

Algorithms and Data Structures

(Search) Trees

Marius Kloft

Content of this Lecture

- Trees
- Search Trees
- Natural Trees

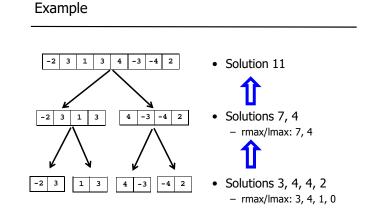
- In a list, (almost) every element has one predecessor / successor
- In a tree, (almost) every element has one predecessor but many successors
- The different successors partition the set of all elements in the subtree
 - Partitions of sets by characteristics of their elements
 - Partitions of sets by order of their elements

- ...

• Trees are everywhere in computer science

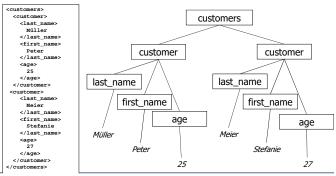
Already Seen

- Also: Merge-Sort, QuickSort



- XML
 - depth-first vs breadth-first traversal

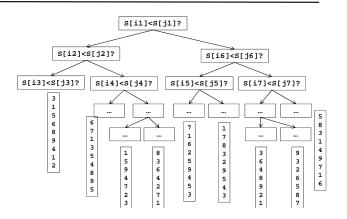
The data items of an XML database form a tree



Already Seen?

 Decision trees for proving the lower bound for sorting

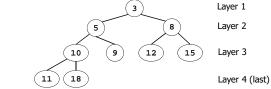
Full Decision Tree



• Heaps for priority queues

Heaps

- Definition
 A heap is a labeled binary tree for which the following holds
 - Form-constraint (FC): The tree is complete except the last layer
 I.e.: Every node has exactly two children
 - Heap-constraint (HC): The value of any node is smaller than that of its children

