
Algorithms and Data Structures

Marius Kloft

(Search) Trees

Marius Kloft: Alg&DS, Summer Semester 2016 2

Content of this Lecture

• Trees
• Search Trees
• Natural Trees

Marius Kloft: Alg&DS, Summer Semester 2016 3

Motivation

• In a list, (almost) every element has one predecessor /
successor

• In a tree, (almost) every element has one predecessor but
many successors

• The different successors partition the set of all elements in
the subtree
– Partitions of sets by characteristics of their elements
– Partitions of sets by order of their elements
– …

• Trees are everywhere in computer science

Marius Kloft: Alg&DS, Summer Semester 2016 4

Already Seen

• Divide-and-conquer call
stack in max-subarray
– Also: Merge-Sort, QuickSort

• XML
– depth-first vs breadth-first

traversal

Ulf Leser: Alg&DS, Summer semester 2011 22

Example

-2 3 1 3 4 -3 -4 2

-2 3 1 3 4 -3 -4 2

-2 3 1 3 4 -3 -4 2

• Solution 11

• Solutions 7, 4
– rmax/lmax: 7, 4

• Solutions 3, 4, 4, 2
– rmax/lmax: 3, 4, 1, 0

Ulf Leser: Alg&DS, Summer semester 2011 10

Data – A Tree

• The data items of an XML database form a tree
<customers>
<customer>

<last_name>
Müller

</last_name>
<first_name>
Peter

</last_name>
<age>
25

</age>
</customer>

<customer>
<last_name>
Meier

</last_name>
<first_name>
Stefanie

</last_name>
<age>
27

</age>
</customer>

</customers>

customers

customer

last_name

first_name
age

Müller

Peter

25

customer

last_name

first_name

age
Meier

Stefanie

27

Marius Kloft: Alg&DS, Summer Semester 2016 5

Already Seen?

• Decision trees for proving
the lower bound for sorting

• Heaps for priority queues

Ulf Leser: Alg&DS, Summer semester 2011 29

Full Decision Tree

S[i1]<S[j1]?

S[i2]<S[j2]? S[i6]<S[j6]?

S[i7]<S[j7]?S[i5]<S[j5]?S[i3]<S[j3]? S[i4]<S[j4]?

6
7
1
3
5
4
8
9
5

3
1
5
6
8
9
4
1
2

7
1
6
2
5
9
4
5
3

9
3
2
6
5
8
7
4
1

1
5
9
4
7
2
3
6
8

8
3
6
4
2
7
1
5
9

… …

… …

… …

1
7
8
3
2
9
5
4
3

5
8
3
1
4
9
7
1
6

3
6
4
8
9
2
1
7
5

……

… …

Ulf Leser: Alg&DS, Summer semester 2011 32

Heaps

• Definition
A heap is a labeled binary tree for which the following
holds
– Form-constraint (FC): The tree is complete except the last layer

• I.e.: Every node has exactly two children
– Heap-constraint (HC): The value of any node is smaller than that of

its children
3

5 8

10 9 12 15

11 18

Layer 1

Layer 2

Layer 3

Layer 4 (last)

Marius Kloft: Alg&DS, Summer Semester 2016 6

Machine Learning

• Want to go play football?
• Might be canceled – depends on the weather
• Let‘s learn from examples (supervised learning)

Marius Kloft: Alg&DS, Summer Semester 2016 7

Decision Trees

Outlook

Temperature Temperature

Humidity

Windy

Temperature

sunny rainyovercast

hot mild

high

true

No No

false

Marius Kloft: Alg&DS, Summer Semester 2016 8

Many Applications

The decision tree partitions the set of
all possible situations based on

predefined characteristics (attributes)

Challenge: Which tree leads to the
best decisions as soon as possible?

Marius Kloft: Alg&DS, Summer Semester 2016 9

Suffix-Trees

• Recall the problem of finding all occurrences of a (short)
string P in a (long) string T

• Fastest way ܱሺ|ܲ|ሻ: Suffix Trees
• Look at all suffixes of T (there are |T| many)
• Construct a tree

– Every edge is labeled with a letter from T
– All edges emitting from a node are labeled differently
– Every path from root to a leaf is uniquely labeled
– All suffixes of T are represented as leaves

