Algorithms and Data Structures

CEEIRIEES

Marius Kloft

Content of this Lecture

e [rees
e Search Trees
e Natural Trees

Marius Kloft: Alg&DS, Summer Semester 2016

Motivation

e In a list, (almost) every element has one predecessor /
successor

e In a tree, (almost) every element has one predecessor but
many Successors

e The different successors partition the set of all elements in
the subtree
— Partitions of sets by characteristics of their elements
— Partitions of sets by order of their elements

e Trees are everywhere in computer science

Marius Kloft: Alg&DS, Summer Semester 2016

Already Seen

e Divide-and-conquer call
stack in max-subarray
— Also: Merge-Sort, QuickSort

e XML

— depth-first vs breadth-first
traversal

Marius Kloft: Alg&DS, Summer Semester 2016

Example
[-2[3]2[3]4]-3]-4]2] o Solution 11
[-2][3]1]3] [4]-3]-4]2] e Solutions?7, 4

/NN T

[-2[3] [1]3] [4]3][4][2] -« Solutions3, 4, 4,2
- rmax/lmax: 3,4, 1,0

Data — A Tree

¢ The data items of an XML database form a tree

customers
i
Sast | customer | customer
age>
/
</ouston last_name last_name
<customer>
<'32§; first_name first_name
</last,
<first,
Stefanie
</last_name> Miiller
age>
27 .
</age Stefanie
</customer>
</custonmers> 25 27

Already Seen?

Full Decision Tree

S[i1]1<S[j1]?

e Decision trees for proving
the lower bound for sorting G [S s

S[i2]<S[j2]1?

5 - S T | N
6 6 7 1 8
| e
4 3 1 8 2 5 3 9] |4
3 2 5 3 5 2 6 3| |9
s 9 6 9 9 4 2| |7
9 4 4 4 5 8 6 |2

5 7 2 5 2 9 5

2 7 3 3 2 8

3 1 1 7

Heaps

o H ea p S fo r p ri or | ty q ueues) %2%2(}2 a labeled binary tree for which the following

— Form-constraint (FC): The tree is complete except the last layer
e Le.: Every node has exactly two children
— Heap-constraint (HC).: The value of any node is smaller than that of

its children
e Layer 1
e e Layer 2
() (3 G2 (5) e
@ @ Layer 4 (last)

Marius Kloft: Alg&DS, Summer Semester 2016

Machine Learning

e Want to go play football?
e Might be canceled — depends on the weather
e Let's learn from examples (supervised learning)

Outlook Temperature Humidity
Sunny Hot High
Sunny Hot High

Overcast Hot High
Rainy Mild Normal

Marius Kloft: Alg&DS, Summer Semester 2016 6

Decision Trees

Outlook
sunny /I\ rainy
overcast
/ ¥ \
Temperature Temperature Temperature
/\
hot mild
< N\
Humidity
7
high
/
W|ndy Outlook Temperature Humidity Windy Play
Sunny Hot High False No
/\ Sunny Hot High True No
true false Overcast Hot High False Yes
i E Rainy Mild Normal False Yes

Marius Kloft: Alg&DS, Summer Semester 2016 7

Many Applications

The decision tree partitions the set of
all possible situations based on
predefined characteristics (attributes)

Challenge: Which tree leads to the
best decisions as soon as possible?

Marius Kloft: Alg&DS, Summer Semester 2016

Suffix-Trees

e Recall the problem of finding all occurrences of a (short)
string P in a (long) string T

e Fastest way O(|P|): Suffix Trees

e Look at all suffixes of T (there are |T| many)

e Construct a tree
— Every edge is labeled with a letter from T
— All edges emitting from a node are labeled differently
— Every path from root to a leaf is uniquely labeled
— All suffixes of T are represented as leaves

e Every occurrence of P must be the prefix of a suffix of T

e Thus, every occurrence of P must map to a path starting at
the root of the suffix tree

