

Algorithms and Data Structures

Graphs: Introduction and First Algorithms

Marius Kloft

This Course

 Introduction 	2
 Complexity analysis 	1
 Abstract Data Types 	1
 Styles of algorithms 	1
 Lists, stacks, queues 	2
 Sorting (lists) 	3
 Searching (in lists, PQs, SOL) 	5
 Hashing (to manage lists) 	2
 Trees (to manage lists) 	4
Graphs (no lists!)	4
 The End 	1
• Sum	21/26

Content of this Lecture

- Graphs
- Representing Graphs
- Traversing Graphs
- Connected Components
- Shortest Paths

Graphs

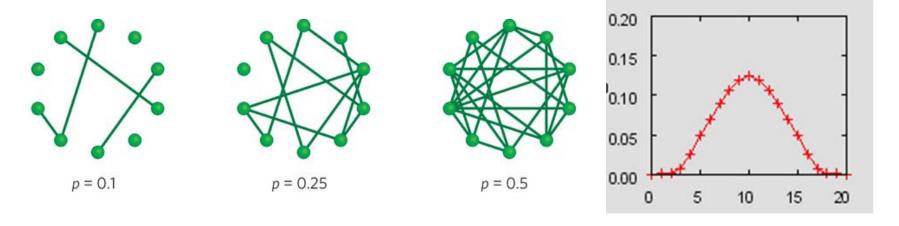
- Directed trees represent hierarchical relations
 - Directed trees represent relations that are
 - Asymmetric: parent_of, subclass_of, smaller_than, ...
 - Cycle-free
 - Binary
 - Undirected trees: Symmetric relations, but still a hierarchy
- This excludes many real-life relations
 - friend_of, similar_to, reachable_by, html_linked_to, ...
- Graphs can represent all binary relationships
 - Symmetric: Undirected graphs, asymmetric: Directed graphs
- N-ary relationships: Hypergraphs
 - exam(student, professor, subject), borrow(student, book, library)

Types of Graphs

- Most graphs you will see are binary
- Most graphs you will see are simple
 - Simple graphs: At most one edge between any two nodes
 - Contrary: multigraphs
- Some graphs you will see are undirected, some directed
- Here: Only binary, simple, finite graphs

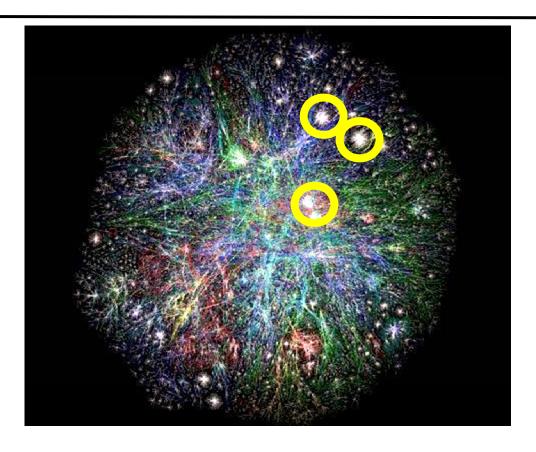
Exemplary Graphs

- Classical theoretical model: Random Graphs
 - Are created as follows: Create every possible edge with a fixed probability p



 For a graph with n nodes, this creates a graph where the degree of every node has expected value p*n, and the degree distribution follows a Poisson distribution

Web Graph



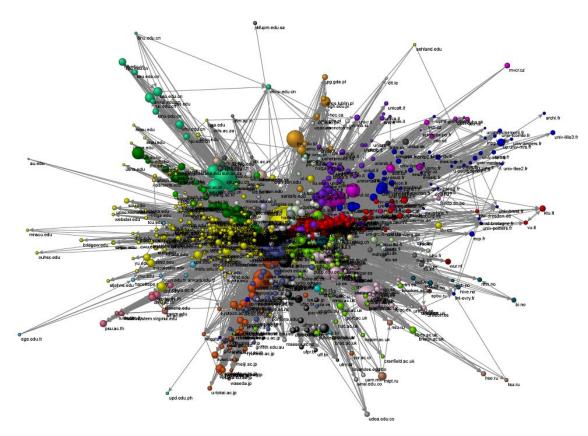
Note the strong local clustering

This is not a random graph

Graph layout is difficult

[http://img.webme.com/pic/c/chegga-hp/opte_org.jpg]

