

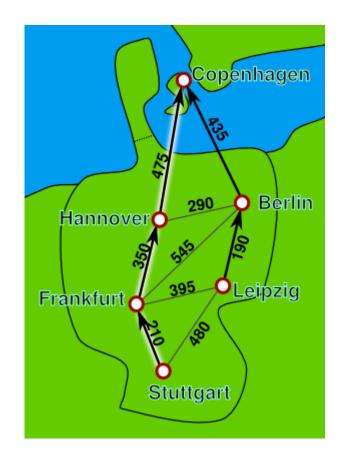
Algorithms and Data Structures

Graphs 2: Shortest Paths

Marius Kloft

Content of this Lecture

- Single-Source-Shortest-Paths:
 Dijkstra's Algorithm
- Single-Source-Single-Target
- All-Pairs Shortest Paths
 - Transitive closure & unweighted:
 Warshall's algorithm
 - Negative weights: Floyd's algorithm



Source: http://beej.us/blog/data/dijkstras-shortest-path/images/dspmap.png

Distance in Graphs

Definition

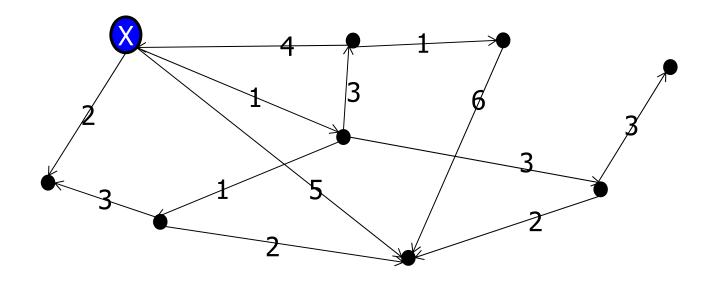
Let G=(V, E) be a graph. The distance d(u,v) between any two nodes u and v from V is defined as

- If G is un-weighted: The length of the shortest path from u to v, or
 ∞ if no path from u to v exists
- If G is weighted: The minimal aggregated edge weight of all non-cyclic paths from u to v, or ∞ if no path from u to v exists

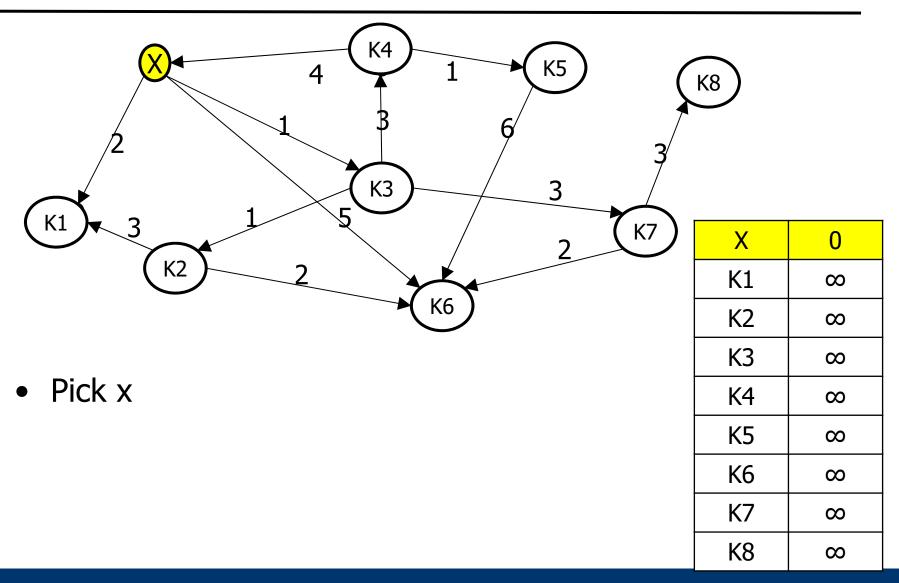
Remark

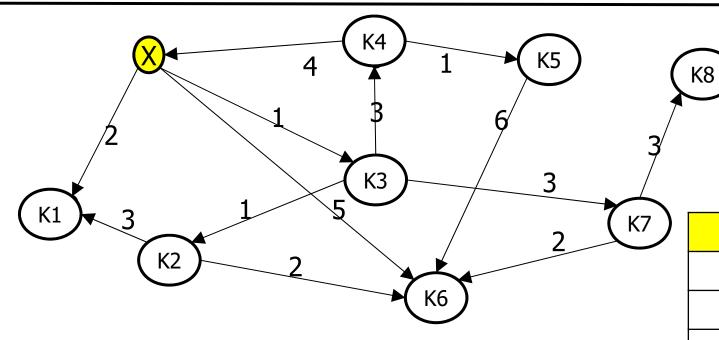
- Distance in un-weighted graphs is the same as distance in weighted graphs with unit costs
- Beware of negative cycles in directed graphs

