Algorithms and Data Structures

Graphs: Introduction and First Algorithms

Marius Kloft

This Course

e Introduction 2
e Complexity analysis 1
e Abstract Data Types 1
e Styles of algorithms 1
o Lists, stacks, queues 2
e Sorting (lists) 3
e Searching (in lists, PQs, SOL) 5
e Hashing (to manage lists) 2
e Trees (to manage lists) 4
e Graphs (no lists!) 4
e The End 1

2

e Sum 1/26

Marius Kloft: Alg&DS, Summer Semester 2016

Content of this Lecture

e Graphs

e Representing Graphs

e Traversing Graphs

e Connected Components
e Shortest Paths

Marius Kloft: Alg&DS, Summer Semester 2016

Graphs

e Directed trees represent hierarchical relations

— Directed trees represent relations that are
o Asymmetric: parent_of, subclass_of, smaller_than, ...
o Cycle-free
e Binary
— Undirected trees: Symmetric relations, but still a hierarchy
o This excludes many real-life relations

— friend_of, similar_to, reachable_by, html_linked_to, ...

e Graphs can represent all binary relationships
— Symmetric: Undirected graphs, asymmetric: Directed graphs

e N-ary relationships: Hypergraphs
— exam(student, professor, subject), borrow(student, book, library)

Marius Kloft: Alg&DS, Summer Semester 2016 4

Types of Graphs

e Most graphs you will see are binary

e Most graphs you will see are simple
— Simple graphs: At most one edge between any two nodes
— Contrary: multigraphs

e Some graphs you will see are undirected, some directed
e Here: Only binary, simple, finite graphs

Marius Kloft: Alg&DS, Summer Semester 2016

Exemplary Graphs

o (Classical theoretical model: Random Graphs

— Are created as follows: Create every possible edge with a fixed
probability p

0.20
015 [

I[fl.1 0r

005 |

p=0.1 p=0.25 0.00 -

— For a graph with n nodes, this creates a graph where the degree of
every node has expected value p*n, and the degree distribution
follows a Poisson distribution

Marius Kloft: Alg&DS, Summer Semester 2016

Web Graph

Note the
strong local
clustering

This is not a
random
graph

e Graph layout is difficult

[http://img.webme.com/pic/c/chegga-hp/opte_org.jpg]

Marius Kloft: Alg&DS, Summer Semester 2016

Universities Linking to Universities

*

A skl

il it

gstem virginid 564

TELC]

ageedutr

e Small-World Property

[http://internetlab.cindoc.csic.es/cv/11/world_map/map.html]

Marius Kloft: Alg&DS, Summer Semester 2016

Human Protein-Protein-Interaction Network

o Still terribly incomplete
e Proteins that are close in the graph likely share function

[http://www.estradalab.org/research/index.html]

Marius Kloft: Alg&DS, Summer Semester 2016

Word Co-Occurrence

"%
Adrﬁi'r‘a.'ih;‘{h;aw
AT e
.
.
Estate, Gift & Trust Law L Insu@raﬂncﬁe Law
: L Q o e
Family Law : & L 2%,
‘ﬁ@"a |ona aw .
o Clvil :lro “ Labor &-Employp'lent Law Copyright Law
civil’ Rights Law’ , . oy Y 3 y
v e . & N, Workers' Compensation & SSDI

vl va L Computer & Internet Law
Criminal. Law & Pruceldluaf;y.? l@rans b

Légal Ethi ics LAl Pt
ceets Comminications Law
‘ Puhll\: CcntratﬁlLaw
Evidence Constitutlonal Law#Tx Lo Tratie Secrets L-w o*
.(\.pslons & Ber\eﬂts Law o °
Education Law Governments . Trademark Faw
< e . - [3
o) B ru tc Law
Busin95§ E.Ci;rporate Law . a‘lji 'p. y:
g o Sy - ®
Immigration'Law H * Administrative Liiealthcare Law
. °® 05 a Environmental Law . Transportatlop aw
° 9 @ - LR -
Baqklng lpw Public Heal!h & Welfare Law
A
e Internathﬁal T‘rade Law
o002 g
ReaT.PropertYLaw Commenclal Law (ucc) Energy & Utilities Law Antltruh\Trade Law
"
:'.: 2 % ' =) '-
L
Securities Law
Contracts Law LR

e Words that are close have similar meaning
e Words cluster into topics

[http://www.michaelbommarito.com/blog/]