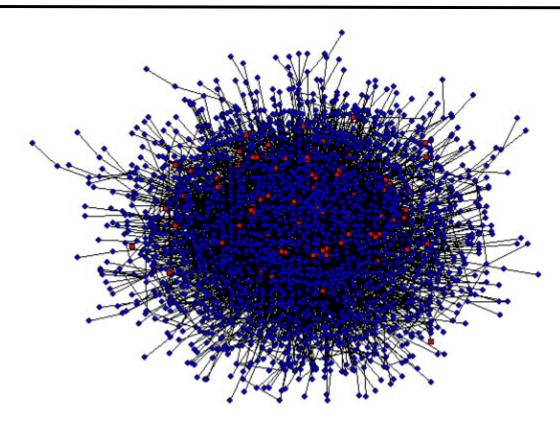
Universities Linking to Universities



Small-World Property

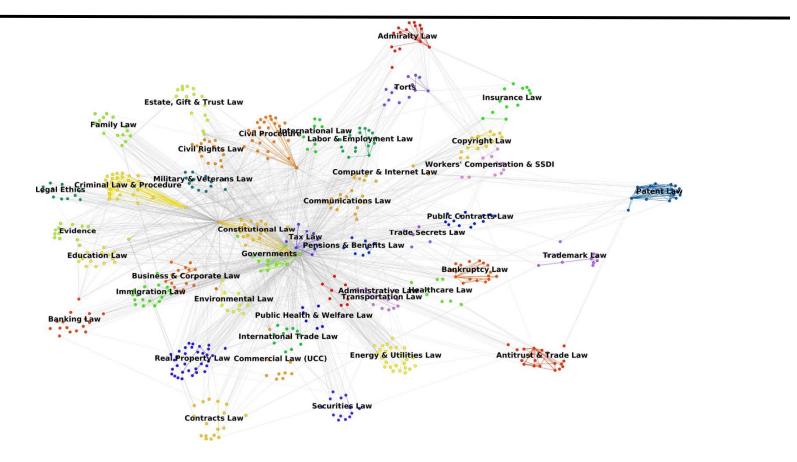
[http://internetlab.cindoc.csic.es/cv/11/world_map/map.html]

Human Protein-Protein-Interaction Network



- Still terribly incomplete
- Proteins that are close in the graph likely share function [http://www.estradalab.org/research/index.html]

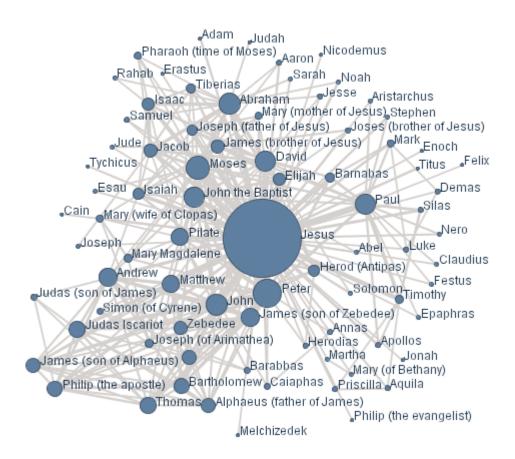
Word Co-Occurrence



- Words that are close have similar meaning
- Words cluster into topics

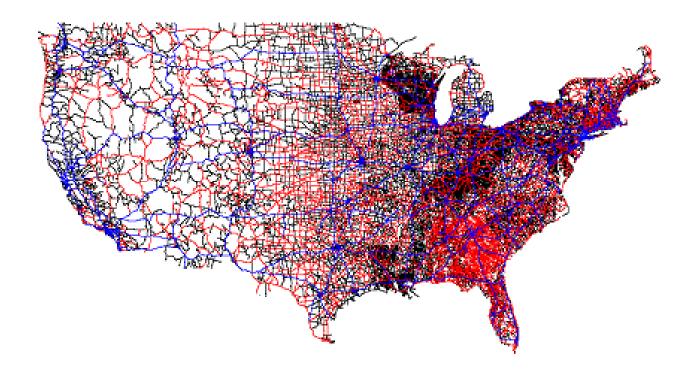
[http://www.michaelbommarito.com/blog/]

Social Networks



[http://tugll.tugraz.at/94426/files/-1/2461/2007.01.nt.social.network.png]

Road Network



Specific property: Planar graphs

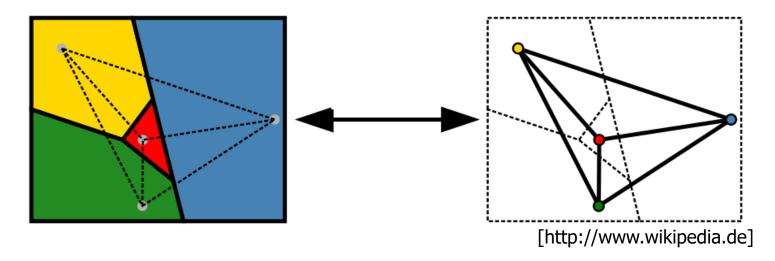
[Sanders, P. &Schultes, D. (2005). Highway Hierarchies Hasten Exact Shortest Path Queries. In *13th European Symposium on Algorithms (ESA), 568-579.*]

More Examples

• Graphs are also a wonderful abstraction

Coloring Problem

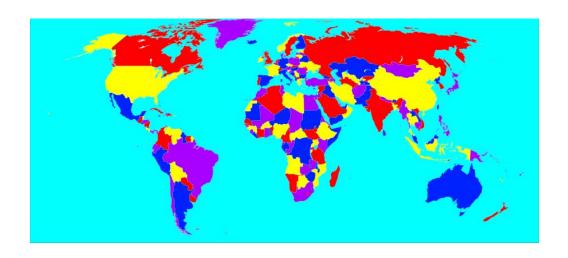
 How many colors do we need such that no two neighboring regions in a map / adjacent nodes in a graph share the same color?



