k0 + (s[2]-1)*k1 + … +(s[m]-1)*km-1]
• We can use the same formula to look-up names in O(1)
• Cool. Search complexity is O(1)

Marius Kloft: Alg&DS, Summer Semester 2016 7

Key Idea of Hashing

• Given a list S of |S|=n values and an array A, |A|=a
• Define a hash function h: S [0,a-1]
• Store each value s∈S in A[h(s)]
• To test whether a value q is in S, check if A[h(q)]≠null
• Inserting and lookup is O(1)
• But wait …

Marius Kloft: Alg&DS, Summer Semester 2016 8

Collisions

• Assume h maps to the m first characters
• <Müller, Peter>, <Müller, Hans>, <Müllheim, Ursula>, …

– All start with the same 4-prefix
– All are mapped to the same position of A if m<5
– These cases are called collisions

• To minimize collisions, we can increase m
– Requires exponentially more space (a=|Σ|m)
– But we have only 2000 employees – what a waste
– Can’t we find better ways to map a name into an array?
– What are good hash functions?

Marius Kloft: Alg&DS, Summer Semester 2016 9

Example: Dictionary Problem

• Dictionary problem: Manage a list S of |S| keys
– We use an array A with |A|=a (usually a>>n)
– We want to support three operations

• Store a key k in A
• Look-up a key in A
• Delete a key from A

• Applications
– Compilers: Symbol tables over variables, function names, …
– Databases: Lists of objects such as names, ages, incomes, …
– Search engines: Lists of words appearing in documents
– …

Marius Kloft: Alg&DS, Summer Semester 2016 10

Content of this Lecture

• Hashing
• Collisions
• External Collision Handling
• Hash Functions
• Application: Bloom Filter

Marius Kloft: Alg&DS, Summer Semester 2016 11

Hash Function

• Definition
Let S, |S|=n, be a set of keys from a universe U and A a
set of target values with a=|A|
– A hash function h is a total function h: UA
– Every pair k1, k2∈S with k1≠k2 and h(k1)=h(k2) is called a collision
– h is perfect if it never produces collisions
– h is uniform, if i∈A: p(h(k)=i)=1/a
– h is order-preserving, iff: k1<k2 => h(k1)<h(k2)

• We always use A={0,…,a-1}
– Because we want to use h(k) as address for storing k in an array

Marius Kloft: Alg&DS, Summer Semester 2016 12

Illustration

U: All possible
values of k

All a addresses
of hash table A

Marius Kloft: Alg&DS, Summer Semester 2016 13

Illustration

Actual values
of k in S

Hash table A
with

collisions

Marius Kloft: Alg&DS, Summer Semester 2016 14

Illustration

Local cluster
resolved

Hash table A

Marius Kloft: Alg&DS, Summer Semester 2016 15

Topics

• We want hash functions with as few collisions as possible
– Knowing U and making assumptions about S

• Hash functions should be computed quickly
– Bad idea: Sort S and then use rank as address

• Collisions must be handled
– Even if a collision occurs, we still need to give correct answers

• Don’t waste space: |A| should be as small as possible
– It must hold that a≥n if collisions must be avoided

• Note: Order-preserving hash functions are rare
– Hashing is bad for range queries

Marius Kloft: Alg&DS, Summer Semester 2016 16

Example

• We usually have a>>|S| yet a<<|U|
• If k is a number (or can be turned into a number): A

simple and surprisingly good hash function:
h(k) := k mod a for a=|A| being a prime number

Marius Kloft: Alg&DS, Summer Semester 2016 17

Content of this Lecture

• Hashing
• Collisions
• External Collision Handling
• Hash Functions
• Application: Bloom Filter

Marius Kloft: Alg&DS, Summer Semester 2016 18

Are Collisions a Problem?

• Assume we have a (uniform) hash function that maps an
arbitrarily chosen key k to all positions in A with equal
probability

• Given |S|=n and |A|=a – how big are the chances to
produce collisions?

Marius Kloft: Alg&DS, Summer Semester 2016 19

Two Cakes a Day?

• Each Übungsgruppe at the moment has ~32 persons
• Every time one has birthday, he/she brings a cake
• What is the chance of having to eat two piece of cake on

one day?
• Birthday paradox

– Obviously, there are 365 chances to eat two pieces
– Each day has the same chance to be a birthday for every person

• We ignore seasonal bias, twins, etc.
– Guess – 5% 20% 30% 50% ?

