
Algorithms and Data Structures

Marius Kloft

Optimal Search Trees; Tries

Marius Kloft: Alg&DS, Summer Semester 2016 2

Static Key Sets

• Sometimes, the set of keys is “fixed”
– Streets of a city, cities in a country, keywords of a prog. lang., …

• Softer: Searches are much more frequent than changes
– We may spent more effort for reorganizing the tree after updates

• Example: Large-scale search engines
– Recall: A search engine creates a dictionary; every word has a link

to the set of documents containing it
– The dictionary must be accessed very fast, changes are rare
– Often, engines build complex structures to optimally support

searching over the current set of documents
– Changes are buffered and bulk-inserted periodically

Marius Kloft: Alg&DS, Summer Semester 2016 3

Scenario

• Assume a set K of keys and a bag R of requests
– Every request searches a k∈K; k’s may appear multiple times in R
– In contrast to SOL, we now don’t care about the order of requests
– Like SOL with fixed access prob. – but now we consider trees

• Naïve approach
– Build an AVL tree over K
– Every r∈R costs O(log(|K|)), i.e., we need O(|R|*log(|K|))
– This is optimal, if every k∈K appears with the same frequency in R

• What if R is highly skewed?
– Skewed: k’s are not equally distributed in R
– Rather the norm than the exception in real life (Zipf, …)
– In contrast to SOL, finding an optimal search tree for R is not trivial

Marius Kloft: Alg&DS, Summer Semester 2016 4

Example

• K={1,2,3,5,7,8,9,12,14}
• We build an AVL tree

• R1={2,5,8,7,3,12,1,8,8}
– 2+1+3+4+3+2+3+3+3=31 comparisons

• R2={9,9,1,9,2,9,5,3,9,1}
– 4+4+3+4+2+4+1+3+4+3=32 comparisons

5

8

2

14

12

1 3

7 9

Marius Kloft: Alg&DS, Summer Semester 2016 5

Example

• Let’s optimize the tree for R2
– Not a AVL tree any more

• R2={9,9,1,9,2,9,5,3,9,1}
={9,9,9,9,9,1,1,2,5,3}

– 9 and 1 should be high in the tree
– 1+1+1+1+1+2+2+4+3+5=21

• Versus 32

• Not good for R1
– R1={2,5,8,7,3,12,1,8,8}
– 4+3+5+4+5+2+2+5+5=35

• Versus 31

• But is this really the optimal search tree for R2?

5

8

2

14

121

3

7

9

Marius Kloft: Alg&DS, Summer Semester 2016 6

Content of this Lecture

• Optimal Search Trees
• Construction of Optimal Search Trees
• Searching Strings: Tries

Marius Kloft: Alg&DS, Summer Semester 2016 7

Request Model

• Assume an (ordered) set K of keys, K={k1, k2, …, kn}
• Every k is searched with frequency a1, a2, …, an
• Intervals I0 =]-∞,k1[, I1 =]k1,k2[, … , In-1=]kn-1,kn[,

and In =]kn,+∞[are searched with frequencies b0, b1, …, bn
– Searches that fail

• Together: R={k1 , … , k1, k2 , … , k2 , … , kn , … , kn ,
I0 , … , I0 , I1 , … , I1 , … , In , … , In }

14

15

10

22

18

4 11

-∞,4 4,10 10,11 11,14 14,15 15,18 22,∞18,22

an times

bn times

Marius Kloft: Alg&DS, Summer Semester 2016 8

Request Model

• Assume an (ordered) set K of keys, K={k1, k2, …, kn}
• Every k is searched with frequency a1, a2, …, an
• Intervals I0 =]-∞,k1[, I1 =]k1,k2[, … , In-1=]kn-1,kn[,

and In =]kn,+∞[are searched with frequencies b0, b1, …, bn
– Searches that fail

• Together: R={k1 , … , k1, k2 , … , k2 , … , kn , … , kn ,
I0 , … , I0 , I1 , … , I1 , … , In , … , In }

an times

bn timesa4

a5

a2

a7

a6

a1 a3

b0 b1 b2 b3 b4 b5 b7b6

Marius Kloft: Alg&DS, Summer Semester 2016 9

Optimal Search Trees

• Definition
Let T be a search tree for K and R a bag of requests. The
cost P(T) of T for R is defined as

• Definition
Let K be a set of keys and R a bag of requests. A search
tree T over K is optimal for R iff

   






n

j
jjj

n

i
ii bkkdepthakdepthTP

0
1

1
*1)[,](*1)()(

 KfortreesearchisTTPTP '|)'(min)(

Marius Kloft: Alg&DS, Summer Semester 2016 10

One More Definition

• Definition
Let T be a search tree over K and R a bag of requests. The
weight W(T) of T for R is:

• Thus, the weight of T is simply |R|
• We will need this definition for subtrees





n

j
j

n

i
i baTW

01
)(

Marius Kloft: Alg&DS, Summer Semester 2016 11

Content of this Lecture

• Optimal Search Trees
• Construction of Optimal Search Trees
• Searching Strings: Tries

Marius Kloft: Alg&DS, Summer Semester 2016 12

Finding the Optimal Search Tree

• Bad news: There are exponentially many search trees
– Proof omitted
– We cannot enumerate all search trees, compute their cost, and

then choose the cheapest
• Good news: We don’t need to look at all possible search

trees
– We can use a divide & conquer approach
– Dynamic programming: Build large solutions from smaller ones
– (Recall max_subarray etc.)