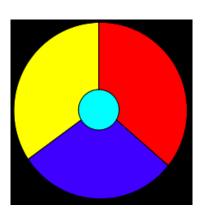
- Chromatic number: Number of colors sufficient to color a graph such that no adjacent nodes have the same color
- Every planar graph has chromatic number of at most 4

Every Map (Planar Graph) Can Be Colored With 4 Colors

This is not simple to prove

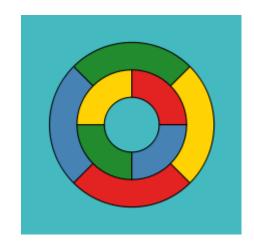


 It is easy to see that one sometimes needs at least four colors

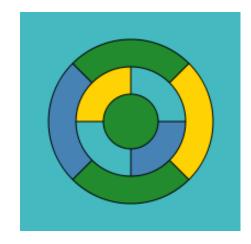


Every Planar Graph Can Be Colored With 4 Colors

But don't we sometimes need
 5 or more colors?



- Quiz: can we color this graph with <5 colors?
 - Yes



Every Planar Graph Can Be Colored With 4 Colors

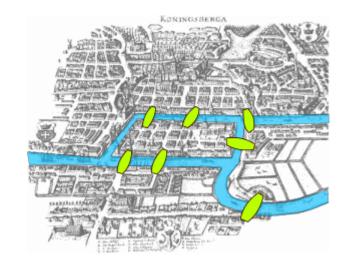
Remark:

- This was the first conjecture which until today was proven only by computers
 - Falls into many, many subcases try all of them with a program

Appel & Haken, 1976

Seven Bridges of Königsberg (Euler, 1736)

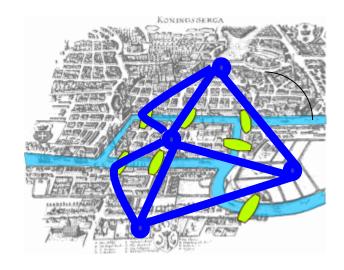
- Given a city with rivers and bridges: Is there a cyclefree path crossing every bridge exactly once?
 - Euler-Path



Source: Wikipedia.de

Königsberger Brückenproblem

- Given a city with rivers and bridges: Is there a cycle-free path crossing every bridge exactly once?
 - Euler-Path (simple to check)
- Hamiltonian path
 - ... visits each vertex exactly once
 - NP complete to check



Content of this Lecture

- Graphs
- Representing Graphs
- Traversing Graphs
- Connected Components
- Shortest Paths

Recall from Trees

Definition

A graph G=(V, E) consists of a set of vertices (nodes) V and a set of edges $(E\subseteq VxV)$.

- A sequence of edges e_1 , e_2 , ..., e_n is called a path iff $\forall 1 \le i < n$: $e_i = (v', v)$ and $e_{i+1} = (v, v)$; the length of this path is n
- A path (v_1, v_2) , (v_2, v_3) , ..., (v_{n-1}, v_n) is acyclic iff all v_i are different
- G is acyclic, if no path in G contains a cycle; otherwise it is cyclic
- A graph is connected if every pair of vertices is connected by at least one path

Definition

A graph (tree) is called undirected, if $\forall (v,v') \in E \Rightarrow (v',v) \in E$. Otherwise it is called directed.

More Definitions

Definition

Let G=(V, E) be a directed graph. Let $v \in V$

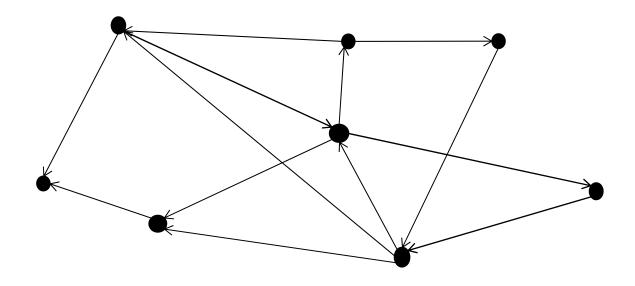
- The outdegree out(v) is the number of edges with v as start point
- The indegree in(v) is the number of edges with v as end point
- G is edge-labeled, if there is a function w:E→L that assigns an element of a set of labels L to every edge
- A labeled graph with L=N is called weighted

Remarks

- Weights can as well be reals; often we only allow positive weights
- Labels / weights are assigned to edges or nodes (or both)
- Indegree and outdegree are identical for undirected graphs