Single-Source Shortest Paths in a Graph



- Task: Find the distance between X and all other nodes
 - Solution: Dijkstra's Algorithm (see Lecture 13 on priority queues)
- Only positive edge weights allowed
 - Bellman-Ford algorithm solves the general case in O(m*n)

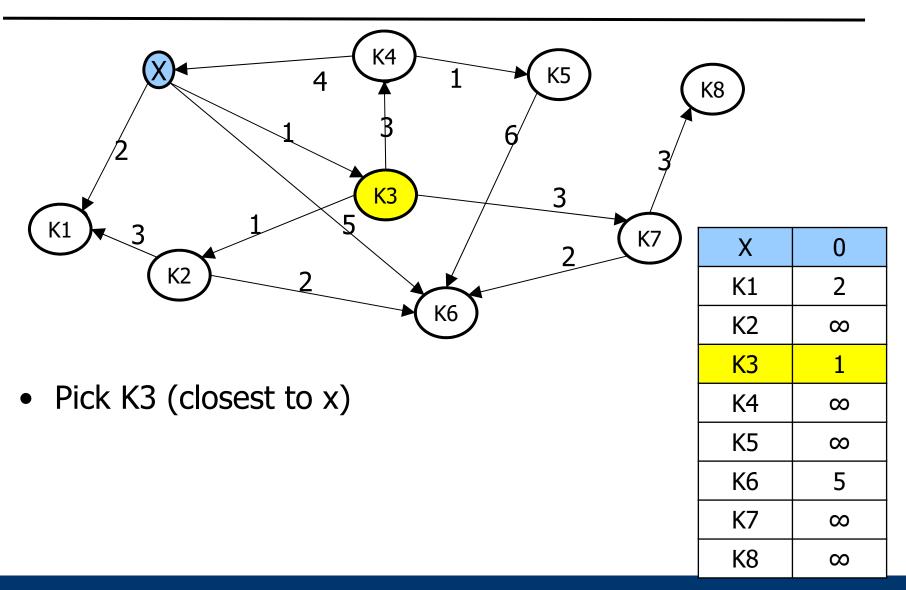


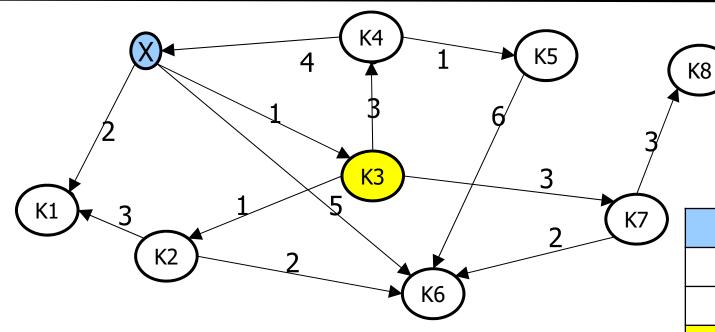


	_		i	
	Pi			V
•		L .		$\boldsymbol{\Lambda}$

Adapt distances to all neighbors

X	0
K1	2
K2	8
K3	1
K4	8
K5	8
K6	5
K7	8
K8	8

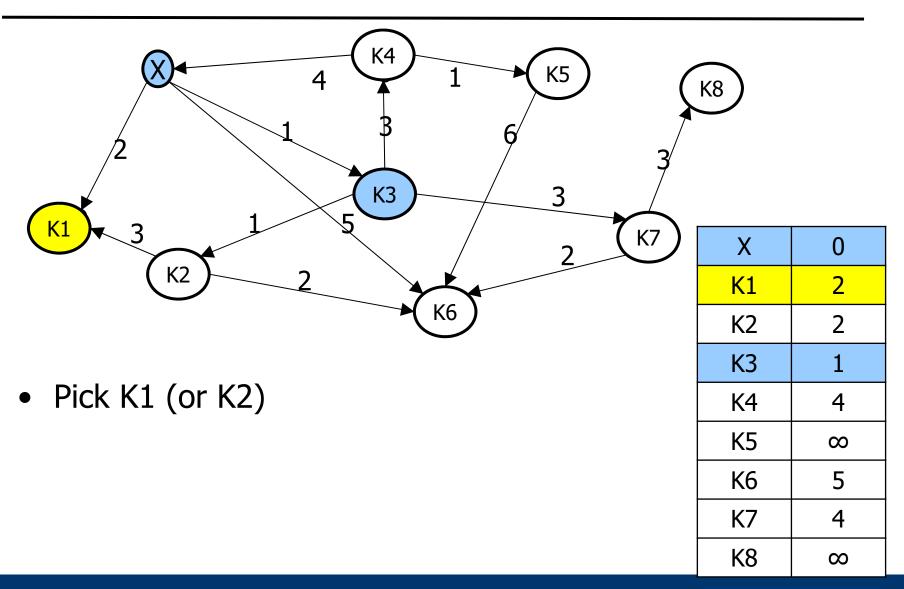


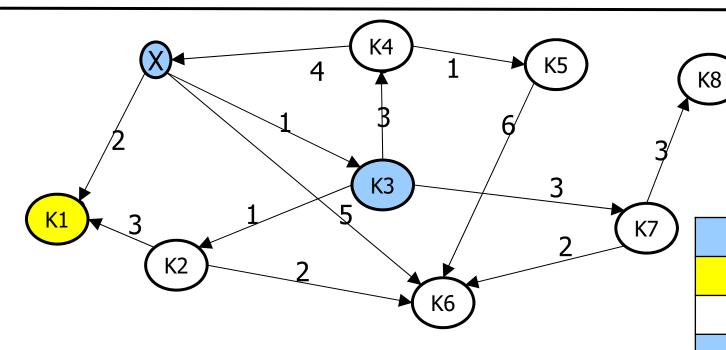


Di	حاح	K 3
\mathbf{P}	(K 5

 Adapt distances (from x) to all neighbors (of K3)

