
Algorithms and Data Structures

Marius Kloft

Graphs: Introduction and First Algorithms

Marius Kloft: Alg&DS, Summer Semester 2016 2

This Course

• Introduction 2
• Complexity analysis 1
• Abstract Data Types 1
• Styles of algorithms 1
• Lists, stacks, queues 2
• Sorting (lists) 3
• Searching (in lists, PQs, SOL) 5
• Hashing (to manage lists) 2
• Trees (to manage lists) 4
• Graphs (no lists!) 4
• The End 1
• Sum 21/26

Marius Kloft: Alg&DS, Summer Semester 2016 3

Content of this Lecture

• Graphs
• Representing Graphs
• Traversing Graphs
• Connected Components
• Shortest Paths

Marius Kloft: Alg&DS, Summer Semester 2016 4

Graphs

• Directed trees represent hierarchical relations
– Directed trees represent relations that are

• Asymmetric: parent_of, subclass_of, smaller_than, …
• Cycle-free
• Binary

– Undirected trees: Symmetric relations, but still a hierarchy
• This excludes many real-life relations

– friend_of, similar_to, reachable_by, html_linked_to, …
• Graphs can represent all binary relationships

– Symmetric: Undirected graphs, asymmetric: Directed graphs
• N-ary relationships: Hypergraphs

– exam(student, professor, subject), borrow(student, book, library)

Marius Kloft: Alg&DS, Summer Semester 2016 5

Types of Graphs

• Most graphs you will see are binary
• Most graphs you will see are simple

– Simple graphs: At most one edge between any two nodes
– Contrary: multigraphs

• Some graphs you will see are undirected, some directed
• Here: Only binary, simple, finite graphs

Marius Kloft: Alg&DS, Summer Semester 2016 6

Exemplary Graphs

• Classical theoretical model: Random Graphs
– Are created as follows: Create every possible edge with a fixed

probability p

– For a graph with n nodes, this creates a graph where the degree of
every node has expected value p*n, and the degree distribution
follows a Poisson distribution

Marius Kloft: Alg&DS, Summer Semester 2016 7

Web Graph

• Graph layout is difficult
[http://img.webme.com/pic/c/chegga-hp/opte_org.jpg]

Note the
strong local
clustering

This is not a
random
graph

Marius Kloft: Alg&DS, Summer Semester 2016 8

Universities Linking to Universities

• Small-World Property
[http://internetlab.cindoc.csic.es/cv/11/world_map/map.html]

Marius Kloft: Alg&DS, Summer Semester 2016 9

Human Protein-Protein-Interaction Network

• Still terribly incomplete
• Proteins that are close in the graph likely share function
[http://www.estradalab.org/research/index.html]

Marius Kloft: Alg&DS, Summer Semester 2016 10

Word Co-Occurrence

• Words that are close have similar meaning
• Words cluster into topics
[http://www.michaelbommarito.com/blog/]

Marius Kloft: Alg&DS, Summer Semester 2016 11

Social Networks

[http://tugll.tugraz.at/94426/files/-1/2461/2007.01.nt.social.network.png]

Marius Kloft: Alg&DS, Summer Semester 2016 12

Road Network

• Specific property: Planar graphs
[Sanders, P. &Schultes, D. (2005).Highway Hierarchies Hasten Exact Shortest Path Queries. In 13th

European Symposium on Algorithms (ESA), 568-579.]

Marius Kloft: Alg&DS, Summer Semester 2016 13

More Examples

• Graphs are also a wonderful abstraction

Marius Kloft: Alg&DS, Summer Semester 2016 14

Coloring Problem

• How many colors do we need such that no two
neighboring regions in a map / adjacent nodes in a graph
share the same color?

• Chromatic number: Number of colors sufficient to color a
graph such that no adjacent nodes have the same color

• Every planar graph has chromatic number of at most 4

[http://www.wikipedia.de]

Marius Kloft: Alg&DS, Summer Semester 2016 15

Every Map (Planar Graph) Can Be Colored With 4 Colors

• This is not simple to
prove

• It is easy to see that
one sometimes needs
at least four colors

Marius Kloft: Alg&DS, Summer Semester 2016 16

Every Planar Graph Can Be Colored With 4 Colors

• But don’t we sometimes need
5 or more colors?