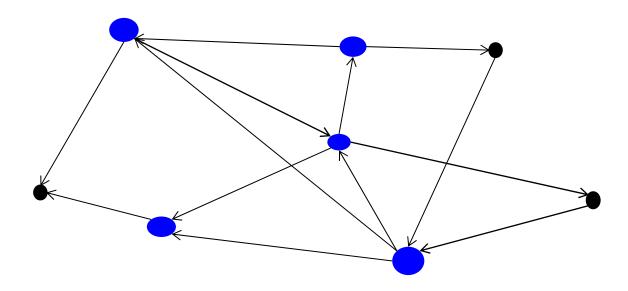
Some More Definitions

- Definition. Let G=(V, E) be a directed graph.
 - Any G'=(V', E') is called a subgraph of G, if $V'\subseteq V$ and $E'\subseteq E$ and for all $(v_1, v_2) \in E'$: $v_1, v_2 \in V'$
 - For any $V'\subseteq V$, the graph $(V', E\cap (V'\times V'))$ is called the induced subgraph of G (induced by V')



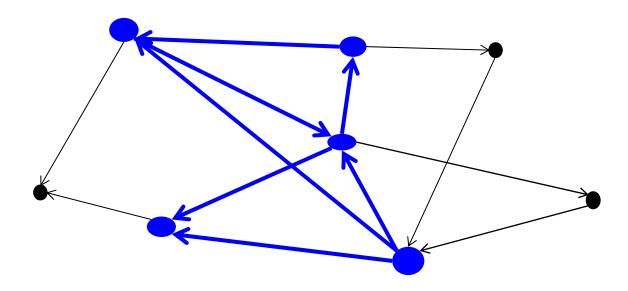
Some More Definitions

- Definition. Let G=(V, E) be a directed graph.
 - Any G'=(V', E') is called a subgraph of G, if $V'\subseteq V$ and $E'\subseteq E$ and for all $(v_1, v_2) \in E'$: $v_1, v_2 \in V'$
 - For any $V'\subseteq V$, the graph $(V', E\cap (V'\times V'))$ is called the induced subgraph of G (induced by V')



Some More Definitions

- Definition. Let G=(V, E) be a directed graph.
 - Any G'=(V', E') is called a subgraph of G, if $V'\subseteq V$ and $E'\subseteq E$ and for all $(v_1, v_2) \in E'$: $v_1, v_2 \in V'$
 - For any $V'\subseteq V$, the graph $(V', E\cap (V'\times V'))$ is called the induced subgraph of G (induced by V')



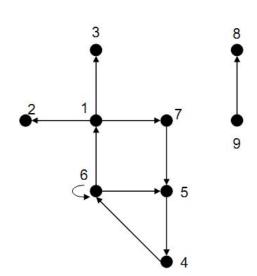
Data Structures

- From an abstract point of view, a graph is a list of nodes and a list of (weighted, directed) edges
- Two fundamental implementations
 - Adjacency matrix
 - Adjacency lists
- As usual, the representation determines which primitive operations take how long
- Appropriateness depends on the specific problem one wants to study and the nature of the graphs
 - Shortest paths, transitive hull, cliques, spanning trees, ...
 - Random, sparse/dense, scale-free, planar, bipartite, ...

Adjacency Matrix

• Definition

Let G=(V, E) be a simple graph. The adjacency matrix M_G for G is a two-dimensional matrix of size $|V|^*|V|$, where M[i,j]=1 iff $(v_i,v_i)\in E$



	1	2	3	4	5	6	7	8	9
1	0	1	1	0	0	0	1	0	0
2	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	1	0	0	0
5	0	0	0	1	0	0	0	0	0
6	1	0	0	0	1	1	0	0	0
7	0	0	0	0	1	0	0	0	0
8	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	1	0

[OW93]

Adjacency Matrix

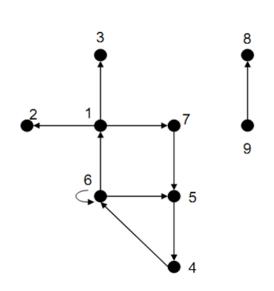
Remarks:

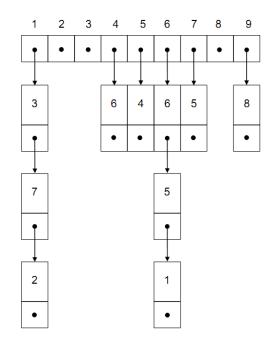
- Allows to test existence of an edge in O(1)
- Requires O(|V|) to obtain all incoming (outgoing) edges of a node
- For large graphs, M is too large to be of practical use
- If G is sparse (much less edges than $|V|^2$), M wastes a lot of space
- If G is dense, M is a very compact representation (1 bit / edge)
- In weighted graphs, M[i,j] contains the weight
- Since M must be initialized with zero's, without further tricks all algorithms working on adjacency matrices are in $\Omega(|V|^2)$

	1	2	3	4	5	6	7	8	9
1	l	1				0	1	0	0
2	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0		0	0	0
4	0	0	0	0	0	1	0	0	0
5	0	0	0	1	0	0	0	0	0
6	1	0	0	0	1	1	0	0	0
	0	0	0	0	1	0	0	0	0
	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	1	0

Adjacency List

• Definition Let G=(V, E). The adjacency list L_G for G is a list containing all nodes of G. The entry representing $v_i \in V$ also contains a list of all edges outgoing (or incoming or both) from v_i .