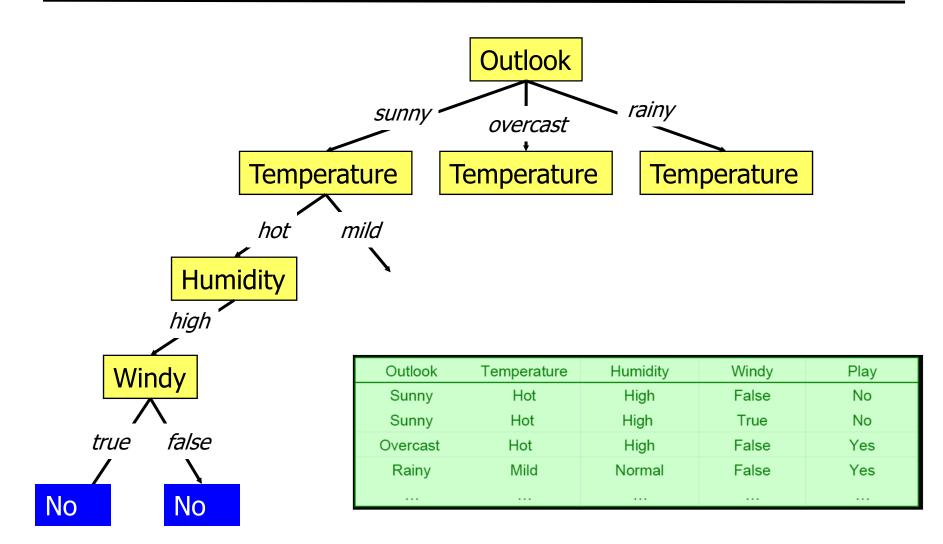


Machine Learning

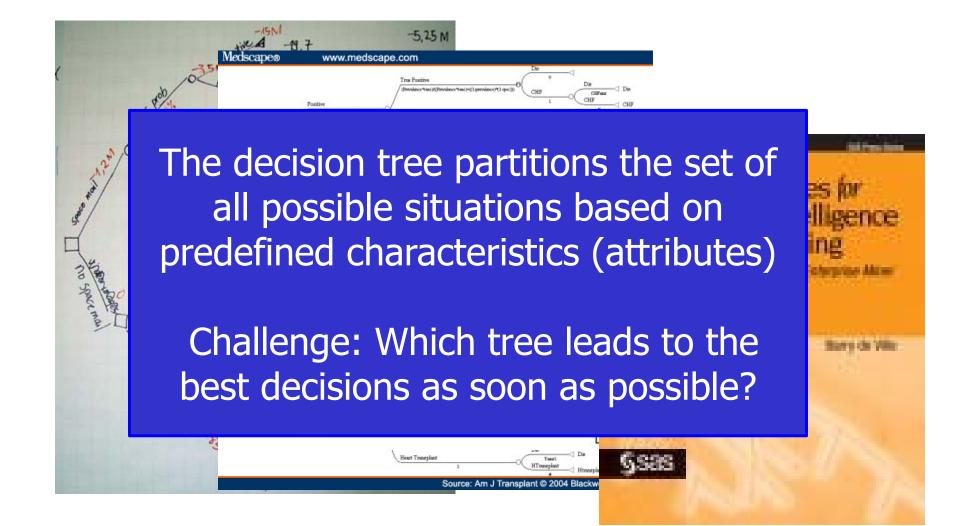
- Want to go play football?
- Might be canceled depends on the weather
- Let's learn from examples (supervised learning)

Outlook	Temperature	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	Normal	False	Yes

Decision Trees



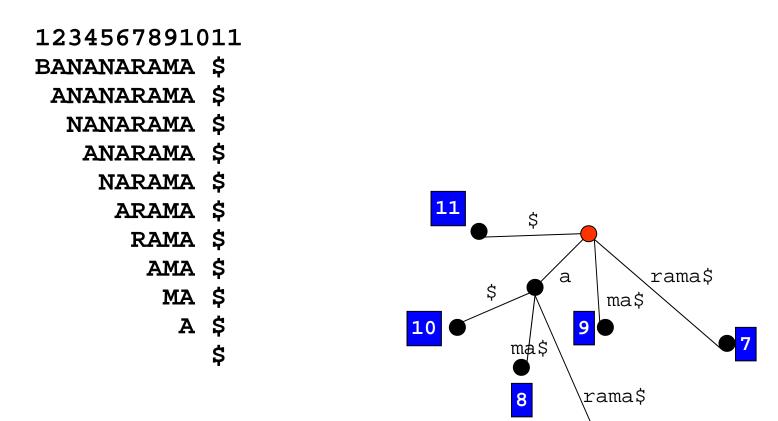
Many Applications



Suffix-Trees

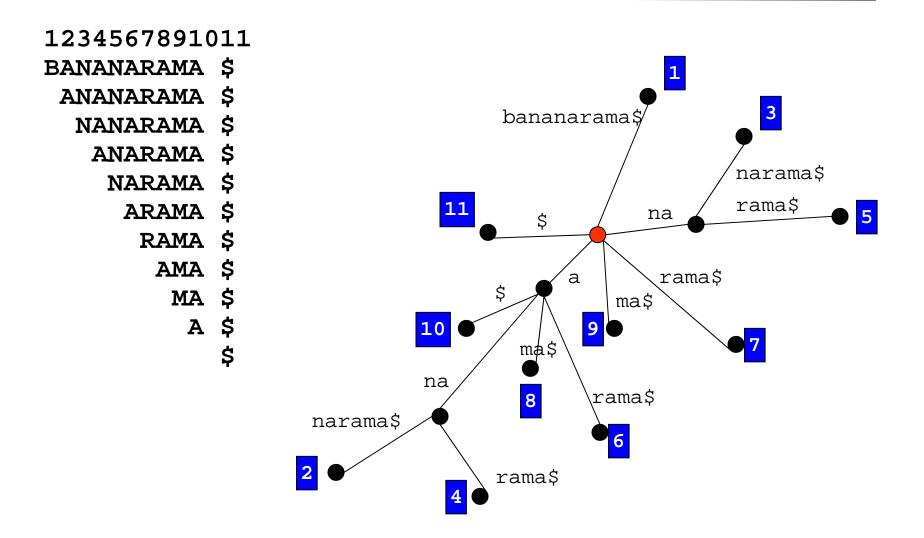
- Recall the problem of finding all occurrences of a (short) string P in a (long) string T
- Fastest way O(|P|): Suffix Trees
- Look at all suffixes of T (there are |T| many)
- Construct a tree
 - Every edge is labeled with a letter from T
 - All edges emitting from a node are labeled differently
 - Every path from root to a leaf is uniquely labeled
 - All suffixes of T are represented as leaves
- Every occurrence of P must be the prefix of a suffix of T
- Thus, every occurrence of P must map to a path starting at the root of the suffix tree

