
Algorithms and Data Structures

Marius Kloft

AVL: Balanced Search Trees

Marius Kloft: Alg&DS, Summer Semester 2016 2

Content of this Lecture

• AVL Trees
• Searching
• Inserting
• Deleting

Marius Kloft: Alg&DS, Summer Semester 2016 3

History

• Adelson-Velskii, G. M. and Landis, E. M. (1962). "An
information organization algorithm (in Russian)", Doklady
Akademia Nauk SSSR. 146: 263–266.
– Georgi Maximowitsch Adelson-Welski (russ. Георгий Максимович

Адельсон-Вельский; weitere gebräuchliche Transkription Adelson-
Velsky und Adelson-Velski; * 8. Januar 1922 in Samara) ist ein
russischer Mathematiker und Informatiker. Zusammen mit J.M.
Landis entwickelte er 1962 die Datenstruktur des AVL-Baums. Er
lebt in Ashdod, Israel.

– Jewgeni Michailowitsch Landis (russ. Евгений Михайлович
Ландис; * 6. Oktober 1921 in Charkiw, Ukraine; † 12. Dezember
1997 in Moskau) war ein sowjetischer Mathematiker und
Informatiker … Zusammen mit G. Adelson-Velsky entwickelte
Landis 1962 die Datenstruktur des AVL-Baums.

– Source: http://www.wikipedia.de/

Marius Kloft: Alg&DS, Summer Semester 2016 4

Balanced Trees

• General search trees: Searching / inserting / deleting is
O(log(n)) on average, but O(n) in worst-case

• Complexity directly depends on tree height
• Balanced trees are binary search trees with certain

constraints on tree height
– Intuitively: All leaves have “similar” depth: ~log(n)
– Accordingly, searching / deleting / inserting is in O(log(n))
– Difficulty: Keep the height constraints during tree updates

• First proposal of balanced trees is attributed to [AVL62]
• Many others since then: brother-, B-, B*-, BB-, … trees

Marius Kloft: Alg&DS, Summer Semester 2016 5

AVL Trees

• Definition
An AVL tree T=(V, E) is a binary search tree in which the
following constraint holds:
∀vV: |height(v.leftChild) - height(v.rightChild)| ≤ 1

Marius Kloft: Alg&DS, Summer Semester 2016 6

Quiz [source: OW]

AVL? AVL? AVL?

Check AVL condition: For all nodes v, |height(v.leftChild) - height(v.rightChild)| ≤ 1

Marius Kloft: Alg&DS, Summer Semester 2016 7

AVL Trees

• Definition
An AVL tree T=(V, E) is a binary search tree in which the
following constraint holds:
∀vV: |height(v.leftChild) - height(v.rightChild)| ≤ 1

• Remarks
– AVL trees are height–balanced
– Will call this constraint height constraint (HC)
– AVL trees are search trees, i.e., the search constraint (SC) must

hold: Right child is larger than parent is larger than left child

Marius Kloft: Alg&DS, Summer Semester 2016 8

HC Does Not Imply That the Level of All Leaves Can
Differ by More Than 1

Marius Kloft: Alg&DS, Summer Semester 2016 9

Worst-Case: How “Unbalanced” Can AVL Trees Be?

Marius Kloft: Alg&DS, Summer Semester 2016 10

Height of an AVL Tree

• Lemma
An AVL tree T with n nodes has height h ≤ O(log(n))

• Proof by induction
– We construct AVL trees with

the minimal # of nodes (n) at a
given height h

– Let m be the number of leaves
– h=0  m=1
– h=1  m=2
– h=2  m≥3
– h=3  m≥5

Marius Kloft: Alg&DS, Summer Semester 2016 11

Height of an AVL Tree

• Lemma
An AVL tree T with n nodes has height h ≤ O(log(n))

• Proof by induction
– We construct AVL trees with

the minimal # of nodes at a
given height h

– Let m(h) be the minimal
number of leaves of an AVL tree
of height h

– It holds: m(h) = m(h-1)+m(h-2)

– Such “maximally unbalanced” trees are called Fibonacci-Trees

Marius Kloft: Alg&DS, Summer Semester 2016 12

Proof Continued

• Fibonacci series: 0, 1, 1, 2, 3, 5, 8…
– Def.: fib(0)=0, fib(1)=1, fib(i)=fib(i-1)+fib(i-2)

• Since h “starts” in i=2: ݉ ݄ ൌ fibሺ݄ ൅ 2ሻ
• We know ( Fibonacci search):