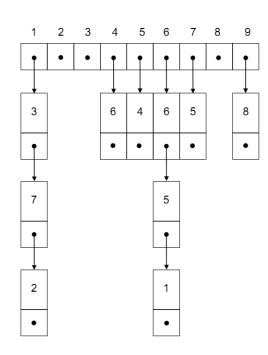




[OW93]

Adjacency List

- Remarks (assume a fixed node v)
 - Let k be the maximal outdegree of G. Then, accessing an edge outgoing from v is O(log(k)) (if list is sorted; or use hashing)
 - Obtaining a list of all outgoing edges from v is in O(k)
 - If only outgoing edges are stored, obtaining a list of all incoming edges is O(|V|*log(k)) – we need to search all lists
 - Therefore, usually outgoing and incoming edges are stored, which doubles space consumption
 - If G is sparse, L is a compact representation
 - If G is dense, L is wasteful (many pointers, many IDs)



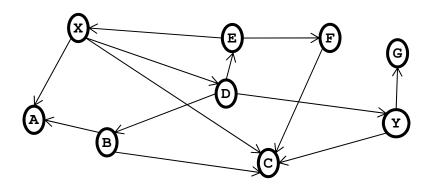
Comparison

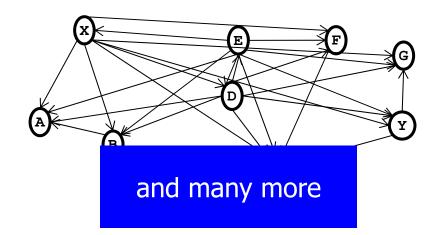
	Matrix	Lists
Test an edge for given v	O(1)	O(log(k))
All outgoing edges of v	O(n)	O(k)
Space	O(n²)	O(n+m)

- With n=|V|, m=|E|
- We assume a node-indexed array
 - L is an array and nodes are unique numbered
 - Otherwise, L has additional costs for finding v

Transitive Closure

- Definition
 Let G=(V,E) be a digraph and v_i, v_j∈V. The transitive closure of G is a graph G'=(V, E') where (v_i, v_j)∈E' iff G contains a path from v_i to v_j.
- TC usually is dense and represented as adjacency matrix
- Compact encoding of reachability information





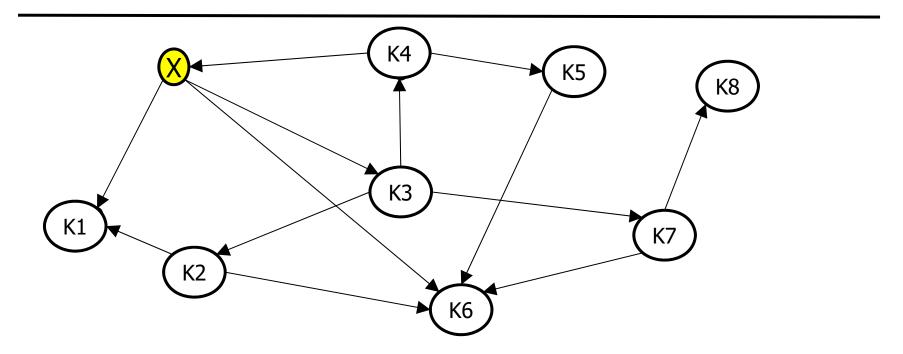
Content of this Lecture

- Graphs
- Representing Graphs
- Traversing Graphs
- Connected Components
- Shortest Paths

