
Algorithms and Data Structures

Marius Kloft

Open Hashing

Marius Kloft: Alg&DS, Summer Semester 2016 2

RECAP: BLOOM FILTER

Marius Kloft: Alg&DS, Summer Semester 2016 3

Searching an Element

• Assume we want to know if k is an element of a list S of
32bit integers – but S is very large
– We shall from now on count in “keys” = 32bit

• S must be stored on disk
– Assume testing k in memory costs very little, but loading a block

(size b=1000 keys) from disk costs enormously more
– Thus, we only count IO – how many blocks do we need to load?

• Assume |S|=1E9 (1E6 blocks) and we have enough
memory for 1E6 keys
– Thus, enough for 1000 of the 1 Million blocks

Marius Kloft: Alg&DS, Summer Semester 2016 4

Options

• If S is not sorted
– If k∈S, we need to load 50% of S on average: ~ 0.5E6 IO
– If k∉S, we need to load S entirely: ~ 1E6 IO

• If S is sorted
– It doesn’t matter whether k∈S or not
– We need to load log(|S|/b)=log(1E6)~20 blocks

• Notice that we are not using our memory …

Marius Kloft: Alg&DS, Summer Semester 2016 5

Idea of a Bloom Filter

• Build a hash map A as big as the memory
• Use A to indicate whether a key is in S or not
• The test may fail, but only in one direction

– If k∈A, we don’t know for sure if k∈S
– If k∉A, we know for sure that k∉S

• A acts as a filter: A Bloom filter
– Bloom, B. H. (1970). "Space/Time Trade-offs in Hash Coding with

Allowable Errors." Communications of the ACM 13(7): 422-426.

Marius Kloft: Alg&DS, Summer Semester 2016 6

Bloom Filter: Simple

• Create a bitarray A with |A|=a=1E6*32
– We fully exploit our memory
– A is always kept in memory

• Choose a uniform hash function h
• Initialize A (offline): ∀k∈S: A[h(k)]=1
• Searching k given A (online)

– Test A[h(k)] in memory
– If A[h(k)]=0, we know that k∉S (with 0 IO)
– If A[h(k)]=1, we need to search k in S

Marius Kloft: Alg&DS, Summer Semester 2016 7

Bloom Filter: Advanced

• Create a bitarray A with |A|=a=1E6*32
– We fully exploit our memory
– A is always kept in memory

• Choose j independent uniform hash functions hj
– Independent: The values of one hash function are statistically

independent of the values of all other hash functions
• Initialize A (offline): ∀k∈S, ∀j: A[hj(k)]=1
• Searching k given A (online)

– ∀j: Test A[hj(k)] in memory
– If any of the A[hj(k)]=0, we know that k∉S
– If all A[hj(k)]=1, we need to search k in S

Marius Kloft: Alg&DS, Summer Semester 2016 8

Analysis

• Assume k∉S
– Let denote Cn the cost of such a (negative) search
– We only access disk if all A[hj(k)]=1 by chance – how often?
– In all other cases, we perform no IO and assume 0 cost

• Assume k∈S
– We will certainly access disk, as all A[hj(k)]=1 but we don’t know if

this is by chance of not
– Thus, Cp = 20

• Using binsearch, assuming S is kept sorted on disk

Marius Kloft: Alg&DS, Summer Semester 2016 9

Chances for a False Positive

• For one k∈S and one hash function, the chance for a given
position in A to be 0 is 1-1/a

• For j hash functions, chance that all remain 0 is (1-1/a)j

• For j hash functions and n values, the chance to remain 0
is q=(1-1/a)j*n

• Prob. of a given bit being 1 after inserting n values is 1-q
• Now let’s look at a search for key k, which tests j bits
• Chance that all of these are 1 by chance is (1-q)j

– By chance means: Case when k is not in S
• Thus, Cn=(1-q)j*Cp + (1-(1-q)j)*0

– In our case, for j=5: 0.001; j=10: 0.000027

Marius Kloft: Alg&DS, Summer Semester 2016 10

Average Case

• Assume we look for all possible values (|U|=u=232) with
the same probability

• (u-n)/u of the searches are negative, n/u are positive
• Average cost per search is

cavg := ((u-n)*Cn + n*Cp) / u
• For j=5: 0,14
• For j=10: 0,13

– Larger j decreases average cost, but increase effort for each single
test

– What is the optimal value for j?
• Much better than sorted lists

Marius Kloft: Alg&DS, Summer Semester 2016 11

OPEN HASHING

Marius Kloft: Alg&DS, Summer Semester 2016 12

Open Hashing

• Open Hashing: Store all values inside hash table A
• Inserting values

– No collision: Business as usual
– Collision: Chose another index and probe again (is it “open”?)
– As second index might be full as well, probing must be iterated