X	0
K1	2
K2	2
K3	1
K4	4
K5	∞
K6	5
K7	4
K8	∞

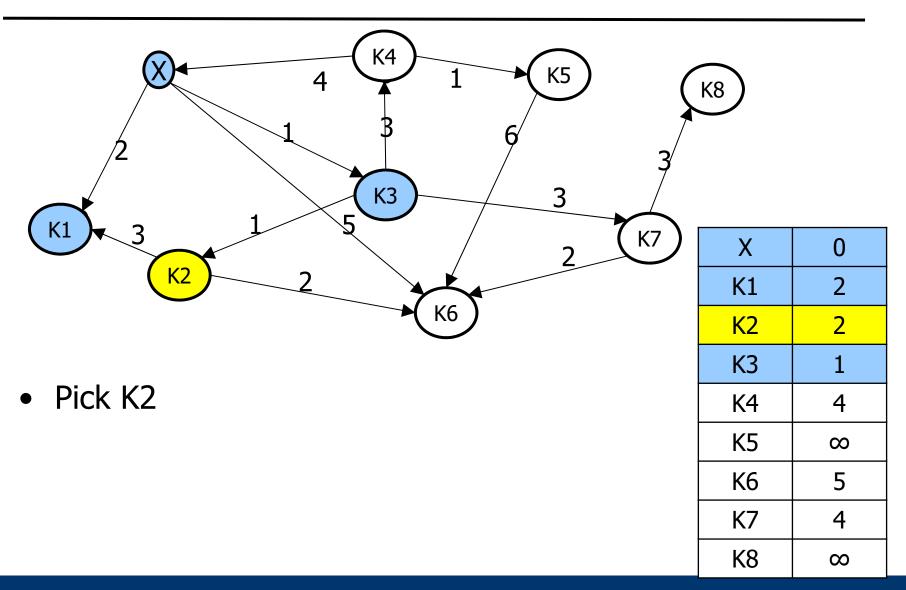


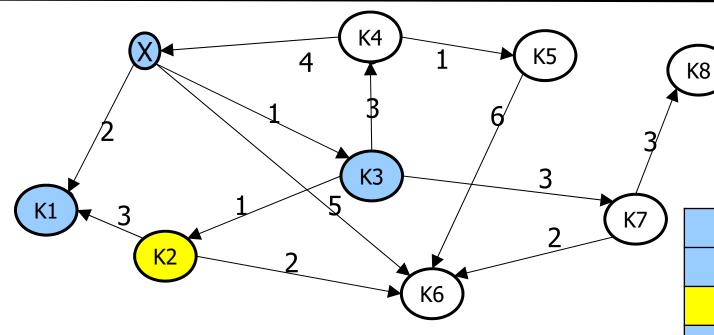


•	P	ic	K	K	1
		. •			_

- Adapt distances to all neighbors
 - There are none

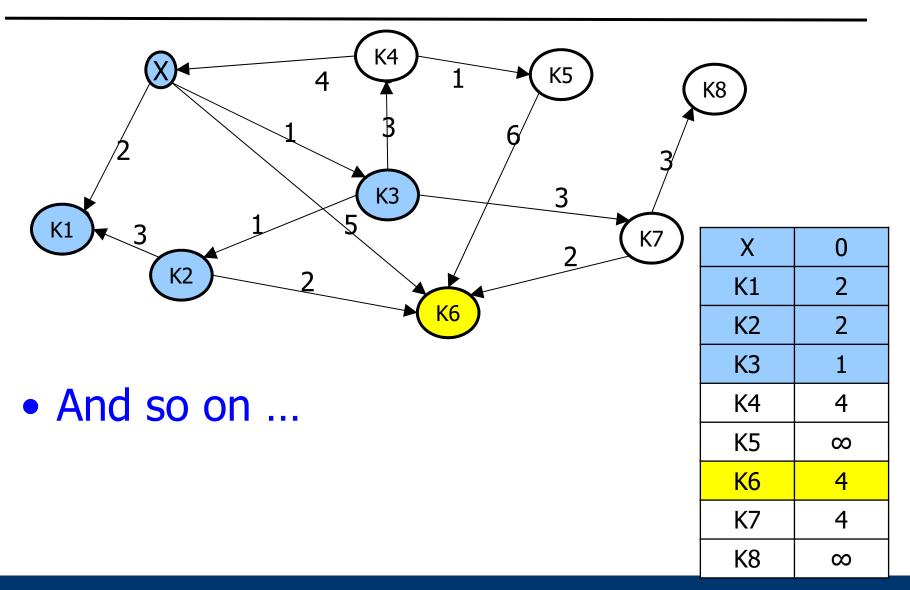
X	0
K1	2
K2	2
K3	1
K4	4
K5	8
K6	5
K7	4
K8	8





- Pick K2
- Adapt distances to all neighbors
 - K1 was picked already ignore
 - We found a shorter path to K6

X	0
K1	2
K2	2
K3	1
K4	4
K5	8
K6	4
K7	4
K8	8



Dijkstra's Algorithm – Single Operations

```
1. G = (V, E);
2. x : start node;
                      # xEV
3. A : array of distances from x;
4. \forall i: A[i]:= \infty;
5. L := V;
                # organized as PQ
6. A[x] := 0;
7. while L\neq\emptyset
8. k := L.get closest node();
9. L := L \setminus k;
10. forall (k,f,w) \in E do
11.
       if fEL then
12. new dist := A[k]+w;
13. if new dist < A[f] then
14.
         A[f] := new dist;
15.
         update(L);
16.
       end if;
17.
       end if;
18.
     end for;
19. end while;
```

- Assume a heap-based PQ L
- L holds at most all nodes (n)
- L4: O(n)
- L5: O(n*log(n)) (build PQ)
- L8: O(1) (getMin)
- L9: O(log(n)) (deleteMin)
- L10: with adjacency list O(k) per iteration, O(m) altogether
- L11: O(1)
 - Requires additional array of nodes
- L15: O(log(n)) (updatePQ)

Dijkstra's Algorithm - Loops

```
1. G = (V, E);
2. x : start node;
                      # xEV
3. A : array of distances;
4. \forall i: A[i] := \infty;
5. L := V;
             # organized as PQ
6. A[x] := 0;
7. while L\neq\emptyset
8. k := L.get closest node();
9. L := L \setminus k;
10. forall (k,f,w) \in E do
11.
       if fEL then
12. new dist := A[k]+w;
13. if new_dist < A[f] then
14.
         A[f] := new dist;
15.
         update(L);
       end if;
16.
17.
       end if;
18.
     end for:
19. end while;
```