Example

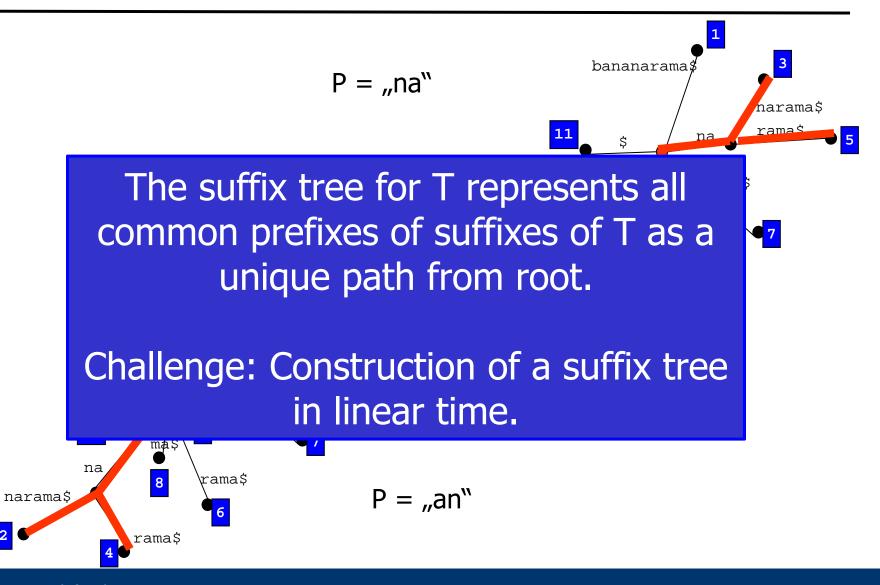


6

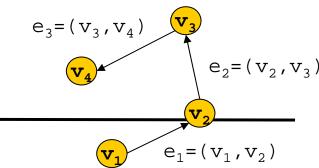
Example



Searching in the Suffix Tree



Marius Kloft: Alg&DS, Summer Semester 2016



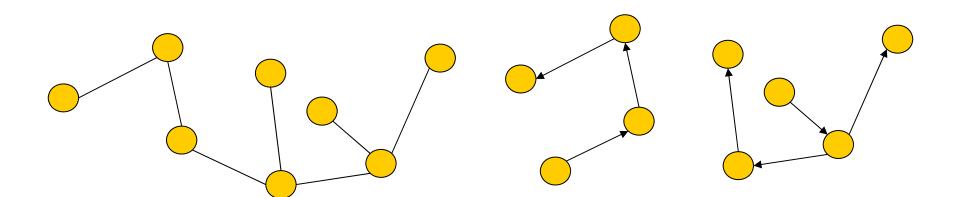
• Definition

Graphs

- A graph G=(V, E) consists of a set V of vertices (nodes) and a set E of edges ($E \subseteq V x V$).
 - A sequence of edges e_1 , e_2 , ..., e_n is called a path iff $\forall 1 \le i < n 1$: $e_i = (v', v)$ and $e_{i+1} = (v, v'')$; the length of this path is n
 - A path (v_1, v_2) , (v_2, v_3) , ..., (v_{n-1}, v_n) is acyclic iff all v_i are different
 - G is connected if every pair v_i , v_j is connected by at least one path
 - G is undirected, if $\forall (v, v') \in E$ $(v', v) \in E$. Otherwise G is directed
 - G is acyclic if it contains no cyclic path
- Let G=(V, E) be a directed graph and let $v, v' \in V$.
- − Every edge (v,v')∈E is called outgoing for v
- Every edge (v',v)∈E is called incoming for v