• Many suggestions on how to chose the next index to probe
• In general, we want a strategy (probe sequence) that

– … ultimately visits any index in A (and few twice before)
– … is deterministic – when searching, we must follow the same

order of indexes (probe sequence) as for inserts

Marius Kloft: Alg&DS, Summer Semester 2016 13

Reaching all Indexes of A

• Definition
Let A be a hash table, |A|=m, over universe U and h a
hash function for U into A. Let I={0, …, m-1}. A probe
sequence is a deterministic, surjective function s: UxII

• Remarks
– We use j to denote elements of the sequence: Where to jump after

j-1 probes
– s need not be injective – a probe sequences may cross itself

• But it is better if it doesn’t
– We typically use s(k, j) = (h(k) – s’(k, j)) mod m for a properly

chosen function s’
• Example: s’(k, j) = j ,hence s(k, j) = (h(k)–j) mod m

Marius Kloft: Alg&DS, Summer Semester 2016 14

Searching

• Let s’(k, 0) := 0
• We assume that s cycles

through all indexes of A
– In whatever order

• Probe sequences longer
than m-1 usually make no
sense, as they necessarily
look into indexes twice
– But beware of non-injective

functions

1. func int search(k int) {
2. j := 0;
3. first := h(k);
4. repeat
5. pos := (first-s’(k, j) mod m;
6. j := j+1;
7. until (A[pos]=k) or

(A[pos]=null) or
(j=m);

8. if (A[pos]=k) then
9. return pos;
10. else
11. return -1;
12. end if;
13.}

Marius Kloft: Alg&DS, Summer Semester 2016 15

Deletions

• Deletions are a problem
– Assume h(k)= k mod 11 and s(k, j) = (h(k) + 3*j) mod m)

1 6ins(1); ins(6)

ins(23)

ins(12)

del(23)

search(12)

0 1 2 3 4 5 6 7 8 9 10

1 23 6

1 23 6 12

1 6 12

1 ? 6 12

Marius Kloft: Alg&DS, Summer Semester 2016 16

Remedies

• Leave a mark (tombstone)
– During search, jump over tombstones
– During insert, tombstones may be replaced

• Re-organize list
– Keep pointer p to index where a key should be deleted
– Walk to end of probe sequence (first empty entry)
– Move last non-empty entry to index p
– Requires to run through the probe entire sequence for every

deletion (otherwise only n/2 on average)
– Not compatible with strategies that keep probe sequences sorted

• See later

Marius Kloft: Alg&DS, Summer Semester 2016 17

Open versus External collision handling

• Pro
– We do not need more space than reserved – more predictable
– A typically is filled more homogeneously – less wasted space

• Contra
– More complicated
– Generally, we get worse WC/AC complexities for insertion/deletion

• Additional work to run down probe sequences
• Especially deletions have overhead

– A gets full; we cannot go beyond =1

Marius Kloft: Alg&DS, Summer Semester 2016 18

Open Hashing: Overview

• We will look into three strategies
– Linear probing: s(k, j) := (h(k) – j) mod m
– Double hashing: s(k, j) := (h(k) – j*h’(k)) mod m
– Ordered hashing: Any s; values in probe sequence are kept sorted

• Others
– Quadratic hashing: s(k, j) := (h(k) – floor(j/2)2*(-1)j) mod m

• Less vulnerable to local clustering then linear hashing
– Uniform hashing: s is a random permutation of I dependent on k

• High administration overhead, guarantees shortest probe sequences
– Coalesced hashing: s arbitrary; entries are linked by add. pointers

• Like overflow hashing, but overflow chains are in A; needs additional
space for links

Marius Kloft: Alg&DS, Summer Semester 2016 19

Content of this Lecture

• Open Hashing
– Linear Probing
– Double Hashing
– Ordered Hashing

Marius Kloft: Alg&DS, Summer Semester 2016 20

Linear Probing

• Probe sequence function: s(k, j) := (h(k) – j) mod m
– Assume h(k)= k mod 11

1 13 7

23 1 13 7

ins(1); ins(7); ins(13)

ins(23)

ins(12)

ins(10)

ins(24)