– fib(i) = round థ೔

	 ହ
ൎ థ೔

	 ହ

– Where ߶ ≔golden ratio ≈ 1.62

• Hence: ݉ ݄ ൎ థ೓శమ

	 ହ

• We know n=2m(h)-1, thus

nൎ 2∗థ
೓శమ

	 ହ
െ1 				⇒ ݄ ൑ ܿ ∗ log ݊

Marius Kloft: Alg&DS, Summer Semester 2016 13

Content of this Lecture

• AVL Trees
• Searching
• Inserting
• Deleting

Marius Kloft: Alg&DS, Summer Semester 2016 14

Searching in an AVL Tree

• Searching is in O(log(n))
– Follows directly from the worst-case height

• Note: The best-case height is ceil(log(n)), so best-case and
worst-case asymptotically are of the same order

Marius Kloft: Alg&DS, Summer Semester 2016 15

Inserting

• This requires more work
• The trick is to insert nodes efficiently without hurting the

height constraint (HC)
• We first explain the procedure(s) and then prove that HC

always holds after insertion of a node if HC held before this
insertion

Marius Kloft: Alg&DS, Summer Semester 2016 16

Framework

• Assume AVL tree T=(V, E) and we want to insert k, k∉V
• As usual, we first check whether k∈V and end in a node v

where we know that k cannot be in the subtree rooted at v
• What are the possible situations?
• This is one:

p

k’’k

k’

k<p

k’<k

Marius Kloft: Alg&DS, Summer Semester 2016 17

Height Constraints

p

k’’k

k’

k<p

k’<k

Marius Kloft: Alg&DS, Summer Semester 2016 18

How to Prove the HC

• Before insertion, HC held
– Note: k’’ cannot have children

• We now only look at this
particular case

• Height constraint
– The height of only one subtree

changes – left child of p
– Adding k does not hurt HC in p (because k’’ exists)
– Thus, HC also holds after insertion

p

k’’k

k’

Marius Kloft: Alg&DS, Summer Semester 2016 19

The Essential Information

• Before insertion, HC held
– Note: k’’ cannot have children

• We now only look at this
particular case

• Height constraint
– The height of only one subtree

changes – left child of p
– Adding k does not hurt HC in p (because k’’ exists)
– Thus, HC also holds after insertion

p

k’’k

k’

Marius Kloft: Alg&DS, Summer Semester 2016 20

Other Cases

• Also trivial

• Problem
– The left subtree of k’ changes its height
– We have to look at the height of the

right subtree of k’ to decide what to do
– Actually, we only need to know if it is

larger, smaller, or equal in height to the
left subtree (before insertion)

p

k’’ k

k’

p

k

k’

Marius Kloft: Alg&DS, Summer Semester 2016 21

Abstraction

• We assume that we found the position of k such that SC
holds after insertion

• To check HC, we need to know the height differences in
every node that is an ancestor of the new position of k

• Definition
Let T=(V, E) be a tree and p∈V. We define
bal(p) = height(right_child(p)) – height(left_child(p))

• Clearly, if T is an AVL tree, then p: bal(p) ∈ {-1, 0, 1}

Marius Kloft: Alg&DS, Summer Semester 2016 22

New Presentation

p

k’’k

k’

p

k’’ k

k’

p

k

k’

+1

0k

-1

0 k

0

k

Marius Kloft: Alg&DS, Summer Semester 2016 23

More Systematic

• Assume AVL tree T=(V, E) and we want to insert k, k∉V
• We found the node p under which we want to insert k
• Three possible cases

• Case 1: bal(p)=+1
– Then there exists a right “subtree” of p

(one node only)
– We insert k as left child
– Height of p doesn’t change

• Ancestors of p remain unaffected
– Adapt bal(p) and we are done

+1

0

0

0k

Marius Kloft: Alg&DS, Summer Semester 2016 24

Case 2

• Assume AVL tree T=(V, e) and we want to insert k, k∉V
• We found the node p under which we want to insert k
• Three possible cases

• Case 2: bal(p)=-1
– Then there exists a left “subtree” of p

(one node only)
– We insert k as right child
– Height of p doesn’t change

• Ancestors of p remain unaffected
– Adapt bal(p) and we are done

-1

0

0

0 k

Marius Kloft: Alg&DS, Summer Semester 2016 25

Case 3

• Assume AVL tree T=(V, e) and we want to insert k, k∉V
• We found the node p under which we want to insert k
• Three possible cases

• Case 3: bal(p)=0
– There is neither a left nor a

right subtree of p (p is a leaf)
– We insert k as left or right child
– Height of p changes (HC valid?)
– Ancestors of p are affected
– Adapt bal(p) and look at parent(p)

0

+/-1

k?k?