Trees as Connected Graphs

- Definition
 - A undirected connected acyclic graph is called a undirected tree
 - A directed connected acyclic graph in which every node has at most one incoming edge is called a directed tree
- Lemma
 - In a undirected tree, there exists exactly one path between any pair of nodes

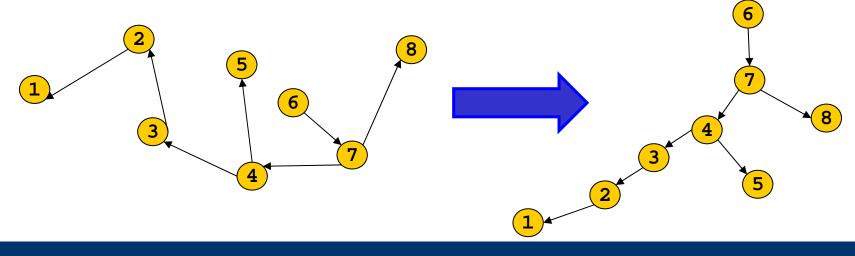


Rooted Trees

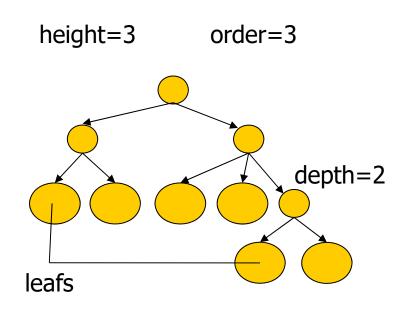
• Definition

A directed tree with exactly one vertex v with no incoming edges is called a rooted tree; v is called the root of the tree

- From now on: "Tree" means a directed, rooted tree
- Lemma
 - In a directed rooted tree, there exists exactly one path between root and any other node

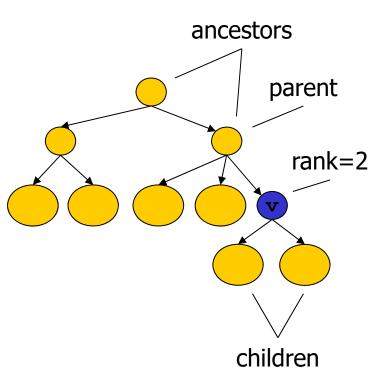


Terminology



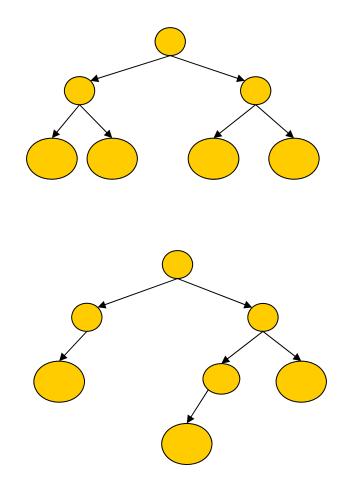
- Definition
 Let T be a tree. Then ...
 - A node with no outgoing edge is a leaf; other nodes are inner nodes
 - The depth of a node p is the length of the (only) path from root to p
 - The height of T is the depth of its deepest leaf
 - The order of T is the maximal number of children of its nodes
 - "Level i" are all nodes at depth i
 - *T is ordered if the children of all inner nodes are ordered*

More Terminology



- Definition
 Let T be a tree and v a node of
 T. Then ...
 - All nodes incident to an outgoing edge of v are its children
 - v is called the parent of all its children
 - All nodes on the path from root to v are the ancestors of v
 - All nodes reachable from v are its successors
 - The rank of a node v is the number of its children

Two More



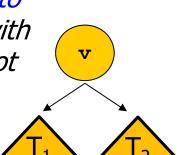
- Definition *Let T be a directed tree of order k. T is complete if all its inner nodes have rank k and all leaves have the same depth*
- In this lecture, we will mostly consider rooted ordered trees of order two (binary trees)