Marius Kloft: Alg&DS, Summer Semester 2016 9

Example

1234567891011
BANANARAMA
ANANARAMA
NANARAMA
ANARAMA
NARAMA
ARAMA
RAMA

AMA

MA

A

LR AHR

Marius Kloft: Alg&DS, Summer Semester 2016

Example

1234567891011
BANANARAMA
ANANARAMA
NANARAMA
ANARAMA
NARAMA
ARAMA
RAMA

AMA

MA

A

LR AHR

Marius Kloft: Alg&DS, Summer Semester 2016

bananarama

narama$
rama$

11

Searching in the Suffix Tree

P=,na"

The suffix tree for T represents all
common prefixes of suffixes of T as a
unique path from root.

Challenge: Construction of a suffix tree
in linear time.

Marius Kloft: Alg&DS, Summer Semester 2016

e3=(V3,V,y)

Graphs e,=(V,,V3)
M
e Definition e;=(V1,V5)

A graph G=(V, E) consists of a set V of vertices (nodes)
and a set E of edges (EcCVxV).

— A sequence of edges e,, e,, .., €, Is called a path iffvl <i <n—1:
e=(v, v)and e..,=(v, v’); the length of this path is n

— A path (v,v,), (V4 V3), ..., (V,.,,V,,) IS acyclic iff all v; are different

— G Is connected If every pair v, v; Is connected by at least one path

— G /s undirected, if V(v,v') € E (V,v) € E. Otherwise G is directed

— G /s acyclic If it contains no cyclic path

Let G=(V, E) be a directed graph and let v,vEeV.
— Every edge (v,v))eE is called outgoing for v
— Every edge (v,v)eE is called incoming for v

Marius Kloft: Alg&DS, Summer Semester 2016 13

Trees as Connected Graphs

e Definition
— A undirected connected acyclic graph is called a undirected tree

— A directed connected acyclic graph in which every node has at
most one incoming edge is called a directed tree

e Lemma

— In a undirected tree, there exists exactly one path between any
pair of nodes

LS 1

Marius Kloft: Alg&DS, Summer Semester 2016

Rooted Trees

e Definition
A directed tree with exactly one vertex v with no incoming
edges is called a rooted tree; v is called the root of the tree
e From now on: “Tree” means a directed, rooted tree

e Lemma

— In a directed rooted tree, there exists exactly one path between
root and any other node

Marius Kloft: Alg&DS, Summer Semester 2016

Terminology

e Definition
Let T be a tree. Then ...
— A node with no outgoing edge is a
leaf; other nodes are inner nodes

— The depth of a node p is the length
of the (only) path from root to p

— The height of T is the depth of its
deepest lear

— The order of T is the maximal
number of children of its nodes

— "Level i” are all nodes at depth i

— T is ordered if the children of all
inner nodes are ordered

height=3 order=3

depth=2

leafs

Marius Kloft: Alg&DS, Summer Semester 2016

More Terminology

o Definition
Let T be a tree and v a node of
ancestors
7. Then ...
4 parent — All nodes incident to an outgoing
— edge of v are its children
rank=2 — Vv s called the parent of all its
— children
— All nodes on the path from root to
v are the ancestors of v
v — All nodes reachable from v are its
SUCcessors
children

— The rank of a node v is the number
of its children

Marius Kloft: Alg&DS, Summer Semester 2016 17

Two More

e Definition
Let T be a directed tree of
order k. T Is complete if all its
inner nodes have rank k and all
leaves have the same depth

e In this lecture, we will mostly
consider rooted ordered trees of
order two (binary trees)

Marius Kloft: Alg&DS, Summer Semester 2016

Recursive Definition of Trees

e We defined trees as graphs with certain constraints
o Will mostly traverse trees using recursive functions
e The relationship may become clearer when using a
recursive definition of (binary) trees
e Definition
A tree is a structure defined as follows:

a) A single node v and an empty set is a tree with height 0 @

b) If T, and T, are (possible empty) trees, then the
structure formed by a new node v and edges from v to
the root of T, and from v to the root of T, is a tree with
height = max(height(T,), height(T,)) + 1, v Is its root @

