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This Course

• Introduction 2
• Complexity analysis 1
• Abstract Data Types 1
• Styles of algorithms 1
• Lists, stacks, queues 2
• Sorting (lists) 3
• Searching (in lists, PQs, SOL) 5
• Hashing (to manage lists) 2
• Trees (to manage lists) 4
• Graphs (no lists!) 4
• The End 1
• Sum 21/26
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Content of this Lecture

• Graphs
• Representing Graphs
• Traversing Graphs
• Connected Components
• Shortest Paths
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Graphs

• Directed trees represent hierarchical relations
– Directed trees represent relations that are 

• Asymmetric: parent_of, subclass_of, smaller_than, …
• Cycle-free 
• Binary

– Undirected trees: Symmetric relations, but still a hierarchy
• This excludes many real-life relations

– friend_of, similar_to, reachable_by, html_linked_to, …
• Graphs can represent all binary relationships

– Symmetric: Undirected graphs, asymmetric: Directed graphs
• N-ary relationships: Hypergraphs

– exam(student, professor, subject), borrow(student, book, library)
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Types of Graphs

• Most graphs you will see are binary
• Most graphs you will see are simple

– Simple graphs: At most one edge between any two nodes
– Contrary: multigraphs

• Some graphs you will see are undirected, some directed
• Here: Only binary, simple, finite graphs
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Exemplary Graphs

• Classical theoretical model: Random Graphs
– Are created as follows: Create every possible edge with a fixed 

probability p

– For a graph with n nodes, this creates a graph where the degree of 
every node has expected value p*n, and the degree distribution 
follows a Poisson distribution
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Web Graph

• Graph layout is difficult
[http://img.webme.com/pic/c/chegga-hp/opte_org.jpg]

Note the 
strong local 
clustering

This is not a 
random 
graph
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Universities Linking to Universities

• Small-World Property
[http://internetlab.cindoc.csic.es/cv/11/world_map/map.html]



Marius Kloft: Alg&DS, Summer Semester 2016 9

Human Protein-Protein-Interaction Network 

• Still terribly incomplete
• Proteins that are close in the graph likely share function
[http://www.estradalab.org/research/index.html]
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Word Co-Occurrence

• Words that are close have similar meaning
• Words cluster into topics
[http://www.michaelbommarito.com/blog/]
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Social Networks

[http://tugll.tugraz.at/94426/files/-1/2461/2007.01.nt.social.network.png]
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Road Network

• Specific property: Planar graphs
[Sanders, P. &Schultes, D. (2005).Highway Hierarchies Hasten Exact Shortest Path Queries. In 13th 

European Symposium on Algorithms (ESA), 568-579.]
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More Examples

• Graphs are also a wonderful abstraction
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Coloring Problem

• How many colors do we need such that no two 
neighboring regions in a map / adjacent nodes in a graph
share the same color? 

• Chromatic number: Number of colors sufficient to color a 
graph such that no adjacent nodes have the same color

• Every planar graph has chromatic number of at most 4

[http://www.wikipedia.de]
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Every Map (Planar Graph) Can Be Colored With 4 Colors 

• This is not simple to 
prove

• It is easy to see that 
one sometimes needs 
at least four colors
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Every Planar Graph Can Be Colored With 4 Colors 

• But don’t we sometimes need 
5 or more colors?

• Quiz: can we color this graph 
with <5 colors?
– Yes
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Every Planar Graph Can Be Colored With 4 Colors 

Remark:
• This was the first conjecture which until today was proven 

only by computers
– Falls into many, many subcases – try all of them with a program

Appel & Haken, 1976
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Seven Bridges of Königsberg (Euler, 1736)

• Given a city with rivers and 
bridges: Is there a cycle-
free path crossing every 
bridge exactly once?
– Euler-Path

Source: Wikipedia.de
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Königsberger Brückenproblem

• Given a city with rivers and 
bridges: Is there a cycle-free 
path crossing every bridge 
exactly once?
– Euler-Path (simple to check)

• Hamiltonian path
– … visits each vertex exactly once
– NP complete to check
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Content of this Lecture

• Graphs
• Representing Graphs
• Traversing Graphs
• Connected Components
• Shortest Paths
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Recall from Trees

