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History

• Adelson-Velskii, G. M. and Landis, E. M. (1962). "An 
information organization algorithm (in Russian)", Doklady
Akademia Nauk SSSR. 146: 263–266.
– Georgi Maximowitsch Adelson-Welski (russ. Георгий Максимович

Адельсон-Вельский; weitere gebräuchliche Transkription Adelson-
Velsky und Adelson-Velski; * 8. Januar 1922 in Samara) ist ein
russischer Mathematiker und Informatiker. Zusammen mit J.M. 
Landis entwickelte er 1962 die Datenstruktur des AVL-Baums. Er
lebt in Ashdod, Israel. 

– Jewgeni Michailowitsch Landis (russ. Евгений Михайлович
Ландис; * 6. Oktober 1921 in Charkiw, Ukraine; † 12. Dezember
1997 in Moskau) war ein sowjetischer Mathematiker und 
Informatiker … Zusammen mit G. Adelson-Velsky entwickelte
Landis 1962 die Datenstruktur des AVL-Baums.

– Source: http://www.wikipedia.de/ 
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Balanced Trees

• General search trees: Searching / inserting / deleting is 
O(log(n)) on average, but O(n) in worst-case

• Complexity directly depends on tree height
• Balanced trees are binary search trees with certain 

constraints on tree height
– Intuitively: All leaves have “similar” depth: ~log(n)
– Accordingly, searching / deleting / inserting is in O(log(n))
– Difficulty: Keep the height constraints during tree updates

• First proposal of balanced trees is attributed to [AVL62]
• Many others since then: brother-, B-, B*-, BB-, … trees
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AVL Trees

• Definition
An AVL tree T=(V, E) is a binary search tree in which the 
following constraint holds: 
∀vV: |height(v.leftChild) - height(v.rightChild)| ≤ 1
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Quiz [source: OW]

AVL? AVL? AVL?

Check AVL condition: For all nodes v, |height(v.leftChild) - height(v.rightChild)| ≤ 1
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AVL Trees

• Definition
An AVL tree T=(V, E) is a binary search tree in which the 
following constraint holds: 
∀vV: |height(v.leftChild) - height(v.rightChild)| ≤ 1

• Remarks
– AVL trees are height–balanced
– Will call this constraint height constraint (HC)
– AVL trees are search trees, i.e., the search constraint (SC) must 

hold: Right child is larger than parent is larger than left child
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HC Does Not Imply That the Level of All Leaves Can 
Differ by More Than 1
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Worst-Case: How “Unbalanced” Can AVL Trees Be?
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Height of an AVL Tree

• Lemma
An AVL tree T with n nodes has height h ≤ O(log(n))

• Proof by induction
– We construct AVL trees with

the minimal # of nodes (n) at a
given height h

– Let m be the number of leaves
– h=0  m=1
– h=1  m=2
– h=2  m≥3
– h=3  m≥5
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Height of an AVL Tree

• Lemma
An AVL tree T with n nodes has height h ≤ O(log(n))

• Proof by induction
– We construct AVL trees with

the minimal # of nodes at a
given height h

– Let m(h) be the minimal
number of leaves of an AVL tree
of height h

– It holds: m(h) = m(h-1)+m(h-2)

– Such “maximally unbalanced” trees are called Fibonacci-Trees
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Proof Continued

• Fibonacci series: 0, 1, 1, 2, 3, 5, 8…
– Def.:  fib(0)=0, fib(1)=1, fib(i)=fib(i-1)+fib(i-2)

• Since h “starts” in i=2:  ݉ ݄ ൌ fibሺ݄ ൅ 2ሻ
• We know ( Fibonacci search):

– fib(i) = round థ೔

	 ହ
ൎ థ೔

	 ହ

– Where ߶ ≔golden ratio ≈ 1.62

• Hence: ݉ ݄ ൎ థ೓శమ

	 ହ

• We know n=2m(h)-1,  thus

nൎ 2∗థ
೓శమ

	 ହ
െ1  				⇒ ݄ ൑ ܿ ∗ log ݊
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Content of this Lecture

• AVL Trees
• Searching
• Inserting
• Deleting
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Searching in an AVL Tree

• Searching is in O(log(n))
– Follows directly from the worst-case height

• Note: The best-case height is ceil(log(n)), so best-case and 
worst-case asymptotically are of the same order
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Inserting

• This requires more work
• The trick is to insert nodes efficiently without hurting the 

height constraint (HC)
• We first explain the procedure(s) and then prove that HC 

always holds after insertion of a node if HC held before this 
insertion
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Framework