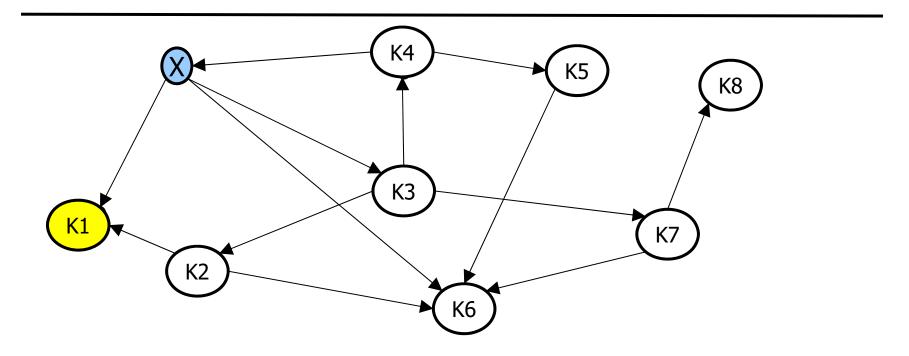
Graph Traversal

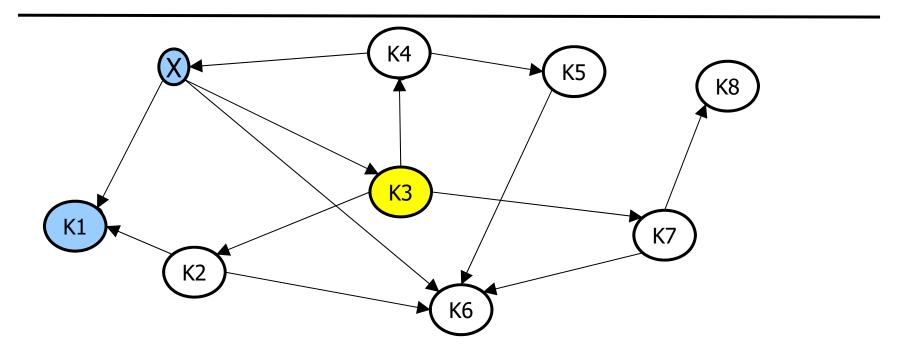
- One thing we often do with graphs is traversing them
 - "Traversal" means visiting every node exactly once
 - Not necessarily on one consecutive path (Hamiltonian path)
- Two popular orders of traversal
 - Depth-first: Using a stack
 - Breadth-first: Using a queue
 - The scheme is identical to that in tree traversal (lecture 6)