Marius Kloft: Alg&DS, Summer Semester 2016

Social Networks

Adam jydan
ara ime] Micodemus
gFharaoh {time of Mos S:'.Anrnn .

JRahah Frasts, S5arah poah
@liberias ...Ie;sp _
Isaac hrabam = ganistarchus
aSamuel gMary (mother of Jesus) Stephen

.Jnseph (father of Jesus) gloses (brother of Jesus)
wlUde guigealy @ames (brother of Jesus) '.I”m”{_Ennch

LTychicus .Mnses .Davicl Titus _aFelix

.Enj;.h .Eiarnabas

oEsal gisaial .Jﬂhnthe Baptist .Dﬁul glemas
: = Silas
LCain ghary (wife of Clopas) 7d
Pilate e5US Jiero
gloseph . 3
gllary Magdalens N Claudius
A 4o @Herod (Antipas) e
= afthew Y " Festus
oJudas (son of James) ® s’ N -EJDleDRTinm'thy
e5iman (of Cyrene) ..James (zonoffebedes) GEpaphras
udas Iscariot ehedes SANNAS
gloseph (of Aimathea) gHeradias — ghApollos
ames (son of Alphaeus .' ! Jiartha wlonah
@’ (.) eBarabbas Jary (of Bethany)

@Fhilip (the apostie) @FartholomewgCaiaphas priscilla ghduila

Thnmas.AIphaeus (father of James)
. LLhilip ithe evanagelist)
Jielchizedelt

[http://tugll.tugraz.at/94426/files/-1/2461/2007.01.nt.social.network.png]

Marius Kloft: Alg&DS, Summer Semester 2016

11

Road Network

o Specific property: Planar graphs
[Sanders, P. &Schultes, D. (2005).Highway Hierarchies Hasten Exact Shortest Path Queries. In 13th
European Symposium on Algorithms (ESA), 568-579.]

Marius Kloft: Alg&DS, Summer Semester 2016

12

More Examples

e Graphs are also a wonderful abstraction

Marius Kloft: Alg&DS, Summer Semester 2016

13

Coloring Problem

e How many colors do we need such that no two
neighboring regions in a map / adjacent nodes in a graph
share the same color?

[http: //www wikipedia. de]

e Chromatic number: Number of colors sufficient to color a
graph such that no adjacent nodes have the same color

e Every planar graph has chromatic number of at most 4

Marius Kloft: Alg&DS, Summer Semester 2016

14

Every Map (Planar Graph) Can Be Colored With 4 Colors

e This is not simple to
prove

e Itis easy to see that
one sometimes needs
at least four colors

Marius Kloft: Alg&DS, Summer Semester 2016

Every Planar Graph Can Be Colored With 4 Colors

e But don't we sometimes need
5 or more colors?

e Quiz: can we color this graph
with <5 colors?
— Yes

Marius Kloft: Alg&DS, Summer Semester 2016

Every Planar Graph Can Be Colored With 4 Colors

Remark:

e This was the first conjecture which until today was proven
only by computers
— Falls into many, many subcases — try all of them with a program

Appel & Haken, 1976

Marius Kloft: Alg&DS, Summer Semester 2016

17

Seven Bridges of Konigsberg (Euler, 1736)

 Given a city with rivers and ST AN
bridges: Is there a cycle- SR Y et

free path crossing every
bridge exactly once? A

':'-_'-!'-_-"l_- s 7 R " W 2\
WA
ST, [M a— ’
o _
STl e

oy L S K Tm /riE

— Euler-Path

Source: Wikipedia.de

Marius Kloft: Alg&DS, Summer Semester 2016

Konigsberger Brickenproblem

e Given a city with rivers and
bridges: Is there a cycle-free
path crossing every bridge
exactly once?