Marius Kloft: Alg&DS, Summer Semester 2016 20

Analysis

• Abstract formulation: Urn with 365 balls
– We draw 32 times and place the ball back after every drawing
– What is the probability p(32, 365) to draw any ball at least twice?

• Complement of the chance to draw no ball more than once
– p(32, 365) = 1 – q(32,365)

• q(X,Y): We only draw different balls
• We draw a first ball. Then

– Chance that the second is different from all previous balls: 364/365
– Chance that the 3rd is different from 1st and 2nd (which must be different)

is 363/365
– …

n

n

i ana
a

a
iaanqanp

)!*(
!111),(1),(

1

Marius Kloft: Alg&DS, Summer Semester 2016 21

Results

5 2,71
10 11,69
15 25,29
20 41,14
25 56,87
30 70,63
32 75,33
40 89,12
50 97,04

Source: Wikipedia

• p(n) here means p(n,365)
• q(n): Chance that someone has

birthday on the same day as you

Marius Kloft: Alg&DS, Summer Semester 2016 22

Take-home Messages

• Collision handling is a real issue
• Just by chance, there are many more collisions than one

intuitively expects
• Additional time/space it takes to manages collisions must

be taken into account

Marius Kloft: Alg&DS, Summer Semester 2016 23

Content of this Lecture

• Hashing
• Collisions
• External Collision Handling
• Hash Functions
• Application: Bloom Filter

Marius Kloft: Alg&DS, Summer Semester 2016 24

Hashing: Three Fundamental Methods

• Overflow hashing: Collisions are stored outside A
– We need additional storage
– Solves the problem of A having a fixed size (despite S might be

growing) without changing A
• Open hashing: Collisions are managed inside A

– No additional storage
– |A| is upper bound to the amount of data that can be stored
– Next lecture

• Dynamic hashing: A may grow/shrink
– Not covered here – see Databases II

Marius Kloft: Alg&DS, Summer Semester 2016 25

Collision Handling

• In Overflow Hashing, we store values not fitting into A in
separate data structures (lists)

• Two possibilities
– Separate chaining: A[i] stores tuple (key, p), where p is a pointer

to a list storing all keys except the first one mapped to i
• Good if collisions are rare; if keys are small

– Direct chaining: A[i] is a pointer to list storing all keys mapped to i
• Less “if … then … else”; more efficient if collisions are frequent; if keys

are large

Marius Kloft: Alg&DS, Summer Semester 2016 26

Example, Direct Chaining (h(k)= k mod 7)

5
15
3
7
8

515 37

• Assume a linked list, insertions at list head

Marius Kloft: Alg&DS, Summer Semester 2016 27

Example (h(k)= k mod 7)

5
15
3
7
8
4
12

58 37

15

4

• Assume a linked list, insertions at list head

Marius Kloft: Alg&DS, Summer Semester 2016 28

Example (h(k)= k mod 7)

5
15
3
7
8
4
12
19
10

198 107

15

4

12

5

3

• Assume a linked list, insertions at list head
• WC-Space: O(a+n)
• Time (worst-case)

• Insert: O(1)
• Search: O(n) – worst case, all keys map to the same cell
• Delete: O(n) – we first need to search

Marius Kloft: Alg&DS, Summer Semester 2016 29

Average Case Complexities

• Assume h uniform
• After having inserted n values, every overflow list has

~n/a elements
– is also called the fill degree of the hash table

• How long does the n+1st operation take on average?
– Insert: O(1)
– Search: If k∈L: /2 comparisons; else comparisons
– Delete: Same as search

Marius Kloft: Alg&DS, Summer Semester 2016 30

Improvement

• We may keep every overflow list sorted
– If stored in a (dynamic) array, binsearch requires log()
– If stored in a linked list, searching k (k∈L or k∉L) requires /2
– Disadvantage: Insert requires /2 to keep list sorted
– If we first have many inserts (build-phase of a dictionary), then

mostly searches, it is better to first build unsorted overflows and
only once sort overflow lists when changing phase

• We may use a second (smaller) hash table with a different
hash function
– Especially if some overflow lists grow very large
– See Double Hashing (next lecture)

Marius Kloft: Alg&DS, Summer Semester 2016 31

But …

• Searching with ~/2 comparisons on average doesn’t
seem very attractive

• But: One typically uses hashing in cases where is small
– Usually, <1 – search on average takes only constant time
– 1≤≤10 – search takes only ~5 comparisons