• Definition
A graph G=(V, E) consists of a set of vertices (nodes) V 
and a set of edges (EVxV). 
– A sequence of edges e1, e2, .., en is called a path iff ∀1≤i<n: 

ei=(v‘, v) and ei+1=(v, v``); the length of this path is n
– A path (v1,v2), (v2,v3), …, (vn-1,vn) is acyclic iff all vi are different
– G is acyclic, if no path in G contains a cycle; otherwise it is cyclic
– A graph is connected if every pair of vertices is connected by at 

least one path
• Definition

A graph (tree) is called undirected, if ∀(v,v’)∈E (v’,v)∈E. 
Otherwise it is called directed.
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More Definitions

• Definition
Let G=(V, E) be a directed graph. Let vV
– The outdegree out(v) is the number of edges with v as start point
– The indegree in(v) is the number of edges with v as end point
– G is edge-labeled, if there is a function w:EL that assigns an 

element of a set of labels L to every edge
– A labeled graph with L=ℕ is called weighted

• Remarks
– Weights can as well be reals; often we only allow positive weights
– Labels / weights are assigned to edges or nodes (or both)
– Indegree and outdegree are identical for undirected graphs
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Some More Definitions

• Definition. Let G=(V, E) be a directed graph.
– Any G’=(V’, E’) is called a subgraph of G, if V’V and E’E and for 

all (v1,v2)E’: v1,v2V’
– For any V’V, the graph (V’, E(V’V’)) is called the induced 

subgraph of G (induced by V’)



Marius Kloft: Alg&DS, Summer Semester 2016 24

Some More Definitions

• Definition. Let G=(V, E) be a directed graph.
– Any G’=(V’, E’) is called a subgraph of G, if V’V and E’E and for 

all (v1,v2)E’: v1,v2V’
– For any V’V, the graph (V’, E(V’V’)) is called the induced 

subgraph of G (induced by V’)



Marius Kloft: Alg&DS, Summer Semester 2016 25

Some More Definitions
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Data Structures

• From an abstract point of view, a graph is a list of nodes 
and a list of (weighted, directed) edges

• Two fundamental implementations
– Adjacency matrix
– Adjacency lists

• As usual, the representation determines which primitive 
operations take how long

• Appropriateness depends on the specific problem one 
wants to study and the nature of the graphs
– Shortest paths, transitive hull, cliques, spanning trees, …
– Random, sparse/dense, scale-free, planar, bipartite, …
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Adjacency Matrix

• Definition
Let G=(V, E) be a simple graph. The adjacency matrix MG
for G is a two-dimensional matrix of size |V|*|V|, where 
M[i,j]=1 iff (vi,vj)∈E

[OW93]
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Adjacency Matrix

• Remarks:
– Allows to test existence of an edge 

in O(1) 
– Requires O(|V|) to obtain all in-

coming (outgoing) edges of a node
– For large graphs, M is too large to 

be of practical use
– If G is sparse (much less edges 

than |V|2), M wastes a lot of space
– If G is dense, M is a very compact representation (1 bit / 

edge)
– In weighted graphs, M[i,j] contains the weight
– Since M must be initialized with zero’s, without further tricks 

all algorithms working on adjacency matrices are in Ω(|V|2)
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Adjacency List

• Definition
Let G=(V, E). The adjacency list LG for G is a list containing 
all nodes of G. The entry representing vi∈V also contains a 
list of all edges outgoing (or incoming or both) from vi. 

[OW93]
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Adjacency List

• Remarks (assume a fixed node v)
– Let k be the maximal outdegree of G. Then, 

accessing an edge outgoing from v is 
O(log(k)) (if list is sorted; or use hashing)

– Obtaining a list of all outgoing edges from v 
is in O(k)

• If only outgoing edges are stored, obtaining 
a list of all incoming edges is O(|V|*log(k)) –
we need to search all lists

• Therefore, usually outgoing and incoming 
edges are stored, which doubles space 
consumption

– If G is sparse, L is a compact representation
– If G is dense, L is wasteful (many pointers, 

many IDs)
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Comparison

Matrix Lists
Test an edge for given v O(1) O(log(k))
All outgoing edges of v O(n) O(k)
Space O(n2) O(n+m)

• With n=|V|, m=|E|
• We assume a node-indexed array

• L is an array and nodes are unique numbered
• Otherwise, L has additional costs for finding v
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Transitive Closure

• Definition
Let G=(V,E) be a digraph and vi,vj∈V. The transitive 
closure of G is a graph G’=(V, E’) where (vi,vj)∈E’ iff G 
contains a path from vi to vj.