T1A

Marius Kloft: Alg&DS, Summer Semester 2016

Some Properties (without proofs)

e Llemma
Let T=(V, E) be a tree of order k.
Then
- [V/=/E/+1
— If T is complete, T has k"€9"(7) [eaves

— If T is a complete binary tree, T has
Zhe/'_qht(7)+1 _] nodes

— If T is a binary tree with n leaves,
height(T) € [floor(log(|V])), V] —1]

Marius Kloft: Alg&DS, Summer Semester 2016

Content of this Lecture

e [rees

e Search Trees
— Definition
— Searching
— Inserting
— Deleting

e Natural Trees

Marius Kloft: Alg&DS, Summer Semester 2016

Search Trees

e Definition
A search tree T=(V,E) is a rooted binary tree with n=/V/
differently key-labeled nodes such that Vv € V:
— label(v)>max(label(left_child(v)), label(successors(left_child(v)))
— label(v)<min(label(right_chilad(v)), label(successors(right_child(v)))

e Remarks
— We will use integer labels
— “node” ~ “label of a node”

— We only consider trees without
duplicate keys (easy to adapt)

— Search trees are used to manage and
search a list of keys

— Operations: search, insert, delete

Marius Kloft: Alg&DS, Summer Semester 2016 22

Complete Trees

e Conceptually, we pad search trees to full rank in all nodes
— “padded” leaves are usually neither drawn nor implemented (NULL)

e A "padded” leaf represents the interval of values that
would be below this node (but none of its values is a key)

Marius Kloft: Alg&DS, Summer Semester 2016

What For?

e For a search tree T=(V,E), we will reach 0(height(T)) for
testing whether keT.

height(T) € [floor(log(|V])),|V]| — 1]

e Compared to binsearch, search trees are a dynamically
growing / shrinking data structure
— But need to store pointers

Marius Kloft: Alg&DS, Summer Semester 2016

24

Searching

func node search(T search_tree,
I - k integer) {
e Straight-forward v i root(Ty:
— Comparing the search key to vvhi]lceIV!=rllull io)
a node determines whether ' ?SGnyg;t_gh?;do;
we have to look into the left else if label(v)<k then
or into the right subtree T v.right_child(;
— If there is no child left, k¢T return v;
. end while;
o CompIeX|ty return null;
}

— In the worst case we need to
traverse the longest path in T
to show ke¢T

— Thus: 0(height(T)) =
— Wait a bit ...

Marius Kloft: Alg&DS, Summer Semester 2016

Insertion

func bool insert(T search_tree,
k integer) {
p := null;
v = root(T);
while vI=null do
p = Vv;
1T label(v)>k then
v = v.left_child(Q);
else 1t label(v)<k then
v = v.right _child(Q;
else
return false;
end while;
1T p==null
root(T) := new node(k);
else 1T label(p)>k then
p.left _child := new node(k);
else
p.right child := new node(k);
end 1T;
return true;

}

Marius Kloft: Alg&DS, Summer Semester 2016

We search the new key k
— If keT, we do nothing

— If k¢T, the search must finish
at a null pointer in a node p
e A “right pointer” if
label(p)<k, otherwise a "“left
pointer”

We replace the null with a
pointer to a new node k

This creates a new search
tree which contains k

Complexity: Same as
search

26

Example

Marius Kloft: Alg&DS, Summer Semester 2016

Deletion

e Again, we first search k
o If kg¢T, we are done

e Assume keT. The following situations are possible
1. Kkis stored in a leaf. Then simply remove this leaf

2. ks stored in an inner node g with only one child. Then remove g
and connect parent(q) to child(q)

3. kis stored in an inner node q with two children. Then ...