• For instance, let |S|=n=10.000.000 and a=1.000.000
– Hash table (uniform): ~5 comparisons
– Binsearch: log(1E7)~23 comparisons

• But: In many situations values in S are highly skewed;
average case estimation may go grossly wrong
– Experiments help

Marius Kloft: Alg&DS, Summer Semester 2016 32

Content of this Lecture

• Hashing
• Collisions
• External Collision Handling
• Hash Functions
• Application: Bloom Filter

Marius Kloft: Alg&DS, Summer Semester 2016 33

Hash Functions

• Requirements
– Should be computed quickly
– Should spread keys equally over A

even if local clusters exist
– Should use all positions in A with equal

probability (uniformity)
• Simple and good: h(k) := k mod a

– “Division-rest method”
– If a is prime: Few collisions for many

real world data (empirical observation)

Marius Kloft: Alg&DS, Summer Semester 2016 34

Why Prime?

• We want hash functions that use the entire key
• Empirical observation from many examples

– Assume division-rest method
– Often keys have an internal structure

• key= leftstr(firstName,3)+leftstr(lastName, 3)+year(birthday)+gender
– Think of representation of k as bitstring
– If a is even, then h(k) is even iff k is even

• Males get 50%, females get 50% of A – no adaptation
– If a=2i, h(k) only uses last i bits of any key

• Which usually are not equally distributed
– …
– a being prime is often a good idea

Marius Kloft: Alg&DS, Summer Semester 2016 35

Other Hash Functions

• “Multiplikative Methode”: h(k) = floor(a*(k*x–floor(k*x)))
– Multiply k with x, remove the integer part,

multiply with a and cut to the next smaller
integer value

– x: any real number; best distribution on
average for x=(1+√5)/2 - Goldener Schnitt

• “Quersumme”: h(k) = (k mod 10) + …
• For strings: h(k) = (f(k) mod a) with f(k)= “add byte

values of all characters in k”
• No limits to fantasy

– Look at your data and its distribution of values
– Make sure local clusters are resolved

Marius Kloft: Alg&DS, Summer Semester 2016 36

Java hashCode()

• Object.hashCode()
The default hashCode() method uses the 32-bit internal JVM address of the Object as its
hashCode. However, if the Object is moved in memory during garbage collection, the
hashCode stays constant. This default hashCode is not very useful, since to look up an
Object in a HashMap, you need the exact same key Object by which the key/value pair
was originally filed. Normally, when you go to look up, you don’t have the original key
Object itself, just some data for a key. So, unless your key is a String, nearly always you
will need to implement a hashCode and equals() method on your key class.

1. /** * Returns a hash code for this string. The hash code for a
2. * <code>String</code> object is computed as
3. * <blockquote><pre>
4. * s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]
5. * </pre></blockquote>
6. * using <code>int</code> arithmetic, where <code>s[i]</code> is the
7. * <i>i</i>th character of the string, <code>n</code> is the length of
8. * the string, and <code>^</code> indicates exponentiation.
9. * (The hash value of the empty string is zero.) *

Marius Kloft: Alg&DS, Summer Semester 2016 37

Hashing

• Two key ideas to achieve scalability for relatively simple
problems on very large datasets: Sorting / Hashing

Foodnetwork.com

Marius Kloft: Alg&DS, Summer Semester 2016 38

Pros / Cons

Sorting

• Typically O(log(n)) for
searching in WC and AC

• Requires sorting first
(which can be reused)

• App/domain independent
method

• No additional space
• Efficient for extensible DSs
• Sometimes preferable

Hashing

• Typically O(1) AC, but
worst case O(n)

• No preparatory work

• App/domain specific hash
functions and strategies

• Usually add. space required
• Extensibility is difficult
• Sometimes preferable

Marius Kloft: Alg&DS, Summer Semester 2016 39

Content of this Lecture

• Hashing
• Collisions
• External Collision Handling
• Hash Functions
• Application: Bloom Filter

Marius Kloft: Alg&DS, Summer Semester 2016 40

Searching an Element

• Assume we want to know if k is an element of a list S of
32bit integers – but S is very large
– We shall from now on count in “keys” = 32bit

• S must be stored on disk
– Assume testing k in memory costs very little, but loading a block

(size b=1000 keys) from disk costs enormously more
– Thus, we only count IO – how many blocks do we need to load?