Recursive Definition of Trees

- We defined trees as graphs with certain constraints
- Will mostly traverse trees using recursive functions
- The relationship may become clearer when using a recursive definition of (binary) trees
- Definition

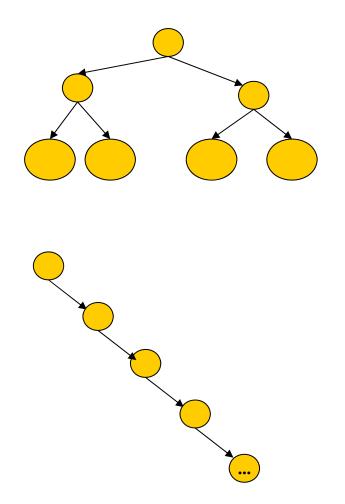
A tree is a structure defined as follows:

- a) A single node v and an empty set is a tree with height 0
- b) If T_1 and T_2 are (possible empty) trees, then the structure formed by a new node v and edges from v to the root of T_1 and from v to the root of T_2 is a tree with height = max(height(T_1), height(T_2)) + 1; v is its root



V

Some Properties (without proofs)



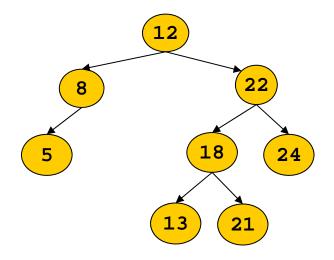
- Lemma *Let T=(V, E) be a tree of order k. Then*
 - /V/=/E/+1
 - If T is complete, T has k^{height(T)} leaves
 - If T is a complete binary tree, T has
 2^{height(T)+1}-1 nodes
 - If T is a binary tree with n leaves, $height(T) \in [floor(log(|V|)), |V| - 1]$

Content of this Lecture

- Trees
- Search Trees
 - Definition
 - Searching
 - Inserting
 - Deleting
- Natural Trees

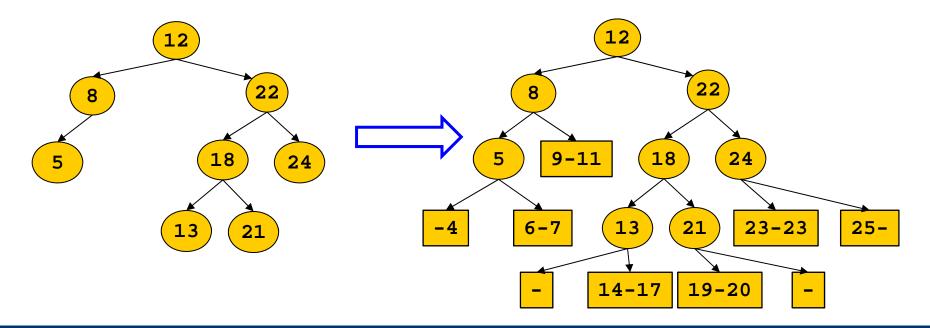
Search Trees

- Definition
 - A search tree T=(V,E) is a rooted binary tree with n=|V| differently key-labeled nodes such that $\forall v \in V$:
 - label(v)>max(label(left_child(v)), label(successors(left_child(v)))
 - label(v)<min(label(right_child(v)), label(successors(right_child(v)))</p>
- Remarks
 - We will use integer labels
 - "node" ~ "label of a node"
 - We only consider trees without duplicate keys (easy to adapt)
 - Search trees are used to manage and search a list of keys
 - Operations: search, insert, delete



Complete Trees

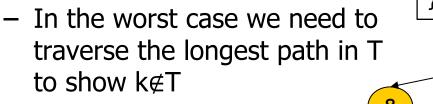
- Conceptually, we pad search trees to full rank in all nodes
 - "padded" leaves are usually neither drawn nor implemented (NULL)
- A "padded" leaf represents the interval of values that would be below this node (but none of its values is a key)



- For a search tree T=(V,E), we will reach O(height(T)) for testing whether k∈T. $height(T) \in [floor(log(|V|)), |V| - 1]$
- Compared to binsearch, search trees are a dynamically growing / shrinking data structure
 - But need to store pointers