Marius Kloft: Alg&DS, Summer Semester 2016 26

Up the Tree

• In case 3 (bal(p)=0) we have to see if HC is hurt in any of
the ancestors of p

• We call a procedure upin(p) recursively
– We look at the parent p’ of p
– We check bal(p’) to see if the height change in p breaks HC in p’
– If not, we update bal(p’) and, if bal(p’) ∈{+1,-1}, call upin(p’)
– If yes, we fix the problem locally and we are done (no further

recursive calls of upin)
• “Fixing locally” (i.e., with constant work) is the main trick

behind AVL trees
• It implies that we never have to call upin(p) more than

O(log(n)) times – the height of an AVL tree with n nodes

Marius Kloft: Alg&DS, Summer Semester 2016 27

Subcases

• p can either be the left or the right child of its parent p‘
• Note that bal(p) must be +1 or -1 when upin() is called

– We call this PC, the precondition of upin()
– In the first call, bal(p)=0 before insertion, thus +1/-1 afterwards
– In later calls: We have to check

• Case 3.1 Case 3.2

bal(p)∈{+1,-1}

p’

k

bal(p)∈{+1,-1}

p’

k

Marius Kloft: Alg&DS, Summer Semester 2016 28

Subcases of Case 3.1

• Case 3.1.1 (bal(p’)=+1)
– Right subtree of p‘ is higher than

left subtree
– Left subtree has just grown by 1
– Thus, height of p‘ doesn‘t change
– Adapt bal(p‘) and we are done

• Case 3.1.2 (bal(p’)=0)
– Left and right subtree of p’ have

same height
– Thus, height of p’ changes
– Adapt bal(p’) and call upin(p’)

• bal(p’) now is -1
• PC holds

bal(p)∈{+1,-1}

bal(p’)=+1

k

bal(p)∈{+1,-1}

bal(p’)=0

k

Marius Kloft: Alg&DS, Summer Semester 2016 29

Subcases of Case 3.1

• Case 3.1.3 (bal(p’)=-1)
– Left subtree of p‘ was already

higher than right subtree
– And has even grown further
– HC is hurt in p’
– Fix locally – but how?

• Case 3.1.3.1 Case 3.1.3.2

bal(p)∈{+1,-1}

bal(p’)=-1

k

-1

-1

1 2
3

+1

-1

1 2
3

Marius Kloft: Alg&DS, Summer Semester 2016 30

A Closer Look

• Subtree 1 contains values smaller than p (and than p’)
• Subtree 2 contains values larger than p, but smaller than p’
• Subtree 3 contains values larger than p’ (and than p)
• Can we rearrange the subtree rooted in p’ such that SC

and HC hold?

bal(p)=-1

bal(p’)=-1

1 2
3

Marius Kloft: Alg&DS, Summer Semester 2016 31

Example

• Subtree 1 contains values smaller than p (and than p’)
• Subtree 2 contains values larger than p, but smaller than p’
• Subtree 3 contains values larger than p’ (and than p)
• We change the root node

4

8

-3 5-7
9-

Marius Kloft: Alg&DS, Summer Semester 2016 32

Rotation

• Rotate nodes p and p’ to the right

4

8

-3 5-7
9-

4

8

-3 5-7 9-

Marius Kloft: Alg&DS, Summer Semester 2016 33

Rotation

• Rotate nodes p and p’ to the right
• Clearly, SC holds
• Impact on HC?

8

-3 5-7
9-

4

8

-3 5-7 9-

4

Marius Kloft: Alg&DS, Summer Semester 2016 34

Rotation and HC

• Before rotation
– HC hurt in left subtree (height

is h+2) versus right subtree
(height is h+1)

– Subtree before insertion had
height h+1

-1

-1

h h-1
h-1

0

0

h h-1 h-1

Marius Kloft: Alg&DS, Summer Semester 2016 35

Rotation and HC

• After rotation
– HC holds
– Height of subtree

unchanged
– No further upin()

-1

-1

h h-1
h-1

0

0

h h-1 h-1

• Before rotation
– HC hurt in left subtree (height

is h+2) versus right subtree
(height is h+1)

– Subtree had height h+1

Marius Kloft: Alg&DS, Summer Semester 2016 36

Recall …

• Case 3.1.3
– Left subtree of p‘ was already

higher than right subtree
– And has even grown
– HC is hurt in p’
– Fix locally
– How?