• TC usually is dense and represented as adjacency matrix
• Compact encoding of reachability information
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and many more
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Content of this Lecture

• Graphs
• Representing Graphs
• Traversing Graphs
• Connected Components
• Shortest Paths
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Graph Traversal

• One thing we often do with graphs is traversing them
– “Traversal” means visiting every node exactly once

• Not necessarily on one consecutive path (Hamiltonian path)

• Two popular orders of traversal
– Depth-first: Using a stack
– Breadth-first: Using a queue
– The scheme is identical to that in tree traversal (lecture 6)
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Example: Breadth-first Traversal
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Example: Breadth-first Traversal

X

K1

K2

K3

K4
K5

K7

K6

K8



Marius Kloft: Alg&DS, Summer Semester 2016 39
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Example: Breadth-first Traversal
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And so on…
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Example: Depth-first Traversal
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Example: Depth-first Traversal
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Example: Depth-first Traversal
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Example: Depth-first Traversal

• Problem:
– We have to take care of cycles
– No root – where should we start?

X

K1

K2

K3

K4
K5

K7
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K8
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Breaking Cycles

• Naïve traversal will usually visit nodes more than once
– If there is at least one node with more than one incoming edge

• Naïve traversal might run into infinite loops
– If the graph contains at least one cycle (is cyclic)

• Breaking cycles / avoiding multiple visits
– Assume we started the traversal at a node r 
– During traversal, we keep a list S of already visited nodes 
– Assume we are in v and aim to proceed to v’ using e=(v, v’)∈E
– If v’∈S, v’ was visited before and we are about to run into a cycle
– In this case, e is ignored
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Example

• Started at r and went S={r, y, z, v}
• Testing (v,y): y∈S, drop
• Testing (v, r): r∈S, drop
• Testing (v, x): x∉S, proceed

r

y

x
z

v
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Where do we Start? 
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Where do we Start? 

• Definition
Let G=(V, E) and let G’ be the subgraph of G induced 
by some V’V 
– G’ is called connected if it contains a path between any pair v,v’∈V’ 
– G’ is called maximally connected, if no subgraph induced by 

a superset of V’ is connected
– Any maximal connected subgraph of G is called a connected 

component of G, if G is undirected, and a strongly connected 
component, if G is directed
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Where do we Start?

• If an undirected graph falls into 
several connected components, we 
cannot reach all nodes by a single 
traversal, no matter which node we 
use as start point

• If a directed graph falls into several 
strongly connected components, we 
might not reach all nodes by a 
single traversal

• Remedy: If the traversal gets stuck, 
we restart at unseen nodes until all 
nodes have been traversed
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Depth-First Traversal on Graphs

func void DFS ((V,E) graph) {
U := V;    # Unseen nodes
S := ∅; # Seen nodes
while U≠ do
v := any_node_from( U);
traverse( v, S, U);

end while;
}

func void traverse (v node, 
S,U list) 

{
s := new Stack();
s.put( v);
while not s.isEmpty() do

n := s.get();
print n; # Do something
U := U \ {n};
S := S  {n};
c := n.outgoingNodes();
foreach x in c do

if x∈U then
s.put( x);

end if;
end for;

end while;
}

Called once for 
every connected 

component
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Analysis

• We have every node exactly 
once on the stack
– Once visited, never visited again

• We look at every edge exactly 
once
– Outgoing edges of every visited 

node are never considered again
• Altogether: O(n+m)

func void traverse (v node, 
S,U list) {

s := new Stack();
s.put( v);
while not s.isEmpty() do
n := s.get();
print n;
U := U \ {n};
S := S  {n};
c := n.outgoingNodes();
foreach x in c do
if x∈U then
s.put( x);

end if;
end for;

end while;
}