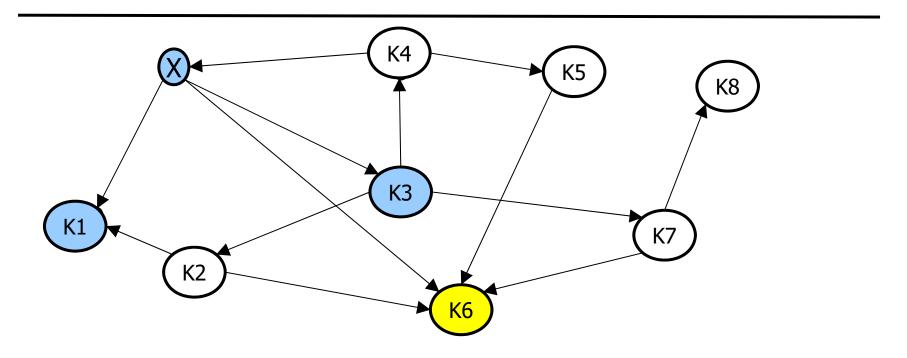
Example: Breadth-first Traversal

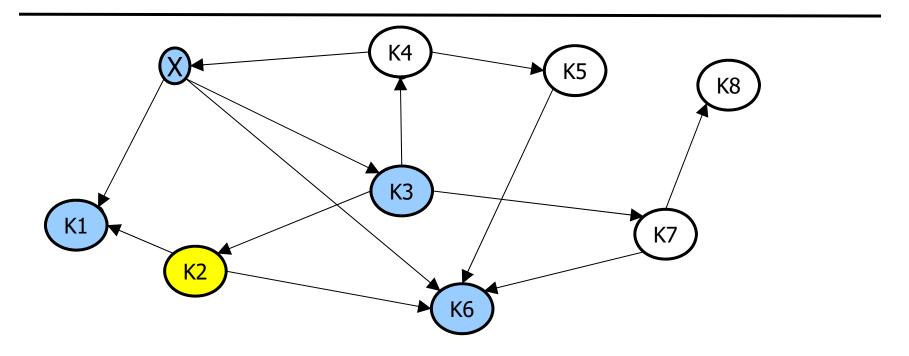


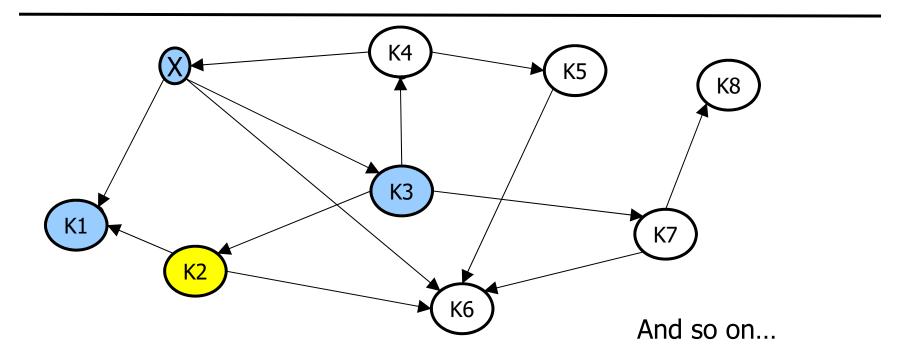
Example: Breadth-first Traversal

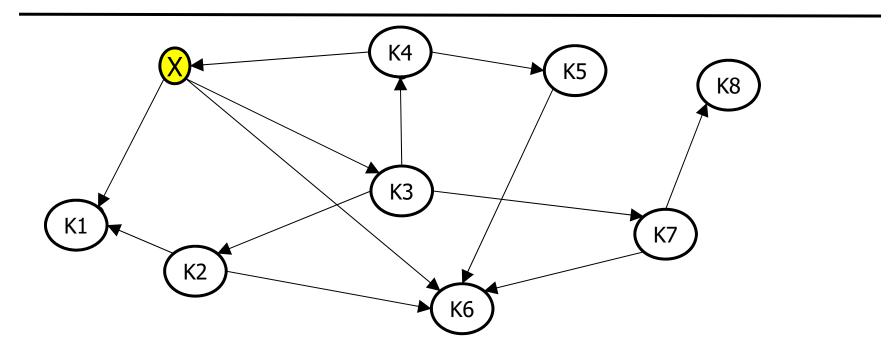


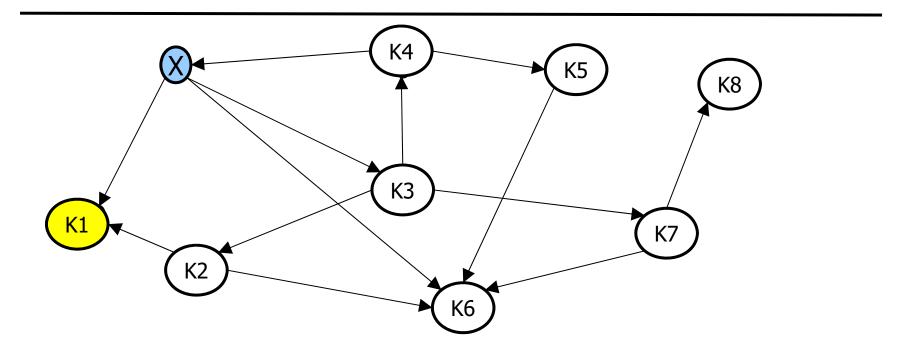


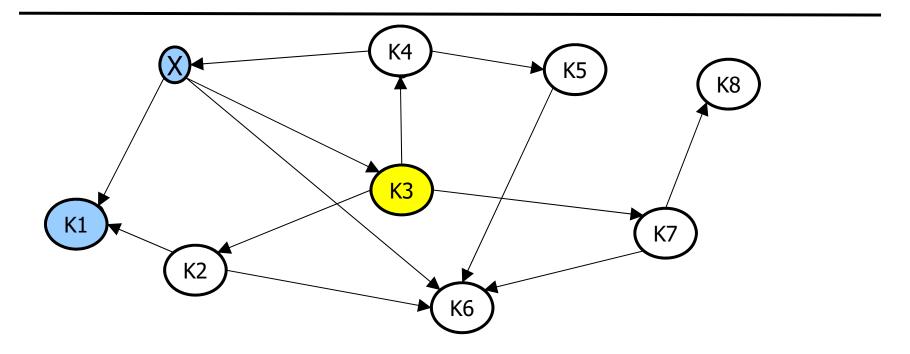


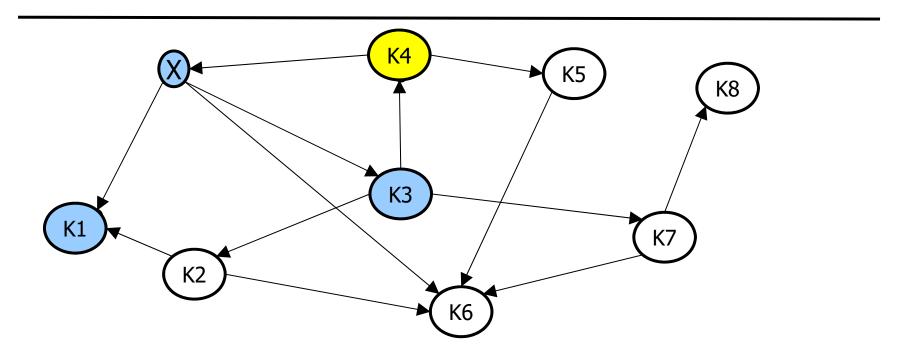


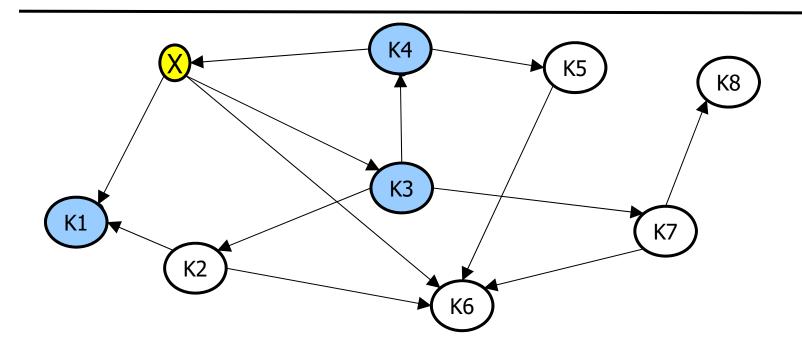










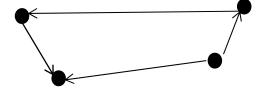


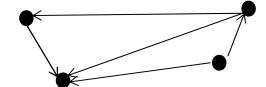
• Problem:

- We have to take care of cycles
- No root where should we start?