• Case 3.1.3.1 Case 3.1.3.2

bal(p)∈{+1,-1}

bal(p’)=-1

k

-1

-1

1 2
3

+1

-1

1 2
3

Marius Kloft: Alg&DS, Summer Semester 2016 37

More Intricate

• HC hurt (heights h+2 versus h)
• If we rotated to the right, p (the new root) would have a

left subtree of height h-1 and a right subtree of height h+1
• Forbidden by HC
• We have to “break” the subtree of height h

+1

-1

h-1 h
h-1

Marius Kloft: Alg&DS, Summer Semester 2016 38

One More Level of Detail

• height(v)=h
• height(x) and height(y) must be

h-1 or h-2 (one must be h-1)
• Since the subtree rooted at p has just grown in height, this

growth must have happened below v (because
bal(p)=+1), so we must have height(x)≠height(y)

+1

-1

h-1 h
h-1

+1

-1

h-1

X
h-1 or
h-2

h-1

Y
h-1 or
h-2

v

=

Marius Kloft: Alg&DS, Summer Semester 2016 39

Double Rotation

p

p’

h-1

X
h-1 or
h-2

h-1

Y
h-1 or
h-2

v

p

p’

h-1 X
h-1 or
h-2

h-1

Y
h-1 or
h-2

v

Marius Kloft: Alg&DS, Summer Semester 2016 40

Double Rotation

p

p’

h-1 X
h-1 or
h-2

h-1

Y
h-1 or
h-2

v

p

p’

h-1 X
h-1 or
h-2

h-2

Y
h-1 or
h-2

v

Marius Kloft: Alg&DS, Summer Semester 2016 41

AVL Constraints

• Adaptation
– bal(p) ∈ {0, -1}
– bal(p’) ∈ {0, +1}
– bal(v) = 0

• Height constraint
– Holds in every node

• Need to call upin(v)?
– No: Subtree had height h+1

and still has height h+1
• Search constraint?

p

p’

h-1 X
h-1 or
h-2

h-1

Y
h-1 or
h-2

v

Marius Kloft: Alg&DS, Summer Semester 2016 42

Search Constraint

p

p’

p[

]p,v[

]p’

]v,p’[

v p

p’

p[
]p,v[

]p’

]v,p’[

v

Uff

Marius Kloft: Alg&DS, Summer Semester 2016 43

Are we Done?

• Case 3.2

• Similar solution
– If bal(p’)=-1, adapt and finish
– If bal(p’)=0, adapt and call upin(parent(p’)
– If bal(p’)=+1, then

• Case 3.2.3.1: Rotate left in p
• Case 3.2.3.1: Rotate right in p, then rotate left in v

bal(p)∈{+1,-1}

p’

k

Marius Kloft: Alg&DS, Summer Semester 2016 44

Summary

• We found the node p under which we want to insert k
• Major cases

– If k<p and rightChild(p)≠null: Insert k (new left child)
– If k>p and leftChild(p)≠null: Insert k (new right child)
– If p has no children: Insert k and call upin(p)

• Procedure upin(p)
– If p=leftChild(p’)

• If bal(p’)=1: Set bal(p’)=0, done
• If bal(p’)=0: Set bal(p’)=-1, call upin(p’)
• If bal(p’)=-1:

– If bal(p)=-1: Rotate right in p, done
– If bal(p)=+1: Rotate left in p, right in v, done

– Else (p=rightChild(p’))
• …

Marius Kloft: Alg&DS, Summer Semester 2016 45

Example

• HC hurt in p
• rotate left in p

insert 9

insert 8

Marius Kloft: Alg&DS, Summer Semester 2016 46

Example

• p changes height
• HC hurt in root
• Rotate left in p, then right in root

Marius Kloft: Alg&DS, Summer Semester 2016 47

Content of this Lecture

• AVL Trees
• Searching
• Inserting
• Deleting

Marius Kloft: Alg&DS, Summer Semester 2016 48

Deleting a Key

• Follows the same scheme as insertions
– First find the node p which holds k (to be deleted)
– We will again find cases where we have to do nothing, cases where

we have to rotate or double rotate, and cases where we have to
propagate changes up the tree