Marius Kloft: Alg&DS, Summer Semester 2016 13

Towards Divide & Conquer

• Observation: We can compute P(T) recursively
– Let kr be root of T and Tl=leftChild(kr), Tr=rightChild(kr)
– It is: P(T) = P(Tl) + P(Tr) + ar + W(Tl) + W(Tr)

= P(Tl) + P(Tr) + W(T)
– Since W(T) is the same for every possible search tree, the cost of a

tree only depends on the cost of its subtrees
• It follows: T is optimal iff Tl and Tr are optimal
• It follows: If we can solve the problem for smaller trees

(=ranges of keys), we can inductively construct solutions
for larger trees

Marius Kloft: Alg&DS, Summer Semester 2016 14

Illustration

a5a4a3b2 b3 b4 b5 a6 b6

Marius Kloft: Alg&DS, Summer Semester 2016 15

Illustration

a5

a4

a3

b2 b3 b4 b5

a6

b6

Other structures are
possible

Marius Kloft: Alg&DS, Summer Semester 2016 16

Illustration

a5

a4

a3

b2 b3 b4 b5

a6

b6

Marius Kloft: Alg&DS, Summer Semester 2016 17

Illustration

a5

a4

a3

b2 b3 b4 b5

a6

b6

Marius Kloft: Alg&DS, Summer Semester 2016 18

Illustration

a5

a4

a3

b2 b3 b4 b5

a6

b6

Marius Kloft: Alg&DS, Summer Semester 2016 19

Divide & Conquer

• Consider a range R(i,j) of keys and intervals
– R(i,j) = {]ki,ki+1[, ki+1,]ki+1,ki+2[, ki+2, … kj,]kj,kj+1[}

• Notation: k0 = -∞, kn+1 = +∞; range: 0≤i≤j≤n

• Consider optimal search tree T(i,j) for keys R(i,j)
– That’s not necessarily a subtree of T(1,n); see previous example

• One of the kl∈R(i,j) must be the root of this subtree
• Thus, kl divides R(i,j) in two halves R(i,l-1), R(l,j)
• Divide & Conquer:

– Assume we know the optimal trees for all sub-ranges R(i,l-1),
R(l,j), l=i+1,….,j

– Then, we find l and the optimal tree T(i,j) in O(j-i) using
    ),()1,(min)()(

..1
jlTPliTPTWTP

jil




Marius Kloft: Alg&DS, Summer Semester 2016 20

Bottom-Up

• We must systematically enumerate smaller T(i,j) and
puzzle them together to larger ones

• Let P(i,j) be the cost of the optimal search tree for R(i,j)
• To compute P(i,j), we need the P and W-values of

enclosed subtrees and we need to find l
– Recall: P(T) = P(T(i,l-1)) + P(T(l,j)) + W(T)

• We perform induction over the breadth b of intervals: All
intervals of breadth 1, 2 … n (and we are done)

Marius Kloft: Alg&DS, Summer Semester 2016 21

Illustration

a5a4a3b2 b3 b4 b5 a6 b6

b=1

b=2

b=3

b=4=n

Marius Kloft: Alg&DS, Summer Semester 2016 22

Induction Start

• b=0; all subintervals (i,i)
– Only one leaf (an interval without keys), no root selection required
– ∀0≤i<n+1: W(i,i) = bi

P(i,i) = W(i,i)
• b=1; all subintervals (i,i+1)

– The root is always ki+1
• The only key in this interval; l=i+1

– By definition: W(i,i+1) = bi + ai+1 + bi+1
By recursion: P(i,i+1) = P(i,i) + W(i,i+1) + P(i+1,i+1) ∀0≤i<n

Marius Kloft: Alg&DS, Summer Semester 2016 23

Induction

• General case: b>1, subintervals (i,j) with j-i=b>1
– Induction hypothesis: We know W, P for all intervals of breadth<b
– Find the index l for the optimal root of the subtrees
– Then compute

W(i,j) = W(i,l-1) + al + W(l,j)
P(i,j) = P(i,l-1) + W(i,j) + P(l,j)

• Done

Marius Kloft: Alg&DS, Summer Semester 2016 24

Implementation

• There are only (n+1)*(n+1) different pairs ݅, ݆ ∈ ሼ0,1, … , ݊ሽ
• We need one two-dimensional quadratic matrix of size

(n+1)*(n+1) for W and one for P
– Since j≥i, we actually only need half of each matrix

• Both matrixes are iteratively filled from the main diagonal
to the upper-right corner

…

b=0
b=1
…

Marius Kloft: Alg&DS, Summer Semester 2016 25

Analysis

• Space
– We need 2 arrays of size O(n*n)
– Space complexity O(n2)