• Assume AVL tree T=(V, E) and we want to insert k, k∉V
• As usual, we first check whether k∈V and end in a node v 

where we know that k cannot be in the subtree rooted at v
• What are the possible situations?
• This is one:

p

k’’k

k’

k<p

k’<k
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Height Constraints

p

k’’k

k’

k<p

k’<k
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How to Prove the HC

• Before insertion, HC held
– Note: k’’ cannot have children

• We now only look at this 
particular case

• Height constraint
– The height of only one subtree 

changes – left child of p
– Adding k does not hurt HC in p (because k’’ exists)
– Thus, HC also holds after insertion

p

k’’k

k’
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The Essential Information

• Before insertion, HC held
– Note: k’’ cannot have children

• We now only look at this 
particular case

• Height constraint
– The height of only one subtree 

changes – left child of p
– Adding k does not hurt HC in p (because k’’ exists)
– Thus, HC also holds after insertion

p

k’’k

k’
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Other Cases

• Also trivial

• Problem
– The left subtree of k’ changes its height
– We have to look at the height of the 

right subtree of k’ to decide what to do
– Actually, we only need to know if it is 

larger, smaller, or equal in height to the 
left subtree (before insertion)

p

k’’ k

k’

p

k

k’
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Abstraction

• We assume that we found the position of k such that SC 
holds after insertion

• To check HC, we need to know the height differences in 
every node that is an ancestor of the new position of k

• Definition
Let T=(V, E) be a tree and p∈V. We define
bal(p) = height( right_child(p)) – height( left_child(p))

• Clearly, if T is an AVL tree, then p: bal(p) ∈ {-1, 0, 1}
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New Presentation

p

k’’k

k’

p

k’’ k

k’

p

k

k’

+1

0k

-1

0 k

0

k
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More Systematic

• Assume AVL tree T=(V, E) and we want to insert k, k∉V
• We found the node p under which we want to insert k
• Three possible cases

• Case 1: bal(p)=+1
– Then there exists a right “subtree” of p

(one node only)
– We insert k as left child
– Height of p doesn’t change

• Ancestors of p remain unaffected
– Adapt bal(p) and we are done

+1

0

0

0k
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Case 2

• Assume AVL tree T=(V, e) and we want to insert k, k∉V
• We found the node p under which we want to insert k
• Three possible cases

• Case 2: bal(p)=-1
– Then there exists a left “subtree” of p

(one node only)
– We insert k as right child
– Height of p doesn’t change

• Ancestors of p remain unaffected
– Adapt bal(p) and we are done

-1

0

0

0 k
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Case 3

• Assume AVL tree T=(V, e) and we want to insert k, k∉V
• We found the node p under which we want to insert k
• Three possible cases

• Case 3: bal(p)=0
– There is neither a left nor a 

right subtree of p (p is a leaf)
– We insert k as left or right child
– Height of p changes (HC valid?)
– Ancestors of p are affected
– Adapt bal(p) and look at parent(p)

0

+/-1

k?k?
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Up the Tree

• In case 3 (bal(p)=0) we have to see if HC is hurt in any of 
the ancestors of p

• We call a procedure upin(p) recursively
– We look at the parent p’ of p
– We check bal(p’) to see if the height change in p breaks HC in p’
– If not, we update bal(p’) and, if bal(p’) ∈{+1,-1}, call upin(p’)
– If yes, we fix the problem locally and we are done (no further 

recursive calls of upin)
• “Fixing locally” (i.e., with constant work) is the main trick 

behind AVL trees
• It implies that we never have to call upin(p) more than 

O(log(n)) times – the height of an AVL tree with n nodes
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Subcases

• p can either be the left or the right child of its parent p‘
• Note that bal(p) must be +1 or -1 when upin() is called

– We call this PC, the precondition of upin()
– In the first call, bal(p)=0 before insertion, thus +1/-1 afterwards
– In later calls: We have to check

• Case 3.1  Case 3.2

bal(p)∈{+1,-1}

p’

k

bal(p)∈{+1,-1}

p’

k
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Subcases of Case 3.1

• Case 3.1.1 (bal(p’)=+1)
– Right subtree of p‘ is higher than 

left subtree
– Left subtree has just grown by 1
– Thus, height of p‘ doesn‘t change
– Adapt bal(p‘) and we are done

• Case 3.1.2 (bal(p’)=0)
– Left and right subtree of p’ have 

same height
– Thus, height of p’ changes
– Adapt bal(p’) and call upin(p’)

• bal(p’) now is -1
• PC holds

bal(p)∈{+1,-1}

bal(p’)=+1

k

bal(p)∈{+1,-1}

bal(p’)=0

k
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Subcases of Case 3.1

• Case 3.1.3 (bal(p’)=-1)
– Left subtree of p‘ was already 

higher than right subtree
– And has even grown further
– HC is hurt in p’
– Fix locally – but how?