— Euler-Path (simple to check) SN e \

e Hamiltonian path e W
— ... visits each vertex exactly once
— NP complete to check

- i . _'. 41 --.._.‘-I .. 1#_11- L
W a0 R
v —! ‘:*:i a1

Marius Kloft: Alg&DS, Summer Semester 2016

Content of this Lecture

e Graphs

e Representing Graphs

e Traversing Graphs

e Connected Components
e Shortest Paths

Marius Kloft: Alg&DS, Summer Semester 2016

Recall from Trees

e Definition
A graph G=(V, E) consists of a set of vertices (nodes) V
and a set of edges (EcVxV).
— A sequence of edges e,, e, .., €, is called a path iff V1<i<n:
e=(v, v)and e, ,=(v, v) the length of this path is n
— A path (v,v,), (V4 V3), ..., (V,.,,V,,) IS acyclic iff all v; are different
— G is acyclic, if no path in G contains a cycle; otherwise it is cyclic
— A graph is connected if every pair of vertices is connected by at
least one path
e Definition
A graph (tree) is called undirected, if V(v,v)eE =(v,Vv)€eE.
Otherwise it is called directed.

Marius Kloft: Alg&DS, Summer Semester 2016

21

More Definitions

e Definition
Let G=(V, E) be a directed graph. Let veV
— The outdegree out(v) is the number of edges with v as start point
— The indegree in(v) is the number of edges with v as end point

— G Is edge-labeled, if there is a function w:E—L that assigns an
element of a set of labels L to every edge

— A labeled graph with L=N s called weighted
e Remarks
— Weights can as well be reals; often we only allow positive weights
— Labels / weights are assigned to edges or nodes (or both)
— Indegree and outdegree are identical for undirected graphs

Marius Kloft: Alg&DS, Summer Semester 2016

22

Some More Definitions

e Definition. Let G=(V, E) be a directed graph.

— Any G’=(V, E’) is called a subgraph of G, if V<V and E<E and for
all (v, v,)eE” v, v,eV’

— For any vV, the graph (V, EN(V'xV?)) is called the induced
subgraph of G (induced by V’)

Marius Kloft: Alg&DS, Summer Semester 2016

Some More Definitions

e Definition. Let G=(V, E) be a directed graph.

— Any G’=(V, E’) is called a subgraph of G, if V<V and E<E and for
all (v, v,)eE” v, v,eV’

— For any vV, the graph (V, EN(V'xV?)) is called the induced
subgraph of G (induced by V’)

Marius Kloft: Alg&DS, Summer Semester 2016 24

Some More Definitions

e Definition. Let G=(V, E) be a directed graph.

— Any G’=(V, E’) is called a subgraph of G, if V<V and E<E and for
all (v, v,)eE” v, v,eV’

— For any vV, the graph (V, EN(V'xV?)) is called the induced
subgraph of G (induced by V’)

Marius Kloft: Alg&DS, Summer Semester 2016

Data Structures

e From an abstract point of view, a graph is a list of nodes
and a list of (weighted, directed) edges

e Two fundamental implementations
— Adjacency matrix
— Adjacency lists

e As usual, the representation determines which primitive
operations take how long

e Appropriateness depends on the specific problem one
wants to study and the nature of the graphs
— Shortest paths, transitive hull, cliques, spanning trees, ...
— Random, sparse/dense, scale-free, planar, bipartite, ...