• Quiz: can we color this graph
with <5 colors?
– Yes

Marius Kloft: Alg&DS, Summer Semester 2016 17

Every Planar Graph Can Be Colored With 4 Colors

Remark:
• This was the first conjecture which until today was proven

only by computers
– Falls into many, many subcases – try all of them with a program

Appel & Haken, 1976

Marius Kloft: Alg&DS, Summer Semester 2016 18

Seven Bridges of Königsberg (Euler, 1736)

• Given a city with rivers and
bridges: Is there a cycle-
free path crossing every
bridge exactly once?
– Euler-Path

Source: Wikipedia.de

Marius Kloft: Alg&DS, Summer Semester 2016 19

Königsberger Brückenproblem

• Given a city with rivers and
bridges: Is there a cycle-free
path crossing every bridge
exactly once?
– Euler-Path (simple to check)

• Hamiltonian path
– … visits each vertex exactly once
– NP complete to check

Marius Kloft: Alg&DS, Summer Semester 2016 20

Content of this Lecture

• Graphs
• Representing Graphs
• Traversing Graphs
• Connected Components
• Shortest Paths

Marius Kloft: Alg&DS, Summer Semester 2016 21

Recall from Trees

• Definition
A graph G=(V, E) consists of a set of vertices (nodes) V
and a set of edges (EVxV).
– A sequence of edges e1, e2, .., en is called a path iff ∀1≤i<n:

ei=(v‘, v) and ei+1=(v, v``); the length of this path is n
– A path (v1,v2), (v2,v3), …, (vn-1,vn) is acyclic iff all vi are different
– G is acyclic, if no path in G contains a cycle; otherwise it is cyclic
– A graph is connected if every pair of vertices is connected by at

least one path
• Definition

A graph (tree) is called undirected, if ∀(v,v’)∈E (v’,v)∈E.
Otherwise it is called directed.

Marius Kloft: Alg&DS, Summer Semester 2016 22

More Definitions

• Definition
Let G=(V, E) be a directed graph. Let vV
– The outdegree out(v) is the number of edges with v as start point
– The indegree in(v) is the number of edges with v as end point
– G is edge-labeled, if there is a function w:EL that assigns an

element of a set of labels L to every edge
– A labeled graph with L=ℕ is called weighted

• Remarks
– Weights can as well be reals; often we only allow positive weights
– Labels / weights are assigned to edges or nodes (or both)
– Indegree and outdegree are identical for undirected graphs

Marius Kloft: Alg&DS, Summer Semester 2016 23

Some More Definitions

• Definition. Let G=(V, E) be a directed graph.
– Any G’=(V’, E’) is called a subgraph of G, if V’V and E’E and for

all (v1,v2)E’: v1,v2V’
– For any V’V, the graph (V’, E(V’V’)) is called the induced

subgraph of G (induced by V’)

Marius Kloft: Alg&DS, Summer Semester 2016 24

Some More Definitions

• Definition. Let G=(V, E) be a directed graph.
– Any G’=(V’, E’) is called a subgraph of G, if V’V and E’E and for

all (v1,v2)E’: v1,v2V’
– For any V’V, the graph (V’, E(V’V’)) is called the induced

subgraph of G (induced by V’)

Marius Kloft: Alg&DS, Summer Semester 2016 25

Some More Definitions

• Definition. Let G=(V, E) be a directed graph.
– Any G’=(V’, E’) is called a subgraph of G, if V’V and E’E and for

all (v1,v2)E’: v1,v2V’
– For any V’V, the graph (V’, E(V’V’)) is called the induced

subgraph of G (induced by V’)

Marius Kloft: Alg&DS, Summer Semester 2016 26

Data Structures

• From an abstract point of view, a graph is a list of nodes
and a list of (weighted, directed) edges

• Two fundamental implementations
– Adjacency matrix
– Adjacency lists

• As usual, the representation determines which primitive
operations take how long

• Appropriateness depends on the specific problem one
wants to study and the nature of the graphs
– Shortest paths, transitive hull, cliques, spanning trees, …
– Random, sparse/dense, scale-free, planar, bipartite, …