• Case 3.1.3.1 Case 3.1.3.2

bal(p)∈{+1,-1}

bal(p’)=-1

k

-1

-1

1 2
3

+1

-1

1 2
3
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A Closer Look

• Subtree 1 contains values smaller than p (and than p’)
• Subtree 2 contains values larger than p, but smaller than p’
• Subtree 3 contains values larger than p’ (and than p)
• Can we rearrange the subtree rooted in p’ such that SC 

and HC hold?

bal(p)=-1

bal(p’)=-1

1 2
3
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Example

• Subtree 1 contains values smaller than p (and than p’)
• Subtree 2 contains values larger than p, but smaller than p’
• Subtree 3 contains values larger than p’ (and than p)
• We change the root node

4

8

-3 5-7
9-
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Rotation

• Rotate nodes p and p’ to the right

4

8

-3 5-7
9-

4

8

-3 5-7 9-
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Rotation

• Rotate nodes p and p’ to the right
• Clearly, SC holds
• Impact on HC?

8

-3 5-7
9-

4

8

-3 5-7 9-

4
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Rotation and HC

• Before rotation
– HC hurt in left subtree (height 

is h+2) versus right subtree 
(height is h+1)

– Subtree before insertion had 
height h+1 

-1

-1

h h-1
h-1

0

0

h h-1 h-1
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Rotation and HC

• After rotation
– HC holds
– Height of subtree 

unchanged 
– No further upin()

-1

-1

h h-1
h-1

0

0

h h-1 h-1

• Before rotation
– HC hurt in left subtree (height 

is h+2) versus right subtree 
(height is h+1)

– Subtree had height h+1
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Recall …

• Case 3.1.3
– Left subtree of p‘ was already 

higher than right subtree
– And has even grown
– HC is hurt in p’
– Fix locally
– How?

• Case 3.1.3.1 Case 3.1.3.2

bal(p)∈{+1,-1}

bal(p’)=-1

k

-1

-1

1 2
3

+1

-1

1 2
3
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More Intricate

• HC hurt (heights h+2 versus h)
• If we rotated to the right, p (the new root) would have a 

left subtree of height h-1 and a right subtree of height h+1
• Forbidden by HC
• We have to “break” the subtree of height h

+1

-1

h-1 h
h-1
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One More Level of Detail

• height(v)=h
• height(x) and height(y) must be 

h-1 or h-2 (one must be h-1)
• Since the subtree rooted at p has just grown in height, this 

growth must have happened below v (because 
bal(p)=+1), so we must have height(x)≠height(y)

+1

-1

h-1 h
h-1

+1

-1

h-1

X
h-1 or  
h-2

h-1

Y
h-1 or
h-2

v

=
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Double Rotation

p

p’

h-1

X
h-1 or  
h-2

h-1

Y
h-1 or
h-2

v

p

p’

h-1 X
h-1 or  
h-2

h-1

Y
h-1 or
h-2

v
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Double Rotation

p

p’

h-1 X
h-1 or  
h-2

h-1

Y
h-1 or
h-2

v

p

p’

h-1 X
h-1 or  
h-2

h-2

Y
h-1 or
h-2

v



Marius Kloft: Alg&DS, Summer Semester 2016 41

AVL Constraints

• Adaptation
– bal(p) ∈ {0, -1}
– bal(p’) ∈ {0, +1}
– bal(v) = 0

• Height constraint
– Holds in every node

• Need to call upin(v)?
– No: Subtree had height h+1 

and still has height h+1
• Search constraint?

p

p’

h-1 X
h-1 or  
h-2

h-1

Y
h-1 or
h-2

v
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Search Constraint

p

p’

p[

]p,v[

]p’

]v,p’[

v p

p’

p[
]p,v[

]p’

]v,p’[

v

Uff
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Are we Done?