Searching

- Straight-forward
 - Comparing the search key to a node determines whether we have to look into the left or into the right subtree
 - If there is no child left, k∉T
- Complexity



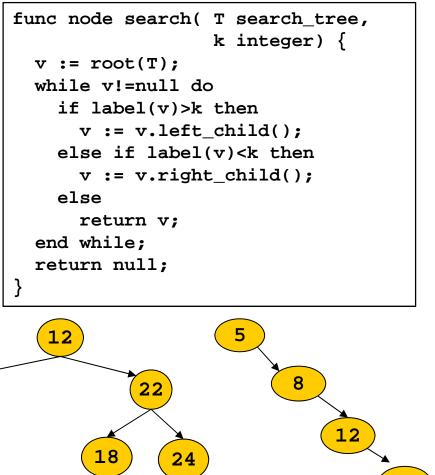
5

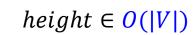
height $\in O(\log(|V|))$

13

21

- Thus: O(height(T)) = O(|V|)
- Wait a bit ...



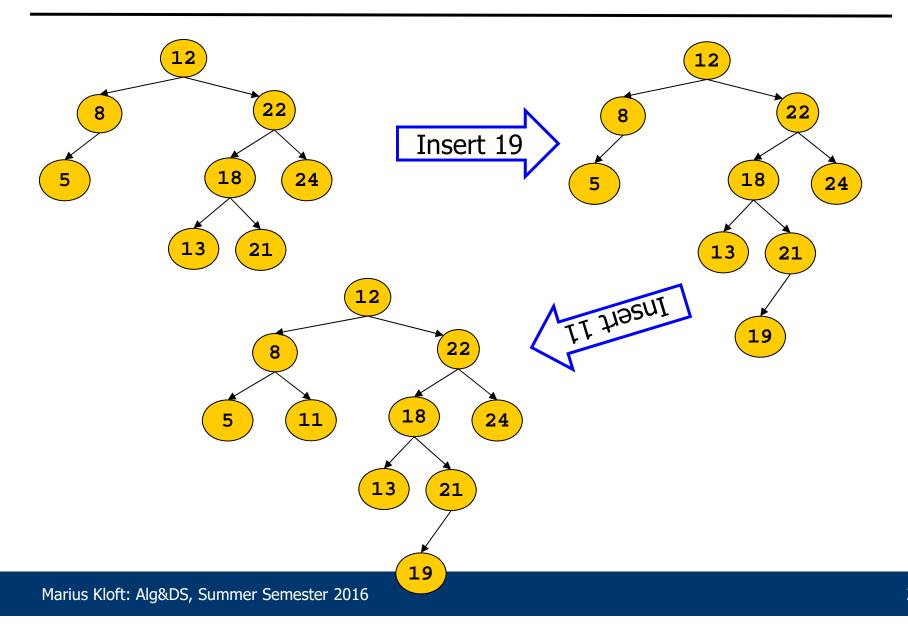


Insertion

```
func bool insert( T search_tree,
                  k integer) {
 p := null;
 v := root(T);
 while v!=null do
    p := v;
    if label(v)>k then
      v := v.left child();
    else if label(v)<k then
      v := v.right_child();
    else
      return false;
  end while;
  if p==null
    root(T) := new node(k);
  else if label(p)>k then
    p.left child := new node(k);
  else
    p.right_child := new node(k);
  end if;
  return true;
}
```

- We search the new key k
 - If $k \in T$, we do nothing
 - If k∉T, the search must finish at a null pointer in a node p
 - A "right pointer" if label(p)<k, otherwise a "left pointer"
- We replace the null with a pointer to a new node k
- This creates a new search tree which contains k
- Complexity: Same as search

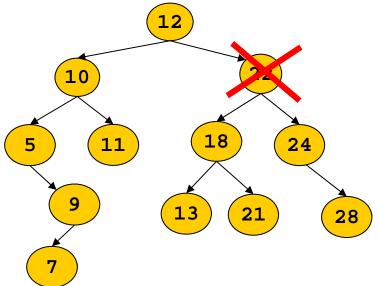
Example



- Again, we first search k
- If $k \notin T$, we are done
- Assume $k \in T$. The following situations are possible
 - 1. k is stored in a leaf. Then simply remove this leaf
 - 2. k is stored in an inner node q with only one child. Then remove q and connect parent(q) to child(q)
 - 3. k is stored in an inner node q with two children. Then ...