• Every occurrence of P must be the prefix of a suffix of T
• Thus, every occurrence of P must map to a path starting at

the root of the suffix tree

Marius Kloft: Alg&DS, Summer Semester 2016 10

Example

rama$

6

ma$
9

8

ma$

a

10

$

7

rama$

11 $

1234567891011
BANANARAMA $
ANANARAMA $
NANARAMA $
ANARAMA $
NARAMA $
ARAMA $
RAMA $
AMA $
MA $
A $

$

Marius Kloft: Alg&DS, Summer Semester 2016 11

Example

rama$8

5

4

6

7

a
ma$

10 9
ma$

$
rama$

rama$11 $

rama$

3

narama$

na

1

bananarama$

na

2

narama$

1234567891011
BANANARAMA $
ANANARAMA $
NANARAMA $
ANARAMA $
NARAMA $
ARAMA $
RAMA $
AMA $
MA $
A $

$

Marius Kloft: Alg&DS, Summer Semester 2016 12

Searching in the Suffix Tree

rama$8

5

4

6

7

a
ma$

10 9
ma$

$
rama$

rama$11 $

rama$

3

narama$

na

1

bananarama$

na

2

narama$

P = „na“

rama$8

5

4

6

7

a
ma$

10 9
ma$

$
rama$

rama$11 $

rama$

3

narama$

na

1

bananarama$

na

2

narama$ P = „an“

The suffix tree for T represents all
common prefixes of suffixes of T as a

unique path from root.

Challenge: Construction of a suffix tree
in linear time.

Marius Kloft: Alg&DS, Summer Semester 2016 13

Graphs

• Definition
A graph G=(V, E) consists of a set V of vertices (nodes)
and a set E of edges (ܧܸܸݔ).
– A sequence of edges e1, e2, .., en is called a path iff ∀1 ൑ ݅ ൏ ݊ െ 1:

ei=(v‘, v) and ei+1=(v, v’’); the length of this path is n
– A path (v1,v2), (v2,v3), …, (vn-1,vn) is acyclic iff all vi are different
– G is connected if every pair vi, vj is connected by at least one path
– G is undirected, if ∀ሺݒ, ሻ’ݒ ∈ 	ܧ ሺݒ’, ሻݒ ∈ Otherwise G is directed .ܧ
– G is acyclic if it contains no cyclic path

Let G=(V, E) be a directed graph and let v,v’∈V.
– Every edge (v,v’)∈E is called outgoing for v
– Every edge (v’,v)∈E is called incoming for v

v4

v2

v3

v1

e3=(v3,v4)

e2=(v2,v3)

e1=(v1,v2)

Marius Kloft: Alg&DS, Summer Semester 2016 14

Trees as Connected Graphs

• Definition
– A undirected connected acyclic graph is called a undirected tree
– A directed connected acyclic graph in which every node has at

most one incoming edge is called a directed tree
• Lemma

– In a undirected tree, there exists exactly one path between any
pair of nodes

Marius Kloft: Alg&DS, Summer Semester 2016 15

Rooted Trees

• Definition
A directed tree with exactly one vertex v with no incoming
edges is called a rooted tree; v is called the root of the tree

• From now on: “Tree” means a directed, rooted tree
• Lemma

– In a directed rooted tree, there exists exactly one path between
root and any other node

5
8

6

7

1

3

2

4 5

8

6

7

1

3

2

4

Marius Kloft: Alg&DS, Summer Semester 2016 16

Terminology

• Definition
Let T be a tree. Then …
– A node with no outgoing edge is a

leaf; other nodes are inner nodes
– The depth of a node p is the length

of the (only) path from root to p
– The height of T is the depth of its

deepest leaf
– The order of T is the maximal

number of children of its nodes
– “Level i” are all nodes at depth i
– T is ordered if the children of all

inner nodes are ordered

leafs

depth=2

height=3 order=3

Marius Kloft: Alg&DS, Summer Semester 2016 17

More Terminology

• Definition
Let T be a tree and v a node of
T. Then …
– All nodes incident to an outgoing

edge of v are its children
– v is called the parent of all its

children
– All nodes on the path from root to

v are the ancestors of v
– All nodes reachable from v are its

successors
– The rank of a node v is the number

of its children

v

ancestors

parent

children

rank=2

Marius Kloft: Alg&DS, Summer Semester 2016 18

Two More

• Definition
Let T be a directed tree of
order k. T is complete if all its
inner nodes have rank k and all
leaves have the same depth

• In this lecture, we will mostly
consider rooted ordered trees of
order two (binary trees)

Marius Kloft: Alg&DS, Summer Semester 2016 19

Recursive Definition of Trees

• We defined trees as graphs with certain constraints
• Will mostly traverse trees using recursive functions
• The relationship may become clearer when using a

recursive definition of (binary) trees
• Definition

A tree is a structure defined as follows:
a) A single node v and an empty set is a tree with height 0
b) If T1 and T2 are (possible empty) trees, then the

structure formed by a new node v and edges from v to
the root of T1 and from v to the root of T2 is a tree with
ݐ݄݄݃݅݁ ൌ max	ሺ݄݄݁݅݃ݐሺܶ1ሻ, ሺܶ2ሻሻݐ݄݄݃݅݁ ൅ 1; v is its root

v

v

T1 T2

Marius Kloft: Alg&DS, Summer Semester 2016 20

Some Properties (without proofs)