• Case 3.2

• Similar solution
– If bal(p’)=-1, adapt and finish
– If bal(p’)=0, adapt and call upin(parent(p’)
– If bal(p’)=+1, then

• Case 3.2.3.1: Rotate left in p
• Case 3.2.3.1: Rotate right in p, then rotate left in v

bal(p)∈{+1,-1}

p’

k
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Summary

• We found the node p under which we want to insert k
• Major cases

– If k<p and rightChild(p)≠null: Insert k (new left child)
– If k>p and leftChild(p)≠null: Insert k (new right child)
– If p has no children: Insert k and call upin(p)

• Procedure upin(p)
– If p=leftChild(p’) 

• If bal(p’)=1: Set bal(p’)=0, done
• If bal(p’)=0: Set bal(p’)=-1, call upin(p’)
• If bal(p’)=-1:

– If bal(p)=-1: Rotate right in p, done
– If bal(p)=+1: Rotate left in p, right in v, done

– Else (p=rightChild(p’))
• …
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Example

• HC hurt in p
• rotate left in p

insert 9

insert 8
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Example

• p changes height
• HC hurt in root
• Rotate left in p, then right in root
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Content of this Lecture

• AVL Trees
• Searching
• Inserting
• Deleting
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Deleting a Key

• Follows the same scheme as insertions
– First find the node p which holds k (to be deleted)
– We will again find cases where we have to do nothing, cases where 

we have to rotate or double rotate, and cases where we have to 
propagate changes up the tree
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Major Cases

• Case 1: k has no children
• Case 2: k has only one child
• Case 3: k has two children

p

k

p

k

p

k

k’
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Case 1: k has no children

The other subtree rooted at p …
• Case 1.1: … is empty

– Remove k, adapt bal(p)
– call upout(p) 

• Because height of subtree rooted at p 
has changed

• Case 1.2: … has exactly one key
– Remove k, adapt bal(p)
– Done

• Case 1.3: … has two or three keys
– Remove k, adapt bal(p)
– Rotate right in p
– call upout(p) 

p

k

p

k

p

k
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Case 2: k has only one child

• Replace k with k‘
• k‘ cannot have children, 

or HC would not hold in k
• Height and balance of k 

(now k’) has changed
• Update bal(p) and call 

upout(p)

p

k

k’
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Case 3: k has two children

• Recall natural search trees
• We search the symmetric 

predecessor q of k
– Which is the largest value in 

the left subtree of k
• Replace k with q and 

remove the old q by calling 
delete(q) as discussed in 
Case 1 and Case 2
– Note that the old q has either 

no child (Case 1) or exactly 
one child (Case 2)

p

k

qk

13

18

21

p

q

q
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Procedure upout(p)

• Invariant: Whenever we call upout(p), 
the height of p has decreased by 1 and bal(p)=0

• Let p be the left child of its parent p’
– Again, the case of p being the right child of p’ is symmetric

• Case 1; bal(p’)=-1

p

bal(p’)=-1

h

upout(p’)

h

p

bal(p’)=0

h-1
h

k
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Procedure upout(p)

• Whenever we call upout(p), the height of p has decreased 
by 1 and bal(p)=0

• Let p be the left child of its parent p’
– Again, the case of p being the right child of p’ is symmetric

• Case 2: bal(p’)=0

done

p

bal(p’)=0

h h+1

p

bal(p’)=+1

h-1 h+1

k
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Procedure upout(p)

• Whenever we call upout(p), the height of p has decreased 
by 1 and bal(p)=0

• Let p be the left child of its parent p’
– Again, the case of p being the right child of p’ is symmetric

• Case 3: bal(p’)=+1

p

bal(p’)=+1

h+2

p

bal(p’)=+1

q

h
k

h-1 h+1
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Subcase 1

• Case 3.1: bal(q)=0
• Rotate left in q

Height has not changed –
update bal(p’) and bal(q’) 
and done

p

bal(p’)=+1

bal(q)=0

h+1 h+1

h-1

p

bal(p’)=+1

bal(q)=-1

h+1 h+1

h-1
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Subcase 2

• Case 3.2: bal(q)=+1
• Rotate left in q (again)

p

bal(p’)=0

bal(q)=0

h h+1

h-1p

bal(p’)=+1

bal(q)=+1

h h+1

h-1

Height has changed –
update bal(p’) and bal(q’) 
and call upout(q)
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Subcase 3

• Case 3.3: bal(q)=-1
• Rotate right in q, then left in z

p

bal(p’)=+1

bal(q)=-1

s

h

p

p’

bal(z)=0

Height has changed – update 
balance factors & call upout(z)

z

t

q

h

h-1
h or 
h-1

h or 
h-1

h-1

Either s or t has height h
and the other one h or h-1
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Summary AVL Trees

• With a little work, we reached our goal: Searching, 
inserting, and deleting is possible in O(log(n)) 

• One can also show that ins/del are in O(1) on average
– Because reorganizations are rare and usually stop very early

• AVL trees are a “work-horse” for keeping a sorted list
• AVL trees are bad as disk-based DS

– Disk blocks (b) are much larger than one key, and following a 
pointer means one head seek

– Better: B-Trees: Trees of order b with constant height in all leaves
• B typically ~1000
• Finding a key only requires O(log1000(n)) seeks