Marius Kloft: Alg&DS, Summer Semester 2016 49

Major Cases

• Case 1: k has no children
• Case 2: k has only one child
• Case 3: k has two children

p

k

p

k

p

k

k’

Marius Kloft: Alg&DS, Summer Semester 2016 50

Case 1: k has no children

The other subtree rooted at p …
• Case 1.1: … is empty

– Remove k, adapt bal(p)
– call upout(p)

• Because height of subtree rooted at p
has changed

• Case 1.2: … has exactly one key
– Remove k, adapt bal(p)
– Done

• Case 1.3: … has two or three keys
– Remove k, adapt bal(p)
– Rotate right in p
– call upout(p)

p

k

p

k

p

k

Marius Kloft: Alg&DS, Summer Semester 2016 51

Case 2: k has only one child

• Replace k with k‘
• k‘ cannot have children,

or HC would not hold in k
• Height and balance of k

(now k’) has changed
• Update bal(p) and call

upout(p)

p

k

k’

Marius Kloft: Alg&DS, Summer Semester 2016 52

Case 3: k has two children

• Recall natural search trees
• We search the symmetric

predecessor q of k
– Which is the largest value in

the left subtree of k
• Replace k with q and

remove the old q by calling
delete(q) as discussed in
Case 1 and Case 2
– Note that the old q has either

no child (Case 1) or exactly
one child (Case 2)

p

k

qk

13

18

21

p

q

q

Marius Kloft: Alg&DS, Summer Semester 2016 53

Procedure upout(p)

• Invariant: Whenever we call upout(p),
the height of p has decreased by 1 and bal(p)=0

• Let p be the left child of its parent p’
– Again, the case of p being the right child of p’ is symmetric

• Case 1; bal(p’)=-1

p

bal(p’)=-1

h

upout(p’)

h

p

bal(p’)=0

h-1
h

k

Marius Kloft: Alg&DS, Summer Semester 2016 54

Procedure upout(p)

• Whenever we call upout(p), the height of p has decreased
by 1 and bal(p)=0

• Let p be the left child of its parent p’
– Again, the case of p being the right child of p’ is symmetric

• Case 2: bal(p’)=0

done

p

bal(p’)=0

h h+1

p

bal(p’)=+1

h-1 h+1

k

Marius Kloft: Alg&DS, Summer Semester 2016 55

Procedure upout(p)

• Whenever we call upout(p), the height of p has decreased
by 1 and bal(p)=0

• Let p be the left child of its parent p’
– Again, the case of p being the right child of p’ is symmetric

• Case 3: bal(p’)=+1

p

bal(p’)=+1

h+2

p

bal(p’)=+1

q

h
k

h-1 h+1

Marius Kloft: Alg&DS, Summer Semester 2016 56

Subcase 1

• Case 3.1: bal(q)=0
• Rotate left in q

Height has not changed –
update bal(p’) and bal(q’)
and done

p

bal(p’)=+1

bal(q)=0

h+1 h+1

h-1

p

bal(p’)=+1

bal(q)=-1

h+1 h+1

h-1

Marius Kloft: Alg&DS, Summer Semester 2016 57

Subcase 2

• Case 3.2: bal(q)=+1
• Rotate left in q (again)

p

bal(p’)=0

bal(q)=0

h h+1

h-1p

bal(p’)=+1

bal(q)=+1

h h+1

h-1

Height has changed –
update bal(p’) and bal(q’)
and call upout(q)

Marius Kloft: Alg&DS, Summer Semester 2016 58

Subcase 3

• Case 3.3: bal(q)=-1
• Rotate right in q, then left in z

p

bal(p’)=+1

bal(q)=-1

s

h

p

p’

bal(z)=0

Height has changed – update
balance factors & call upout(z)

z

t

q

h

h-1
h or
h-1

h or
h-1

h-1

Either s or t has height h
and the other one h or h-1

Marius Kloft: Alg&DS, Summer Semester 2016 59

Summary AVL Trees

• With a little work, we reached our goal: Searching,
inserting, and deleting is possible in O(log(n))

• One can also show that ins/del are in O(1) on average
– Because reorganizations are rare and usually stop very early

• AVL trees are a “work-horse” for keeping a sorted list
• AVL trees are bad as disk-based DS

– Disk blocks (b) are much larger than one key, and following a
pointer means one head seek

– Better: B-Trees: Trees of order b with constant height in all leaves
• B typically ~1000
• Finding a key only requires O(log1000(n)) seeks