Marius Kloft: Alg&DS, Summer Semester 2016 27

Adjacency Matrix

• Definition
Let G=(V, E) be a simple graph. The adjacency matrix MG
for G is a two-dimensional matrix of size |V|*|V|, where
M[i,j]=1 iff (vi,vj)∈E

[OW93]

Marius Kloft: Alg&DS, Summer Semester 2016 28

Adjacency Matrix

• Remarks:
– Allows to test existence of an edge

in O(1)
– Requires O(|V|) to obtain all in-

coming (outgoing) edges of a node
– For large graphs, M is too large to

be of practical use
– If G is sparse (much less edges

than |V|2), M wastes a lot of space
– If G is dense, M is a very compact representation (1 bit /

edge)
– In weighted graphs, M[i,j] contains the weight
– Since M must be initialized with zero’s, without further tricks

all algorithms working on adjacency matrices are in Ω(|V|2)

Marius Kloft: Alg&DS, Summer Semester 2016 29

Adjacency List

• Definition
Let G=(V, E). The adjacency list LG for G is a list containing
all nodes of G. The entry representing vi∈V also contains a
list of all edges outgoing (or incoming or both) from vi.

[OW93]

Marius Kloft: Alg&DS, Summer Semester 2016 30

Adjacency List

• Remarks (assume a fixed node v)
– Let k be the maximal outdegree of G. Then,

accessing an edge outgoing from v is
O(log(k)) (if list is sorted; or use hashing)

– Obtaining a list of all outgoing edges from v
is in O(k)

• If only outgoing edges are stored, obtaining
a list of all incoming edges is O(|V|*log(k)) –
we need to search all lists

• Therefore, usually outgoing and incoming
edges are stored, which doubles space
consumption

– If G is sparse, L is a compact representation
– If G is dense, L is wasteful (many pointers,

many IDs)

Marius Kloft: Alg&DS, Summer Semester 2016 31

Comparison

Matrix Lists
Test an edge for given v O(1) O(log(k))
All outgoing edges of v O(n) O(k)
Space O(n2) O(n+m)

• With n=|V|, m=|E|
• We assume a node-indexed array

• L is an array and nodes are unique numbered
• Otherwise, L has additional costs for finding v

Marius Kloft: Alg&DS, Summer Semester 2016 32

Transitive Closure

• Definition
Let G=(V,E) be a digraph and vi,vj∈V. The transitive
closure of G is a graph G’=(V, E’) where (vi,vj)∈E’ iff G
contains a path from vi to vj.

• TC usually is dense and represented as adjacency matrix
• Compact encoding of reachability information

X

D

B

FE

A

G

C

Y

X

D

B

FE

A

G

C

Y

and many more

Marius Kloft: Alg&DS, Summer Semester 2016 33

Content of this Lecture

• Graphs
• Representing Graphs
• Traversing Graphs
• Connected Components
• Shortest Paths

Marius Kloft: Alg&DS, Summer Semester 2016 34

Graph Traversal

• One thing we often do with graphs is traversing them
– “Traversal” means visiting every node exactly once

• Not necessarily on one consecutive path (Hamiltonian path)

• Two popular orders of traversal
– Depth-first: Using a stack
– Breadth-first: Using a queue
– The scheme is identical to that in tree traversal (lecture 6)