• Assume |S|=1E9 (1E6 blocks) and we have enough
memory for 1E6 keys
– Thus, enough for 1000 of the 1 Million blocks

Marius Kloft: Alg&DS, Summer Semester 2016 41

Options

• If S is not sorted
– If k∈S, we need to load 50% of S on average: ~ 0.5E6 IO
– If k∉S, we need to load S entirely: ~ 1E6 IO

• If S is sorted
– It doesn’t matter whether k∈S or not
– We need to load log(|S|/b)=log(1E6)~20 blocks

• Notice that we are not using our memory …

Marius Kloft: Alg&DS, Summer Semester 2016 42

Idea of a Bloom Filter

• Build a hash map A as big as the memory
• Use A to indicate whether a key is in S or not
• The test may fail, but only in one direction

– If k∈A, we don’t know for sure if k∈S
– If k∉A, we know for sure that k∉S

• A acts as a filter: A Bloom filter
– Bloom, B. H. (1970). "Space/Time Trade-offs in Hash Coding with

Allowable Errors." Communications of the ACM 13(7): 422-426.

Marius Kloft: Alg&DS, Summer Semester 2016 43

Bloom Filter: Simple

• Create a bitarray A with |A|=a=1E6*32
– We fully exploit our memory
– A is always kept in memory

• Choose a uniform hash function h
• Initialize A (offline): ∀k∈S: A[h(k)]=1
• Searching k given A (online)

– Test A[h(k)] in memory
– If A[h(k)]=0, we know that k∉S (with 0 IO)
– If A[h(k)]=1, we need to search k in S

Marius Kloft: Alg&DS, Summer Semester 2016 44

Bloom Filter: Advanced

• Create a bitarray A with |A|=a=1E6*32
– We fully exploit our memory
– A is always kept in memory

• Choose j independent uniform hash functions hj
– Independent: The values of one hash function are statistically

independent of the values of all other hash functions
• Initialize A (offline): ∀k∈S, ∀j: A[hj(k)]=1
• Searching k given A (online)

– ∀j: Test A[hj(k)] in memory
– If any of the A[hj(k)]=0, we know that k∉S
– If all A[hj(k)]=1, we need to search k in S

Marius Kloft: Alg&DS, Summer Semester 2016 45

Analysis

• Assume k∉S
– Let denote Cn the cost of such a (negative) search
– We only access disk if all A[hj(k)]=1 by chance – how often?
– In all other cases, we perform no IO and assume 0 cost

• Assume k∈S
– We will certainly access disk, as all A[hj(k)]=1 but we don’t know if

this is by chance of not
– Thus, Cp = 20

• Using binsearch, assuming S is kept sorted on disk

Marius Kloft: Alg&DS, Summer Semester 2016 46

Chances for a False Positive

• For one k∈S and one hash function, the chance for a given
position in A to be 0 is 1-1/a

• For j hash functions, chance that all remain 0 is (1-1/a)j

• For j hash functions and n values, the chance to remain 0
is q=(1-1/a)j*n

• Prob. of a given bit being 1 after inserting n values is 1-q
• Now let’s look at a search for key k, which tests j bits
• Chance that all of these are 1 by chance is (1-q)j

– By chance means: Case when k is not in S
• Thus, Cn=(1-q)j*Cp + (1-(1-q)j)*0

– In our case, for j=5: 0.001; j=10: 0.000027

Marius Kloft: Alg&DS, Summer Semester 2016 47

Average Case

• Assume we look for all possible values (|U|=u=232) with
the same probability

• (u-n)/u of the searches are negative, n/u are positive
• Average cost per search is

cavg := ((u-n)*Cn + n*Cp) / u
• For j=5: 0,14
• For j=10: 0,13

– Larger j decreases average cost, but increase effort for each single
test

– What is the optimal value for j?
• Much better than sorted lists

Marius Kloft: Alg&DS, Summer Semester 2016 48

Exemplary questions

• Assume |A|=a and |S|=n and a uniform hash function.
What is the fill degree of A? What is the AC search
complexity if collisions are handled by direct chaining?
What if collisions are handled by separate chaining?

• Assume the following hash functions h=… and S being
integers. Show A after inserting each element from
S={17,256,13,44,1,2,55,…}

• Describe the standard JAVA hash function. When is it
useful to provide your own hash functions for your own
classes?