Marius Kloft: Alg&DS, Summer Semester 2016

Observations

e We cannot remove g, but we
can replace the label of g with
another label - and remove
this node

e We need a node q" which can
be removed and whose label
K' can replace k without
nurting the search tree constraints SC

— label(k")>max(label(left_child(k")), label(successors(left_child(k")))
— label(k")<min(label(right_child(k")), label(successors(right_child(k")))

Marius Kloft: Alg&DS, Summer Semester 2016 29

Observations

e Two candidates

— Largest value in the left subtree
(symmetric predecessor of k)

— Smallest value in the right subtree
(symmetric successor of k)

e We can choose any of those
— Let’s use the symmetric predecessor a
— This is either a leaf — no problem

Marius Kloft: Alg&DS, Summer Semester 2016

Observations

e Two candidates

— Largest value in the left subtree
(symmetric predecessor of k)

— Smallest value in the right subtree
(symmetric successor of k)
e We can choose any of those
— Let’s use the symmetric predecessor a
— This is either a leaf

— Or an inner node; but since its label is larger than that of all
other labels in the left subtree of q, it can only have a left child

— Thus it is a node with one child - can be removed

Marius Kloft: Alg&DS, Summer Semester 2016

31

Example

(9 (22)
Remove 10>
() (v ® (s

7 9AOWDY

(<
®<z

<ZI IAOWIDY
3 D @ @D
(D @ (28)

Marius Kloft: Alg&DS, Summer Semester 2016 32

Content of this Lecture

e Trees

e Search Trees
— Definition
— Searching

— Inserting
— Deleting

e Natural Trees

Marius Kloft: Alg&DS, Summer Semester 2016

33

Natural Trees

e A search tree created by inserting and deleting keys in
arbitrary order is called a natural tree

e A natural tree T=(V,E) has height(T) € [|V]| — 1,1og(|V])]

e The concrete height for a set of keys depends on the order
in which keys were inserted

e Example
11,9,10,5,21,13,24,18 5,9,10,11,13,18,21,24
&> (5
© 21> €.
& do @ ar o
(18))

Marius Kloft: Alg&DS, Summer Semester 2016 34

Average Case Analysis

e \We have seen that a natural tree with n nodes has a
maximal height of n-1

e Thus, searching will need O(n) comparisons in worst-case

e Nevertheless, natural trees are not bad on average
— The average case is O(log(n))

— More precisely, a natural tree is on average only ~1.4 times larger
than the optimal search tree (with height O(log(n))

— We skip the proof (argue over all possible orders of inserting n
keys), because balanced search trees (AVL trees) are O(log(n))
also in worst-case and are not much harder to implement

Marius Kloft: Alg&DS, Summer Semester 2016

Example

,".
N e 1.;? —
“h’ | irli | Jnl qz ||* mltl;ﬁu

=)

[} LI illmﬂlﬂ
Jllll'l. '.l l |1| Lo T IJ
.n ‘ ;) nll n L
Ifl’ A ‘]
1iny J
ol
Iy |||1
1

Source: cg.scs.carleton.ca/

Marius Kloft: Alg&DS, Summer Semester 2016

Sorted probe sequences (revisited)

e Consider a hash table A and a hash function for which h(k)

= h(k’)
e when searching for k', follow the probe sequence
— first position: i = A[h(k")]
— next position: i =i —s(k,1), because s(k,j) — s(k, j-1) = s(k, 1)

— if A[h(k")] > k" we can abort, all others in the probe sequence will
be larger as well

— gives same complexity for positive and negative searches
— Example (this was messed up)
e h(12) == h(5)
e searchfork =5
e A[h(5)] = 12 - abort search, all others will be larger than 5, k ¢ A

Marius Kloft: Alg&DS, Summer Semester 2016

37

Exemplary Questions

e Construct a natural search tree from the following input,
showing all intermediate steps (I: insert; D: delete): 15, I7,
I3, 110, D7, 17, 113, 112, D5

e For deleting a given key k in a natural search tree, one
sometimes needs a symmetric predecessor (SP) of a key.
Define what a SP is, give an algorithm for finding
it(starting from k), and analyze ist complexity

e Construct an AVL-tree from the following input, showing all
intermediate steps (I: insert; D: delete): I5, 17, 13, 110,
D7, 17,113, 112, D5

Marius Kloft: Alg&DS, Summer Semester 2016