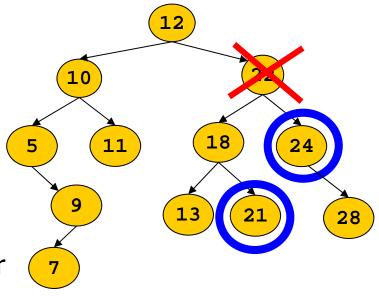
Observations

- We cannot remove q, but we can replace the label of q with another label - and remove this node
- We need a node q' which can be removed and whose label
 k' can replace k without hurting the search tree constraints SC
 - label(k')>max(label(left_child(k')), label(successors(left_child(k')))
 - label(k')<min(label(right_child(k')), label(successors(right_child(k')))</p>



Observations

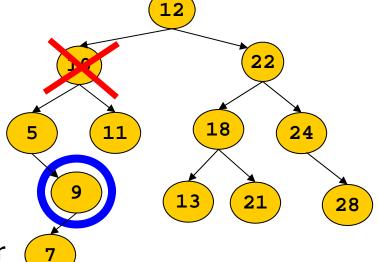
- Two candidates
 - Largest value in the left subtree (symmetric predecessor of k)
 - Smallest value in the right subtree (symmetric successor of k)
- We can choose any of those
 - Let's use the symmetric predecessor
 - This is either a leaf no problem



Observations

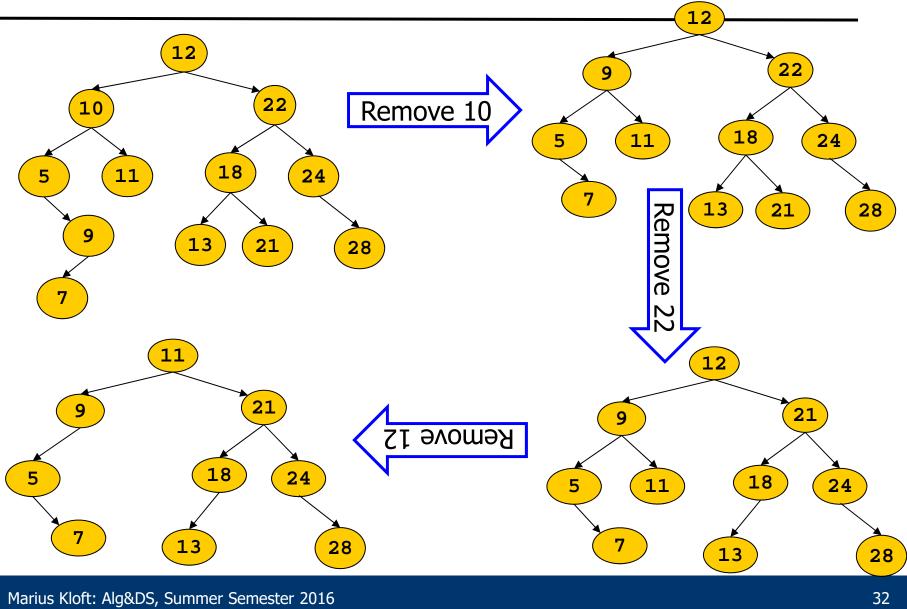
• Two candidates

- Largest value in the left subtree (symmetric predecessor of k)
- Smallest value in the right subtree (symmetric successor of k)
- We can choose any of those
 - Let's use the symmetric predecessor
 - This is either a leaf



- Or an inner node; but since its label is larger than that of all other labels in the left subtree of q, it can only have a left child
- Thus it is a node with one child can be removed