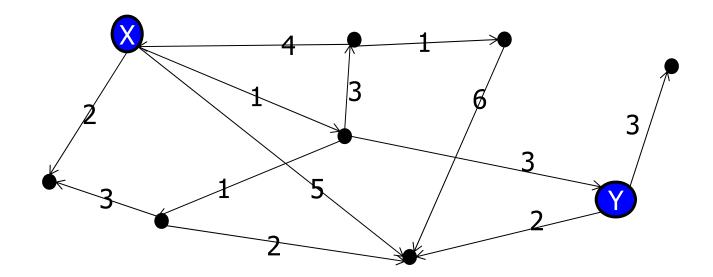
Loops

- Lines 7-19: O(n)
- Line 10-18: All edges exactly once, O(m)
- Together: O(m+n)
- Central costs
 - L9: O(log(n)) (deleteMin)
 - L15: O(log(n)) (del+ins)
- Altogether: O((n+m)*log(n))

Content of this Lecture

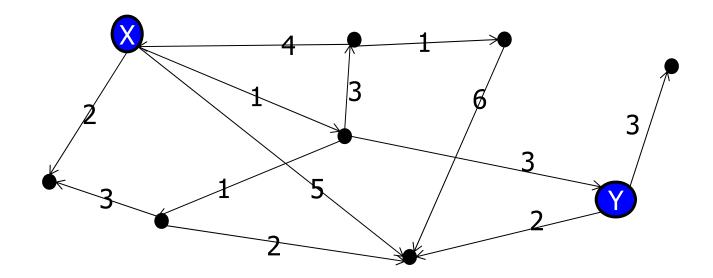
- Single-Source-Shortest-Paths: Dijkstra's Algorithm
- Single-Source-Single-Target
- All-Pairs Shortest Paths
 - Transitive closure & unweighted: Warshall's algorithm
 - Negative weights: Floyd's algorithm

Single-Source, Single-Target



- Task: Find the distance between X and only Y
 - In general, there is no way to be WC-faster than Dijkstra / Bellman-Ford
 - We can stop as soon as Y appears at the min position of the PQ
 - We can visit edges in order of increasing weight
 - Worst-case complexity unchanged, average case is (slightly) better

Single-Source, Single-Target



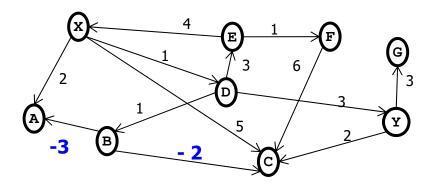
- Things are different in planar graphs: O(n)
 - Henzinger, Monika R., et al. "Faster shortest-path algorithms for planar graphs." Journal of Computer and System Sciences 55.1 (1997): 3-23.

Content of this Lecture

- Single-Source-Shortest-Paths: Dijkstra's Algorithm
- Single-Source-Single-Target
- All-Pairs Shortest Paths
 - Transitive closure & unweighted: Warshall's algorithm
 - Negative weights: Floyd's algorithm

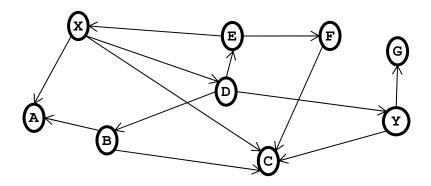
All-Pairs Shortest Paths: General Case

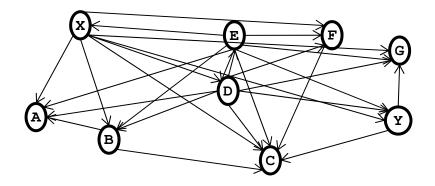
- Given a digraph G with positive or negative edge weights, find the distance between all pairs of nodes
 - Transitive closure with distances



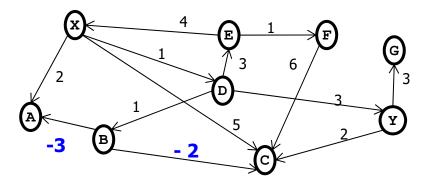
Recall: Transitive Closure

Definition
 Let G=(V,E) be a digraph and v_i, v_j∈V. The transitive closure of G is a graph G'=(V, E') where (v_i, v_j)∈E' iff G contains a path from v_i to v_j.