Marius Kloft: Alg&DS, Summer Semester 2016

26

Adjacency Matrix

e Definition
Let G=(V, E) be a simple graph. The adjacency matrix M
for G is a two-dimensional matrix of size [V[*/V/, where
M/ j]=1 iff (v, v,)eE

W o -1 o,y U s W N
O O O P O o O o O
O O OO0 0O 0 o0 O RN
O O O 0 0 Cc O o F|Ww
O O O 0O P o oo Ofb
OO O P O o o0 o olw
O O O R O F O O Ot
o O O O 0O c o o =
H O o 0 0O o 0 o O
2 8 e 8 O a o el

6 v
C.i 5
® 4 [OW93]

Marius Kloft: Alg&DS, Summer Semester 2016

Adjacency Matrix

e Remarks:

1 2 3 4 5 6 7 8 9

. 1/0 1 1 0 O O 1 0 O

— Allows to test existence of an edge o 5 0 0 0 0 0 o o
in O(1) 30 0 0 0 0 0 0 0 0

— Requires O(]V]) to obtain all in- 40 0.0 0 0 1 0 0 0
coming (outgoing) edges of anode | | g é e 8 2 8

— For large graphs, M is too large to 710 0 0 0 1 0 0 0 0
be of practical use 8/0 0 0 0 0 0 0 0 O
°/0 0 O O O O 0 1 0O

— If G is sparse (much less edges
than |V|%), M wastes a lot of space

— If G is dense, M is a very compact representation (1 bit /
edge)
— In weighted graphs, M[i,j] contains the weight

— Since M must be initialized with zero’s, without further tricks
all algorithms working on adjacency matrices are in Q(|V|?2)

Marius Kloft: Alg&DS, Summer Semester 2016

Adjacency List

e Definition
Let G=(V, E). The adjacency list L for G Is a list containing
all nodes of G. The entry representing v,V also contains a
list of all edges outgoing (or incoming or both) from v.

1 2 3 4 5 6 7 8 9

[OW93]

Marius Kloft: Alg&DS, Summer Semester 2016 29

Adjacency List

e Remarks (assume a fixed node v)
— Let k be the maximal outdegree of G. Then,

accessing an edge outgoing from v is 23 456 T 8 8
O(log(k)) (if list is sorted; or use hashing) e
— Obtaining a list of all outgoing edges from v . olals|s] [s
is in O(k)
e If only outgoing edges are stored, obtaining !
a list of all incoming edges is O(|V|*log(k)) — 7 5

we need to search all lists

e Therefore, usually outgoing and incoming
edges are stored, which doubles space
consumption

— If G is sparse, L is a compact representation

— If G is dense, L is wasteful (many pointers,
many IDs)

Marius Kloft: Alg&DS, Summer Semester 2016

Comparison

Matrix Lists
Test an edge for given v O(1) O(log(k))
All outgoing edges of v O(n) O(k)
Space O(n?) O(n+m)

e With n=|V|, m=|E|
e We assume a node-indexed array

e L isan array and nodes are unique numbered
e Otherwise, L has additional costs for finding v

Marius Kloft: Alg&DS, Summer Semester 2016

Transitive Closure

e Definition
Let G=(V,E) be a digraph and v, v,eV. The transitive
closure of G Is a graph G'=(V, E’) where (v, v,)EE” iff G
contains a path from v; to v,

e TC usually is dense and represented as adjacency matrix

e Compact encoding of reachability information

and many more

Marius Kloft: Alg&DS, Summer Semester 2016

Content of this Lecture

e Graphs

e Representing Graphs

e Traversing Graphs

e Connected Components
e Shortest Paths

Marius Kloft: Alg&DS, Summer Semester 2016

33

Graph Traversal

e One thing we often do with graphs is traversing them
— “Traversal” means visiting every node exactly once
e Not necessarily on one consecutive path (Hamiltonian path)
e Two popular orders of traversal
— Depth-first: Using a stack
— Breadth-first: Using a queue
— The scheme is identical to that in tree traversal (lecture 6)

Marius Kloft: Alg&DS, Summer Semester 2016

Example: Breadth-first Traversal

Marius Kloft: Alg&DS, Summer Semester 2016

Example: Breadth-first Traversal

Marius Kloft: Alg&DS, Summer Semester 2016

Example: Breadth-first Traversal

Marius Kloft: Alg&DS, Summer Semester 2016

Example: Breadth-first Traversal

Marius Kloft: Alg&DS, Summer Semester 2016

Example: Breadth-first Traversal

Marius Kloft: Alg&DS, Summer Semester 2016

Example: Breadth-first Traversal

And so on...