Marius Kloft: Alg&DS, Summer Semester 2016 35

Example: Breadth-first Traversal

X

K1

K2

K3

K4
K5

K7

K6

K8

Marius Kloft: Alg&DS, Summer Semester 2016 36

Example: Breadth-first Traversal

X

K1

K2

K3

K4
K5

K7

K6

K8

Marius Kloft: Alg&DS, Summer Semester 2016 37

Example: Breadth-first Traversal

X

K1

K2

K3

K4
K5

K7

K6

K8

Marius Kloft: Alg&DS, Summer Semester 2016 38

Example: Breadth-first Traversal

X

K1

K2

K3

K4
K5

K7

K6

K8

Marius Kloft: Alg&DS, Summer Semester 2016 39

Example: Breadth-first Traversal

X

K1

K2

K3

K4
K5

K7

K6

K8

Marius Kloft: Alg&DS, Summer Semester 2016 40

Example: Breadth-first Traversal

X

K1

K2

K3

K4
K5

K7

K6

K8

And so on…

Marius Kloft: Alg&DS, Summer Semester 2016 41

Example: Depth-first Traversal

X

K1

K2

K3

K4
K5

K7

K6

K8

Marius Kloft: Alg&DS, Summer Semester 2016 42

Example: Depth-first Traversal

X

K1

K2

K3

K4
K5

K7

K6

K8

Marius Kloft: Alg&DS, Summer Semester 2016 43

Example: Depth-first Traversal

X

K1

K2

K3

K4
K5

K7

K6

K8

Marius Kloft: Alg&DS, Summer Semester 2016 44

Example: Depth-first Traversal

X

K1

K2

K3

K4
K5

K7

K6

K8

Marius Kloft: Alg&DS, Summer Semester 2016 45

Example: Depth-first Traversal

• Problem:
– We have to take care of cycles
– No root – where should we start?

X

K1

K2

K3

K4
K5

K7

K6

K8

Marius Kloft: Alg&DS, Summer Semester 2016 46

Breaking Cycles

• Naïve traversal will usually visit nodes more than once
– If there is at least one node with more than one incoming edge

• Naïve traversal might run into infinite loops
– If the graph contains at least one cycle (is cyclic)

• Breaking cycles / avoiding multiple visits
– Assume we started the traversal at a node r
– During traversal, we keep a list S of already visited nodes
– Assume we are in v and aim to proceed to v’ using e=(v, v’)∈E
– If v’∈S, v’ was visited before and we are about to run into a cycle
– In this case, e is ignored

Marius Kloft: Alg&DS, Summer Semester 2016 47

Example

• Started at r and went S={r, y, z, v}
• Testing (v,y): y∈S, drop
• Testing (v, r): r∈S, drop
• Testing (v, x): x∉S, proceed

r

y

x
z

v

Marius Kloft: Alg&DS, Summer Semester 2016 48

Where do we Start?

Marius Kloft: Alg&DS, Summer Semester 2016 49

Where do we Start?

• Definition
Let G=(V, E) and let G’ be the subgraph of G induced
by some V’V
– G’ is called connected if it contains a path between any pair v,v’∈V’
– G’ is called maximally connected, if no subgraph induced by

a superset of V’ is connected
– Any maximal connected subgraph of G is called a connected

component of G, if G is undirected, and a strongly connected
component, if G is directed

Marius Kloft: Alg&DS, Summer Semester 2016 50

Where do we Start?

• If an undirected graph falls into
several connected components, we
cannot reach all nodes by a single
traversal, no matter which node we
use as start point

• If a directed graph falls into several
strongly connected components, we
might not reach all nodes by a
single traversal

• Remedy: If the traversal gets stuck,
we restart at unseen nodes until all
nodes have been traversed

Marius Kloft: Alg&DS, Summer Semester 2016 51

Depth-First Traversal on Graphs

func void DFS ((V,E) graph) {
U := V; # Unseen nodes
S := ∅; # Seen nodes
while U≠ do
v := any_node_from(U);
traverse(v, S, U);

end while;
}

func void traverse (v node,
S,U list)

{
s := new Stack();
s.put(v);
while not s.isEmpty() do

n := s.get();
print n; # Do something
U := U \ {n};
S := S  {n};
c := n.outgoingNodes();
foreach x in c do

if x∈U then
s.put(x);

end if;
end for;

end while;
}

Called once for
every connected

component

Marius Kloft: Alg&DS, Summer Semester 2016 52

Analysis

• We have every node exactly
once on the stack
– Once visited, never visited again

• We look at every edge exactly
once
– Outgoing edges of every visited

node are never considered again
• Altogether: O(n+m)

func void traverse (v node,
S,U list) {

s := new Stack();
s.put(v);
while not s.isEmpty() do
n := s.get();
print n;
U := U \ {n};
S := S  {n};
c := n.outgoingNodes();
foreach x in c do
if x∈U then
s.put(x);

end if;
end for;

end while;
}