• Lemma
Let T=(V, E) be a tree of order k.
Then
– |V|=|E|+1
– If T is complete, T has kheight(T) leaves
– If T is a complete binary tree, T has

2height(T)+1-1 nodes
– If T is a binary tree with n leaves,
ሺܶሻݐ݄݄݃݅݁ 	∈ 	 ሾ݂݈ݎ݋݋ሺlog	ሺ|ܸ|ሻሻ, |ܸ| െ 1ሿ

…

Marius Kloft: Alg&DS, Summer Semester 2016 21

Content of this Lecture

• Trees
• Search Trees

– Definition
– Searching
– Inserting
– Deleting

• Natural Trees

Marius Kloft: Alg&DS, Summer Semester 2016 22

Search Trees

• Definition
A search tree T=(V,E) is a rooted binary tree with n=|V|
differently key-labeled nodes such that ∀ݒ ∈ ܸ:
– label(v)>max(label(left_child(v)), label(successors(left_child(v)))
– label(v)<min(label(right_child(v)), label(successors(right_child(v)))

• Remarks
– We will use integer labels
– “node” ~ “label of a node”
– We only consider trees without

duplicate keys (easy to adapt)
– Search trees are used to manage and

search a list of keys
– Operations: search, insert, delete

12

5 18

13

8

24

22

21

Marius Kloft: Alg&DS, Summer Semester 2016 23

Complete Trees

• Conceptually, we pad search trees to full rank in all nodes
– “padded” leaves are usually neither drawn nor implemented (NULL)

• A “padded” leaf represents the interval of values that
would be below this node (but none of its values is a key)

12

5 18

13

8

24

22

21

12

5 18

13

8

24

22

21-4 6-7

9-11

- 14-17 19-20 -

23-23 25-

Marius Kloft: Alg&DS, Summer Semester 2016 24

What For?

• For a search tree T=(V,E), we will reach ܱ ݐ݄݄݃݅݁ ܶ for
testing whether k∈T.

ሺܶሻݐ݄݄݃݅݁ 	∈ 	 ሾ݂݈ݎ݋݋ሺlog	ሺ|ܸ|ሻሻ, |ܸ| െ 1ሿ

• Compared to binsearch, search trees are a dynamically
growing / shrinking data structure
– But need to store pointers

Marius Kloft: Alg&DS, Summer Semester 2016 25

Searching

• Straight-forward
– Comparing the search key to

a node determines whether
we have to look into the left
or into the right subtree

– If there is no child left, k∉T
• Complexity

– In the worst case we need to
traverse the longest path in T
to show k∉T

– Thus: ܱሺ݄݄݁݅݃ݐሺܶሻሻ ൌ ܱሺ|ܸ|ሻ
– Wait a bit …

func node search(T search_tree,
k integer) {

v := root(T);
while v!=null do
if label(v)>k then
v := v.left_child();

else if label(v)<k then
v := v.right_child();

else
return v;

end while;
return null;

}

12

5 18

13

8

24

22

21

12

5

8

…

ݐ݄݄݃݅݁ ∈ ܱሺ|ܸ|ሻ
ݐ݄݄݃݅݁ ∈ ܱሺlogሺ|ܸ|ሻ

Marius Kloft: Alg&DS, Summer Semester 2016 26

Insertion

• We search the new key k
– If k∈T, we do nothing
– If k∉T, the search must finish

at a null pointer in a node p
• A “right pointer” if

label(p)<k, otherwise a “left
pointer”

• We replace the null with a
pointer to a new node k

• This creates a new search
tree which contains k

• Complexity: Same as
search

func bool insert(T search_tree,
k integer) {

p := null;
v := root(T);
while v!=null do
p := v;
if label(v)>k then
v := v.left_child();

else if label(v)<k then
v := v.right_child();

else
return false;

end while;
if p==null
root(T) := new node(k);

else if label(p)>k then
p.left_child := new node(k);

else
p.right_child := new node(k);

end if;
return true;

}

Marius Kloft: Alg&DS, Summer Semester 2016 27

Example

Insert 19

12

5 18

13

8

24

22

21

5

13

24

21

19

12

18

8 22

5

13

24

21

19

12

18

8 22

11

Marius Kloft: Alg&DS, Summer Semester 2016 28

Deletion

• Again, we first search k
• If k∉T, we are done
• Assume k∈T. The following situations are possible