Breaking Cycles

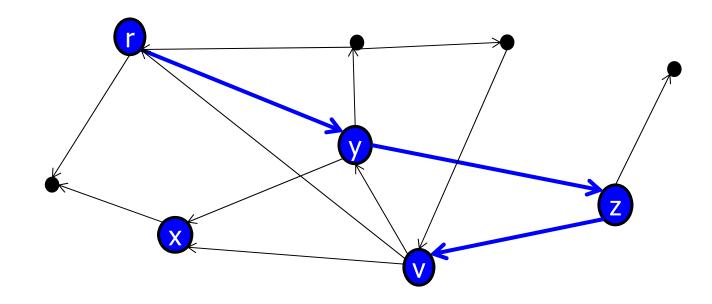
- Naïve traversal will usually visit nodes more than once
 - If there is at least one node with more than one incoming edge
- Naïve traversal might run into infinite loops
 - If the graph contains at least one cycle (is cyclic)





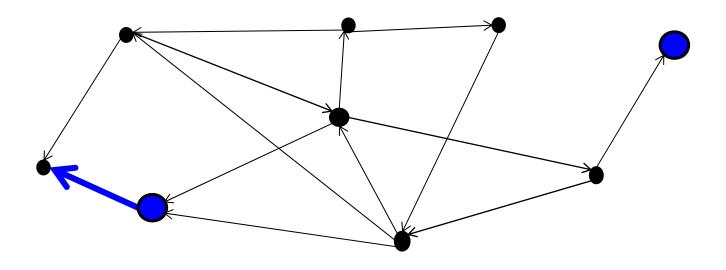
- Breaking cycles / avoiding multiple visits
 - Assume we started the traversal at a node r
 - During traversal, we keep a list S of already visited nodes
 - Assume we are in v and aim to proceed to v' using e=(v, v')∈E
 - If v'∈S, v' was visited before and we are about to run into a cycle
 - In this case, e is ignored

Example



- Started at r and went S={r, y, z, v}
- Testing (v,y): y∈S, drop
- Testing (v, r): r∈S, drop
- Testing (v, x): x∉S, proceed

Where do we Start?

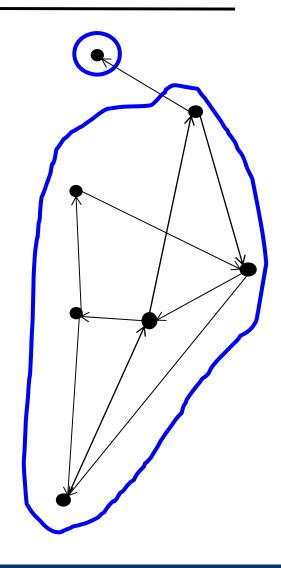


Where do we Start?

- Definition
 Let G=(V, E) and let G' be the subgraph of G induced by some V'⊆V
 - G' is called connected if it contains a path between any pair v, v'∈V'
 - G' is called maximally connected, if no subgraph induced by a superset of V' is connected
 - Any maximal connected subgraph of G is called a connected component of G, if G is undirected, and a strongly connected component, if G is directed

Where do we Start?

- If an undirected graph falls into several connected components, we cannot reach all nodes by a single traversal, no matter which node we use as start point
- If a directed graph falls into several strongly connected components, we might not reach all nodes by a single traversal
- Remedy: If the traversal gets stuck, we restart at unseen nodes until all nodes have been traversed



Depth-First Traversal on Graphs

```
func void DFS ((V,E) graph) {
  U := V;  # Unseen nodes
  S := Ø;  # Seen nodes
  while U≠Ø do
    v := any_node_from(U);
    traverse(v, S, U);
  end while;
}
```

Called once for every connected component

```
func void traverse (v node,
                     S,U list)
  s := new Stack();
  s.put(v);
  while not s.isEmpty() do
    n := s.get();
    print n; # Do something
    U := U \setminus \{n\};
    S := S \cup \{n\};
    c := n.outgoingNodes();
    foreach x in c do
      if xEU then
        s.put(x);
      end if;
    end for:
  end while;
```

Analysis

- We have every node exactly once on the stack
 - Once visited, never visited again
- We look at every edge exactly once
 - Outgoing edges of every visited node are never considered again
- Altogether: O(n+m)

```
func void traverse (v node,
                      S,U list) {
  s := new Stack();
  s.put(v);
  while not s.isEmpty() do
    n := s.get();
    print n;
    U := U \setminus \{n\};
    S := S \cup \{n\};
    c := n.outgoingNodes();
    foreach x in c do
      if xEU then
        s.put(x);
      end if;
    end for:
  end while;
```