23 1 13 7 12

23 1 13 7 10 12

23 1 13 7 24 10 12

0 1 2 3 4 5 6 7 8 9 10

Marius Kloft: Alg&DS, Summer Semester 2016 21

Analysis

• The longer a chain …
– the more different values of h(k) it covers
– the higher the chances to produce more collisions

• The faster it grows, the faster it merges with other chains
• Assume an empty position p left of a chain of length n and

an empty position q with an empty cell to the right
– Also assume h is uniform
– Chances to fill q with next insert: 1/m
– Chances to fill p with the next insert: (n+1)/m

• Linear probing tends to quickly produce long, completely
filled stretches of A with high collision probabilities

Marius Kloft: Alg&DS, Summer Semester 2016 22

In Numbers (Derivation of Formulas Skipped)

Source: S. Albers
/ [OW93]

• Scenario: Some inserts, then many searches
– Expected number of probes per search are most important

Marius Kloft: Alg&DS, Summer Semester 2016 23

Quadratic Hashing

Source: S. Albers
/ [OW93]

Marius Kloft: Alg&DS, Summer Semester 2016 24

Discussion

• Disadvantage of linear (and quadratic) hashing:
Problems with the original hash function h are preserved
– Probe sequence only depends on h(k), not on k

• s’(k, j) ignores k
– All synonyms k, k’ will create the same probe sequence

• Two keys that form a collision are called synonyms
– Thus, if h tends to generate clusters (or inserted keys are non-

uniformly distributed in U), also s tends to generate clusters (i.e.,
sequences filled from multiple keys)

Marius Kloft: Alg&DS, Summer Semester 2016 25

Content of this Lecture

• Open Hashing
– Linear Probing
– Double Hashing
– Ordered Hashing

Marius Kloft: Alg&DS, Summer Semester 2016 26

Double Hashing

• Double Hashing: Use a second hash function h’
– s(k, j) := (h(k) – j*h’(k)) mod m (with h’(k)≠0)
– Further, we don’t want that h’(k)|m (done if m is prime)

• h’ should spread h-synonyms
– If h(k)=h(k’), then hopefully h’(k)≠h’(k’)

• Otherwise, we preserve problems with h
– Optimal case: h’ statistically independent of h, i.e.,

p(h(k)=h(k’)h’(k)=h’(k’)) = p(h(k)=h(k’))*p(h’(k)=h’(k’))

• If both are uniform: p(h(k)=h(k’)) = p(h’(k)=h’(k’)) = 1/m

• Example: If h(k)= k mod m, then h’(k)=1+k mod (m-2)

Marius Kloft: Alg&DS, Summer Semester 2016 27

Example (Linear Probing produced 9 collisions)

h(k) = k mod 11; h‘(k)= 1+k mod 9; s(k,j) := (h(k)– j*h’(k)) mod 11

ins(23)
h(k)=1; h‘(k)=6

s(k, 1)=6

ins(12)
h(k)=1; h‘(k)=4

s(k, 1)=8

ins(10)

ins(24)
h(k)=2; h‘(k)=7

s(k, 1)=6
s(k, 2)=10
s(k, 3)=3

ins(1); ins(7); ins(13) 1 13 7

1 13 23 7

1 13 23 7 12

1 13 23 7 12 10

1 13 24 23 7 12 10

0 1 2 3 4 5 6 7 8 9 10

Marius Kloft: Alg&DS, Summer Semester 2016 28

Analysis

• Please see [OW93]

Marius Kloft: Alg&DS, Summer Semester 2016 29

Another Example

ins(34)
h(k)=1; h‘(k)=8

s(k, 1)=4

ins(12)
h(k)=1; h‘(k)=4

s(k, 1)=8

ins(10)

ins(15)
h(k)=4; h‘(k)=7

s(k, 1)=8
s(k, 2)=1
s(k,3)=5

ins(23); ins(13) 23 13

23 13 34

23 13 34 12

23 13 34 12 10

23 13 34 15 12 10

0 1 2 3 4 5 6 7 8 9 10

Marius Kloft: Alg&DS, Summer Semester 2016 30

Observation

• We change the order of insertions (and nothing else)

ins(15)
h(k)=4; h‘(k)=6

ins(12)
h(k)=1; h‘(k)=4

s(k, 1)=8

ins(10)

ins(34)
h(k)=1; h‘(k)=8

s(k, 1)=4
s(k, 2)=7

ins(23); ins(13) 23 13

23 13 15

23 13 15 12

23 13 15 12 10

23 13 15 34 12 10

Marius Kloft: Alg&DS, Summer Semester 2016 31

Observation

• The number of collisions depends on the order of inserts
– Because h’ spreads h-synonyms differently for different values of k