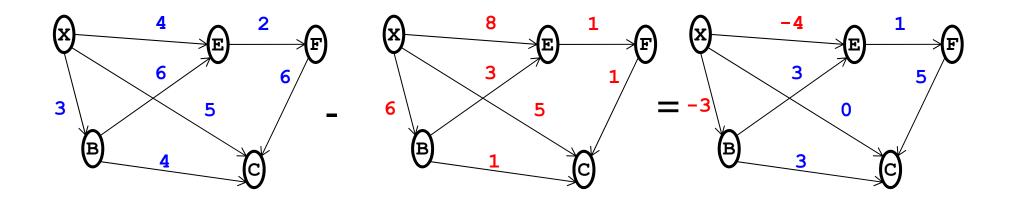
All-Pairs Shortest Paths



- To compute shortest paths for all pairs of nodes, we could n times call a single-source-shortest-path algorithm
 - Positive edge weights: Dijkstra → O(n*(m+n)*log(n))
 - Negative edge weights: Bellman-Ford → O(m*n²)
 - Is O(n⁴) for dense graphs
 - Will turn out: Floyd-Warshall solves the general problem in O(n³)

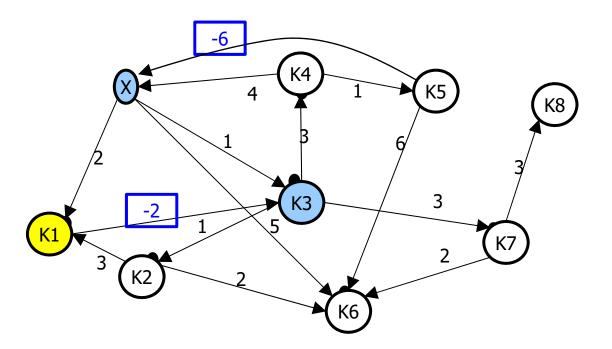
Why Negative Edge Weights?

- One application: Transportation company
 - Every route incurs cost (for fuel, salary, etc.)
 - Every route creates income (for carrying the freight)
- If cost>income, edge weights become negative
 - But still important to find the best route
 - Example: Best tour from X to C



No Dijkstra

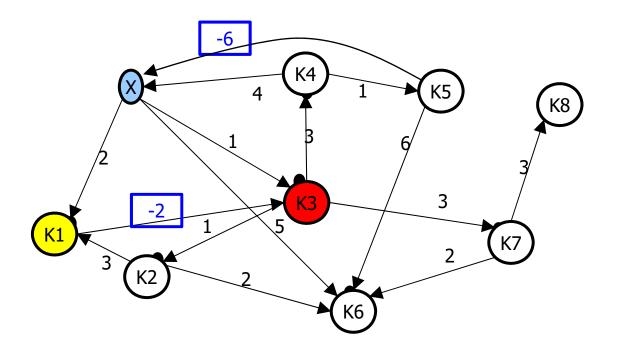
- Dijkstra's algorithm does not work
 - Recall that Dijkstra enumerates nodes by their shortest paths
 - Now: Adding a subpath to a so-far shortest path may make it "shorter" (by negative edge weights)



X	0
K1	2
K2	2
К3	1
K4	4
K5	
K6	5
K7	4
K8	

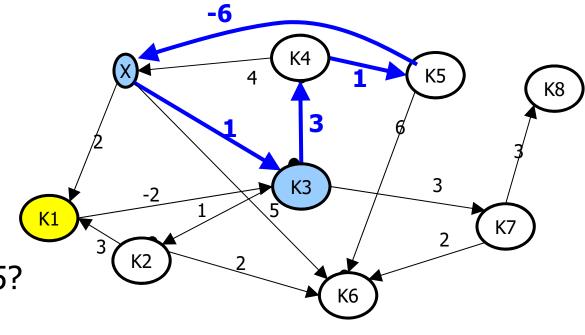
No Dijkstra

- Dijkstra's algorithm does not work
 - Recall that Dijkstra enumerates nodes by their shortest paths
 - Now: Adding a subpath to a so-far shortest path may make it "shorter" (by negative edge weights)



X	0
K1	0
K2	2
K3	0
K4	4
K5	
K6	5
K7	4
K8	

Moreover: Negative Cycles



Shortest path between X and K5?