Example

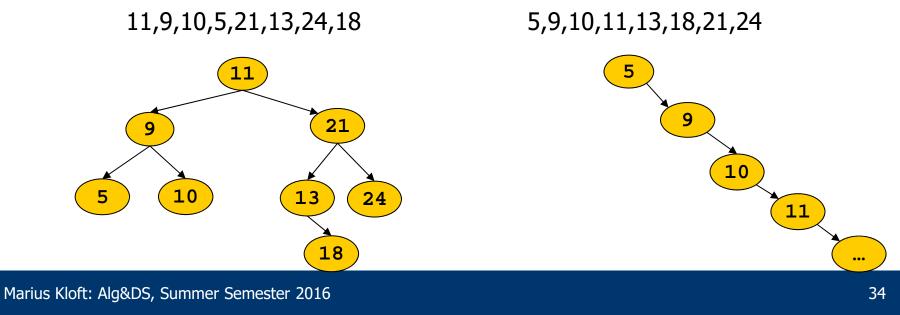


Content of this Lecture

- Trees
- Search Trees
 - Definition
 - Searching
 - Inserting
 - Deleting
- Natural Trees

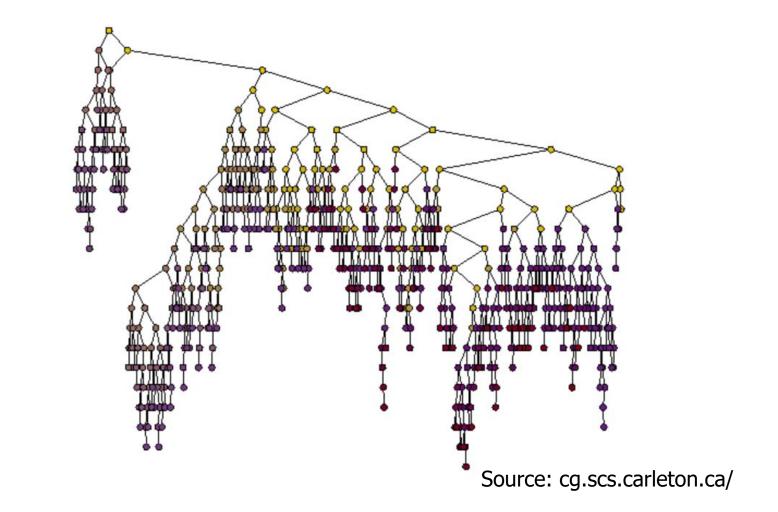
Natural Trees

- A search tree created by inserting and deleting keys in arbitrary order is called a natural tree
- A natural tree T=(V,E) has $height(T) \in [|V| 1, log(|V|)]$
- The concrete height for a set of keys depends on the order in which keys were inserted
- Example



- We have seen that a natural tree with n nodes has a maximal height of n-1
- Thus, searching will need O(n) comparisons in worst-case
- Nevertheless, natural trees are not bad on average
 - The average case is O(log(n))
 - More precisely, a natural tree is on average only ~1.4 times larger than the optimal search tree (with height O(log(n))
 - We skip the proof (argue over all possible orders of inserting n keys), because balanced search trees (AVL trees) are O(log(n)) also in worst-case and are not much harder to implement

Example



Sorted probe sequences (revisited)

- Consider a hash table A and a hash function for which h(k)
 = h(k')
- when searching for k', follow the probe sequence
 - first position: i = A[h(k')]
 - next position: i = i s(k,1), because s(k,j) s(k, j-1) = s(k, 1)
 - if A[h(k')] > k' we can abort, all others in the probe sequence will be larger as well
 - gives same complexity for positive and negative searches
 - Example (this was messed up)
 - h(12) == h(5)
 - search for k = 5
 - $A[h(5)] = 12 \rightarrow abort search, all others will be larger than 5, k \notin A$

- Construct a natural search tree from the following input, showing all intermediate steps (I: insert; D: delete): I5, I7, I3, I10, D7, I7, I13, I12, D5
- For deleting a given key k in a natural search tree, one sometimes needs a symmetric predecessor (SP) of a key.
 Define what a SP is, give an algorithm for finding it(starting from k), and analyze ist complexity
- Construct an AVL-tree from the following input, showing all intermediate steps (I: insert; D: delete): I5, I7, I3, I10, D7, I7, I13, I12, D5