Marius Kloft: Alg&DS, Summer Semester 2016

Example: Depth-first Traversal

Marius Kloft: Alg&DS, Summer Semester 2016

Example: Depth-first Traversal

Marius Kloft: Alg&DS, Summer Semester 2016

Example: Depth-first Traversal

Marius Kloft: Alg&DS, Summer Semester 2016

Example: Depth-first Traversal

Marius Kloft: Alg&DS, Summer Semester 2016

Example: Depth-first Traversal

e Problem:
— We have to take care of cycles
— No root — where should we start?

Marius Kloft: Alg&DS, Summer Semester 2016

Breaking Cycles

e Naive traversal will usually visit nodes more than once
— If there is at least one node with more than one incoming edge

e Naive traversal might run into infinite loops
— If the graph contains at least one cycle (is cyclic)

o

e Breaking cycles / avoiding multiple visits
— Assume we started the traversal at a node r
— During traversal, we keep a list S of already visited nodes
— Assume we are in v and aim to proceed to v’ using e=(v, V’)eE
— If v'eS, v’ was visited before and we are about to run into a cycle
— In this case, e is ignored

Marius Kloft: Alg&DS, Summer Semester 2016

Example

e Started at r and went S={r, vy, z, v}
e Testing (v,y): Y€S, drop

e Testing (v, r): resS, drop

e Testing (v, X): x&S, proceed

Marius Kloft: Alg&DS, Summer Semester 2016

Where do we Start?

Marius Kloft: Alg&DS, Summer Semester 2016

Where do we Start?

e Definition
Let G=(V, E) and let G’ be the subgraph of G induced
by some VclV
— G’Is called connected if it contains a path between any pair v,veV’

— G’Is called maximally connected, if no subgraph induced by
a superset of V' is connected

— Any maximal connected subgraph of G is called a connected
component of G, If G is undirected, and a strongly connected
component, if G is directed

Marius Kloft: Alg&DS, Summer Semester 2016

Where do we Start?

e If an undirected graph falls into
several connected components, we
cannot reach all nodes by a single
traversal, no matter which node we
use as start point

e If a directed graph falls into several
strongly connected components, we
might not reach all nodes by a
single traversal

e Remedy: If the traversal gets stuck,
we restart at unseen nodes until all
nodes have been traversed

Marius Kloft: Alg&DS, Summer Semester 2016

Depth-First Traversal on Graphs

func void DFS ((V,E) graph) {

U :=V; # Unseen nodes
S := 0@; # Seen nodes
while U#J do

v := any node from(U);

traverse(v, S, U);
end while;

}

Called once for
every connected
component

Marius Kloft: Alg&DS, Summer Semester 2016

func void traverse (v node,
7 S,U list)
{
s := new Stack()
s.put(v);
while not s.isEmpty() do
n := s.get();

print n; # Do something
U :=U \ {n};

S := S U {n};

¢ := n.outgoingNodes() ;

foreach x in ¢ do
if x€U then
s.put(x);
end if;
end for;
end while;

Analysis

e We have every node exactly
once on the stack
— Once visited, never visited again
e We look at every edge exactly
once
— Outgoing edges of every visited
node are never considered again
e Altogether: O(n+m)

Marius Kloft: Alg&DS, Summer Semester 2016

func void traverse (v node,
S,U list) {
s := new Stack();
s.put(v);
while not s.isEmpty () do
n := s.get();

print n;
U :=U \ {n}
S :=S U {n};

n.outgoingNodes () ;
foreach x in ¢ do
if x€U then
s.put(x);
end if;
end for;
end while;

}