- X-K3-K4-K5: 5
- X-K3-K4-K5-X-K3-K4-K5: 4
- X-K3-K4-K5-X-K3-K4-K5-X-K3-K4-K5: 3
- **—** ...
- SP-Problem undefined if G contains a negative cycle

Content of this Lecture

- Single-Source-Shortest-Paths: Dijkstra's Algorithm
- Single-Source-Single-Target
- All-Pairs Shortest Paths
 - Transitive closure & unweighted: Warshall's algorithm
 - Negative weights: Floyd's algorithm

All-Pairs: First Approach

- We start with a simpler problem: Computing the transitive closure of a digraph G without edge weights
 - Solution for negative edge weights will be similar
- First idea
 - Reachability is transitive: $x \rightarrow y$ and $y \rightarrow z \Rightarrow x \rightarrow z$
 - We use this idea to iteratively build longer and longer paths
 - First extend edges with edges path of length 2
 - Extend those paths with edges paths of length 3
 - **–** ...
 - No necessary path can be longer than |V|
- In each step, we store "reachable by a path of length ≤k" in a matrix

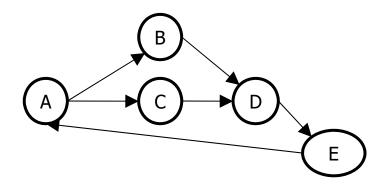
Naïve Algorithm

```
G = (V, E);
M := adjacency matrix(G);
M'' := M;
n := |V|
for z \stackrel{\not}{:}= 1..n-1 do
  M' := M'';
  for i = 1..n do
    for j = 1..n do
      if M'[i,j]=1 then
         for k=1 to n do
           if M[j,k]=1 then
             M''[i,k] := 1;
           end if;
        end for:
      end if:
    end for;
 end for:
end for;
```

z appears nowhere; it is there to ensure that we stop when the longest possible shortest paths has been found

- M is the adjacency matrix of G,
 M" eventually the TC of G
- M': Represents paths ≤z
- Loops i and j look at all pairs reachable by a path of length at most z+1
- Loop k extends path of length at most z by all outgoing edges
- Analysis: O(n⁴)

Example – After z=1, 2, 3, 4



	Α	В	С	D	Ε
Α		1	1		
В				1	
С				1	
D					1
Е	1				

	Α	В	С	D	Е
Α		1	1	1	
В				1	1
С				1	1
D	1				1
Ε	1	1	1		

	Α	В	С	D	Е
Α		1	1	1	1
В	1			1	1
С	1			1	1
D	1	1	1		1
Е	1	1	1	1	

	A	В	C	D	Ш
Α	1	1	1	1	1
В	1	1	1	1	1
С	1	1	1	1	1
D	1	1	1	1	1
Е	1	1	1	1	1

	Α	В	С	D	Ε
Α	1	1	1	1	1
В	1	1	1	1	1
С	1	1	1	1	1
D	1	1	1	1	1
Е	1	1	1	1	1

Path length:

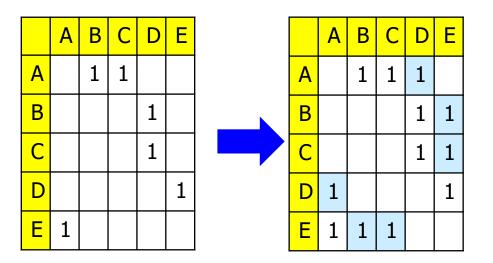
≤2

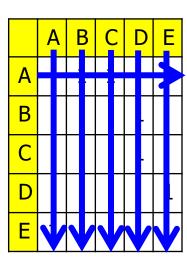
≤3

≤4

≤5

Observation





- In the first step, we actually compute M*M, and then replace each value ≥1 with 1
 - We only state that there is a path; not how many and not how long
- Computing TC can be described as matrix operations

Paths in the Naïve Algorithm

	Α	В	С	D	Е		A	В	С	D	Е			Α	В	С	D	Ε		A	A B	С	D	Ε		Α	В	С	D	Е
Α		1	1			A		1	1	1			A		1	1	1	1	A		1 1	1	1	1	A	1	1	1	1	1
В				1		В				1	1		В	1			1	1	В		1 1	1	1	1	В	1	1	1	1	1
С				1		C				1	1		С	1			1	1	C	1	1 1	1	1	1	С	1	1	1	1	1
D					1	D	1				1		D	1	1	1		1	С	1	1 1	1	1	1	D	1	1	1	1	1
E	1					E	1	1	1			Ī	E	1	1	1	1		E	1	1 1	1	1	1	E	1	1	1	1	1

- The naive algorithm always extends paths by one edge
 - Computes M*M, M²*M, M³*M, ... Mⁿ⁻¹*M

Idea for Improvement

- Why not extend paths by all paths found so-far?
 - We compute
 M₂=M*M: Path of length at most 2
 M₃=M₂*M₂: Path of length at most 4
 M₄=M₃*M₃: Path of length at most 8
 ...