• We cannot change the order of inserts, but …
• Observe that when we insert k’ and there already was a k

with h(k)=h(k’), we actually have two choices
– Until now we always looked for a new place for k’
– Why not: set A[h(k’)]=k’ and find a new place for k?
– If s(k’,1) is filled but s(k,1) is free, then the second choice is better
– Insert is faster, searches will be faster on average

Marius Kloft: Alg&DS, Summer Semester 2016 32

Brent’s Algorithm
Brent, R. P. (1973). "Reducing the Retrieval Time of Scatter Storage
Techniques." CACM

• Brent’s algorithm:
Upon collision, propagate key for which the next index in
probe sequence is free; if both are occupied, propagate k’

• Improves only successful searches
– Otherwise we have to follow the chain to its end anyway

• One can show that the average-case probe length for
successful searches now is constant (~2.5 accesses)
– Even for relatively full tables

Marius Kloft: Alg&DS, Summer Semester 2016 33

Content of this Lecture

• Open Hashing
– Linear Probing
– Double Hashing
– Ordered Hashing

Marius Kloft: Alg&DS, Summer Semester 2016 34

Idea

• Can we do something to improve unsuccessful searches?
– Recall overflow hashing: If we keep the overflow chain sorted, we

can stop searching after /2 comparisons on average
• Transferring this idea: Keep keys sorted in any probe seq.

– We have seen with Brent’s algorithm that we have the choice
which key to propagate whenever we have a collision

– Thus, we can also choose to always propagate the larger of both
keys – which generates a sorted probe sequence

• Result: Unsuccessful are as fast as successful searches

Marius Kloft: Alg&DS, Summer Semester 2016 35

Details

• In Brent‘s algorithm, we only replace a key if we can insert
the replaced key directly into A

• Now, we must replace keys even if the next slot in the
probe sequence is occupied
– We run through probe sequence until we meet a key that is larger
– We insert the new key here
– All subsequent keys must be replaced (moved in probe sequence)

• Note that this doesn’t make inserts slower than before
– Without replacement, we would have to search the first free slot
– Now we replace until the first free slot

Marius Kloft: Alg&DS, Summer Semester 2016 36

Critical Issue

– Imagine ins(6) would first probe position 1, then 4
– Since 6<9, 9 is replaced; imagine the next slot would be 8
– Since 9<14, 14 is replaced

• Problem
– 14 is not a synonym of 9 – two probe sequences cross each other
– Thus, we don’t know where to move 14 – the next position in

general requires to know the “j”, i.e., the number of hops that were
necessary to get from h(14) to slot 8

• Ordered hashing only works if we can compute the next
offset without knowing j
– E.g. linear hashing (offset -1) or double hashing (offset –h‘(k))

3 2 9 14

3 2 6 9
14

Marius Kloft: Alg&DS, Summer Semester 2016 37

Correctness

• Invariant: Let s(k,j) be the position in A where k is stored.
Searching k returns the correct answer iff i<j: A[s(k,i)] <
A[s(k,j)]

• Proof by induction
– Invariant holds for the empty array
– Imagine invariant holds before inserting a key k’
– We insert k’ in position s(k’,j) (for some j)

• Either A[s(k’,j)] was free
– then invariant still holds

• Or the old A[s(k’,j)]>k’ (otherwise we wouldn’t have inserted k’ here)
– Then the old A[s(k’,j)] was replaced by a smaller value
– Invariant must still hold

Marius Kloft: Alg&DS, Summer Semester 2016 38

Wrap-Up

• Open hashing can be a good alternative to overflow
hashing even if the fill grade approaches 1
– Very little average-case cost for look-ups with double hashing and

Brent’s algorithm or using ordered hashing
• Depending which types of searches are more frequent

• Open hashing suffers from having only static place, but
guarantees to not request more space once A is allocated
– Less memory fragmentation

Marius Kloft: Alg&DS, Summer Semester 2016 39

Exemplary Questions

• Create a hashtable step-by-step using open hashing with
double probing and hash functions h(k)=k mod 13 and
h’(k)=3+k mod 9 when inserting keys 17,12,4,1,36,25,6

• Use the same list for creating a hash table with double
hashing and Brent’s algorithm

• Use the same list for creating a hash table with ordered
linear probing (linear probing such that the probe
sequences are ordered).

• Analyze the WC complexity of searching key k in a hash
table with direct chaining using a sorted linked list when
(a) k is in A; (b) k is not in A.