1. k is stored in a leaf. Then simply remove this leaf
2. k is stored in an inner node q with only one child. Then remove q

and connect parent(q) to child(q)
3. k is stored in an inner node q with two children. Then …

Marius Kloft: Alg&DS, Summer Semester 2016 29

Observations

• We cannot remove q, but we
can replace the label of q with
another label - and remove
this node

• We need a node q’ which can
be removed and whose label
k’ can replace k without
hurting the search tree constraints SC
– label(k’)>max(label(left_child(k’)), label(successors(left_child(k’)))
– label(k’)<min(label(right_child(k’)), label(successors(right_child(k’)))

5

13

24

21

12

18

10 22

11

9

7

28

Marius Kloft: Alg&DS, Summer Semester 2016 30

Observations

• Two candidates
– Largest value in the left subtree

(symmetric predecessor of k)
– Smallest value in the right subtree

(symmetric successor of k)
• We can choose any of those

– Let’s use the symmetric predecessor
– This is either a leaf – no problem

5

13

24

21

12

18

10 22

11

9

7

28

Marius Kloft: Alg&DS, Summer Semester 2016 31

Observations

• Two candidates
– Largest value in the left subtree

(symmetric predecessor of k)
– Smallest value in the right subtree

(symmetric successor of k)
• We can choose any of those

– Let’s use the symmetric predecessor
– This is either a leaf
– Or an inner node; but since its label is larger than that of all

other labels in the left subtree of q, it can only have a left child
– Thus it is a node with one child - can be removed

5

13

24

21

12

18

10 22

11

289

7

Marius Kloft: Alg&DS, Summer Semester 2016 32

Example

Remove 10
Rem

ove 22
5

13

24

21

12

18

9 22

11

7

5

13

12

18

9 21

11

7

Remove 12

5

13

24

21

12

18

10 22

11

289

7

28

24

28

5

13

11

18

9 21

7

24

28

Marius Kloft: Alg&DS, Summer Semester 2016 33

Content of this Lecture

• Trees
• Search Trees

– Definition
– Searching
– Inserting
– Deleting

• Natural Trees

Marius Kloft: Alg&DS, Summer Semester 2016 34

Natural Trees

• A search tree created by inserting and deleting keys in
arbitrary order is called a natural tree

• A natural tree T=(V,E) has ݄݄݁݅݃ݐሺܶሻ ∈ ሾ|ܸ| െ 1, log	ሺ|ܸ|ሻሿ
• The concrete height for a set of keys depends on the order

in which keys were inserted
• Example

11,9,10,5,21,13,24,18 5,9,10,11,13,18,21,24

5 13 24

11

219

10

18

10

5

9

11

…

Marius Kloft: Alg&DS, Summer Semester 2016 35

Average Case Analysis

• We have seen that a natural tree with n nodes has a
maximal height of n-1

• Thus, searching will need O(n) comparisons in worst-case
• Nevertheless, natural trees are not bad on average

– The average case is O(log(n))
– More precisely, a natural tree is on average only ~1.4 times larger

than the optimal search tree (with height O(log(n))
– We skip the proof (argue over all possible orders of inserting n

keys), because balanced search trees (AVL trees) are O(log(n))
also in worst-case and are not much harder to implement

Marius Kloft: Alg&DS, Summer Semester 2016 36

Example

Source: cg.scs.carleton.ca/

Marius Kloft: Alg&DS, Summer Semester 2016 37

Sorted probe sequences (revisited)

• Consider a hash table A and a hash function for which h(k)
= h(k’)

• when searching for k’, follow the probe sequence
– first position: i = A[h(k’)]
– next position: i = i – s(k,1), because s(k,j) – s(k, j-1) = s(k, 1)
– if A[h(k’)] > k’ we can abort, all others in the probe sequence will

be larger as well
– gives same complexity for positive and negative searches
– Example (this was messed up)

• h(12) == h(5)
• search for k = 5
• A[h(5)] = 12  abort search, all others will be larger than 5, k ∉ A

Marius Kloft: Alg&DS, Summer Semester 2016 38

Exemplary Questions

• Construct a natural search tree from the following input,
showing all intermediate steps (I: insert; D: delete): I5, I7,
I3, I10, D7, I7, I13, I12, D5

• For deleting a given key k in a natural search tree, one
sometimes needs a symmetric predecessor (SP) of a key.
Define what a SP is, give an algorithm for finding
it(starting from k), and analyze ist complexity

• Construct an AVL-tree from the following input, showing all
intermediate steps (I: insert; D: delete): I5, I7, I3, I10,
D7, I7, I13, I12, D5