• Time
– Cases b=0 and b=1 are O(n)
– We enumerate breadths from 2 to n
– For each b, we consider all possible

start positions: O(n-b) many
– In each range, we need to find the

optimal l – this is O(b)
– A range has max size n-1
– Together: O(n3)
– [Can be improved to O(n2)]

1. initialize W(i,i);
2. initialize P(i,i);
3. initialize W(i,i+1);
4. initialize P(i,i+1);
5. for b = 2 to n do
6. for i = 0 to (n-b) do
7. j := i+b;
8. find optimal l in [i,j];
9. W(i,j) := …
10. P(i,j) := …
11. end for;
12.end for;

Marius Kloft: Alg&DS, Summer Semester 2016 26

Constructing the tree

• We only showed how to compute the cost of the optimal
tree, but not how to build the tree itself

• But this is simple since we never revise decisions
• We can “grow” by a top-down approach:

– We first select the optimal root r(0,n):=l based on the computed P
and W values as saved in the respective 2D arrays

– Then for each of the two subtrees we select ideal splitting point
– Etc.

• The sequence of computed l-values fully determine the
tree

Marius Kloft: Alg&DS, Summer Semester 2016 27

Relevance

• Nice and instructive
• But: O(n2) is quite expensive for any large n
• Fortunately, one can compute „almost“ optimal search

trees in linear time
– Not this lecture

Marius Kloft: Alg&DS, Summer Semester 2016 28

Content of this Lecture

• Optimal Search Trees
• Construction of Optimal Search Trees
• Searching Strings: Tries

Marius Kloft: Alg&DS, Summer Semester 2016 29

Keys that are Strings

• Assume K is a set of strings of maximal length m
• We can build an AVL tree over K
• Searching requires O(log(n)) key comparisons
• But: Each string-comp requires m char-comps in WC

– Very pessimistic, but we do WC analysis
• Together: We need O(|k|*log(n)) character comparisons

for searching a key k
• Observation

– “Similar” strings will be close neighbors in the tree
– These will share prefixes (the longer, the more similar)
– These prefixes are compared again and again

Marius Kloft: Alg&DS, Summer Semester 2016 30

Example

verlaufen

verdauen

verbauen …

k=„verhalten“

verkaufen

Marius Kloft: Alg&DS, Summer Semester 2016 31

Tries

• Tries are edge-labeled trees of order
|∑|
– Developed for Information Retrieval

• Edges are labeled with chars from ∑
• Idea: Common prefixes of keys are

represented only once
• Problem: Is “verl” a key?

– Trick: Add a “$” (not in ∑) to every string
that is a valid word

– Only the leaves represent keys

v

e

r

b
d

l
k

a
u
e
n

a
u
f
e
n

a
u
e
n

a
u
f
e
n

s

$

$

Marius Kloft: Alg&DS, Summer Semester 2016 32

Analysis

• Construction of a trie over K?
– Let len(K) be the sum of all key lengths in K
– We start with an empty tree and iteratively add all kK
– To add a key k, we char-match k in the tree as long as possible
– As soon as no continuation is found, we build a new branch
– This requires O(|k|) operations (char-comps or node creations)
– It follows: Construction is in O(len(K))

• Searching a key k (which maybe in K or not in K)
– We match k from root down the tree
– When k is exhausted and we are in a leaf: k∈K
– If no continuation is found or we end in an inner node: k∉K
– It follows: Searching is in O(|k|)
– But …

Marius Kloft: Alg&DS, Summer Semester 2016 33

Space Complexity

• We have at most len(K) edges and len(K)+1 nodes
– Shared prefixes make the actual number smaller

• But we also need pointer to children
• To achieve our search complexity, choosing the right

pointer must be in O(1)
• This adds O(len(K)*|∑|) pointers
• Too much for any non-trivial alphabet

– Digital tries are a popular data structure in coding theory
– There, |∑|=2, so the pointers don’t matter much

• Furthermore, most of the pointers will be null
– Depending on |∑|, |K|, and lengths of shared prefixes

Marius Kloft: Alg&DS, Summer Semester 2016 34

Compressed Tries = Patricia Trees

• We can save further space
• A patricia tree is a trie where edges

are labeled with (sub-)strings, not
with characters

• All sequences S=<node, edge>
which do not branch are compressed
into a single edge labeled with the
concatenation of the labels in S

• More compact, less pointer
• Slightly more complicated

implementation
– E.g. insert requires splitting of labels

v
e
r

b
d

l
k

a
u
e
n

a
u
f
e
n

a
u
e
n

a
u
f
e
n

Marius Kloft: Alg&DS, Summer Semester 2016 35

Exemplary Questions

• Recall the definition of a trie. Give in implementation (in
pseudo code) for (a) searching a key k and (b) building a
trie for a string set K. You may presuppose a data
structure „list“ with operations add(c, p) for adding a pair
of character and pointer and retrieve(c), which returns the
pointer associated to c or nil.

• Build an optimal search tree for K={5,12,15,20} and
R={6,2,3,8,11,5,2,1,4}. Show the complete tables for W
and P

• Prove that all tries for any permutation of a set of strings
are identical