 $M_{log(n)+1}=M_{log(n)}*M_{log(n)}$: Path of length at most n

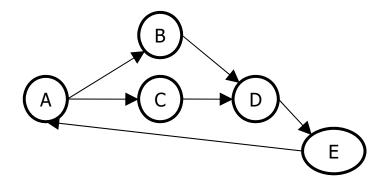
- [We will implement it differently]
- Trick: We can stop much earlier
 - The longest shortest path can be at most n
 - Thus, it suffices to compute $M_{ceil(log(n))+1}$

Algorithm Improved

```
G = (V, E);
M := adjacency matrix(G);
n := |V|;
for z := 1...ceil(log(n)) do
  for i = 1..n do
    for j = 1..n do
      if M[i,j]=1 then
        for k=1 to n do
          if M[j,k]=1 then
            M[i,k] := 1;
          end if:
        end for:
      end if:
    end for:
 end for:
end for;
```

- We use only one matrix M
- In the extension, we see if a path of length ≤2^{z-1} (stored in M) can be extended by a path of length ≤2^{z-1} (stored in M) to a path of length 2^z
- Analysis: O(n^{3*}log(n))
- But ... we still can be faster

Example – After z=1, 2, 3



	Α	В	С	D	Ε
Α		1	1		
В				1	
С				1	
D					1
Е	1				

	Α	В	С	D	Е
Α		1	1	1	
В				1	1
С				1	1
D	1				1
Е	1	1	1		

	Α	В	С	D	Е
Α	1	1	1	1	1
В	1	1	1	1	1
С	1	1	1	1	1
D	1	1	1	1	1
Е	1	1	1	1	1

Path length:

≤2

≤4

Done

Further Improvement



	Α	В	С	D	Ε
Α		1	1		
В				1	
С				1	
D					1
Е	1				

	Α	В	С	D	Ε
Α		1	1	1	
В				1	1
С				1	1
D	1				1
Е	1	1	1		

- Note: The path $A \rightarrow D$ is found twice: $A \rightarrow B \rightarrow D / A \rightarrow C \rightarrow D$
- Can we stop "searching" $A \rightarrow D$ once we found $A \rightarrow B \rightarrow D$?
- Can we enumerate paths such that redundant paths are discovered less often (i.e., less paths are tested)?

Warshall's Algorithm

- Warshall, S. (1962). A theorem on Boolean matrices. Journal of the ACM 9(1): 11-12.
- Key idea: Enumerate paths by the IDs of the nodes they may use as internal nodes
 - Suppose a path i→k and (i,k)∉E
 - Then there must be at least one node j with $i\rightarrow j$ and $j\rightarrow k$
 - Let j be the "smallest" such node (the one with the smallest ID)
 - If we fix the highest allowable ID t, then $i\rightarrow k$ is found iff j≤t
 - Suppose we found all paths consisting only of nodes smaller than t (excluding the edge nodes i,k)
 - We increase t by one, i.e., we allow the usage of node t+1
 - Every new path must have the form $x \rightarrow (t+1) \rightarrow y$

Algorithm

- t gives the highest allowed node ID inside a path
- Thus, node t must be on any new path
- We find all pairs i,k with i→t and t→k
- For every such pair, we set the path i→k to 1

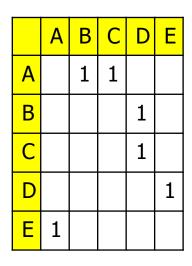
```
1. G = (V, E);
2. M := adjacency matrix(G);
3. n := |V|;
4. for t := 1..n do
     for i = 1..n do
6. if M[i,t]=1 then
         for k=1 to n do
        \rightarrow if M[t,k]=1 then
9.
             M[i,k] := 1;
           end if;
10.
         end for;
11.
12.
       end if;
13.
     end for;
14. end for:
```

Proof of Correctness

- Induction: Case t=1 is clear
- Going from t-1 to t
 - Assumption: We know all reachable pairs using as bridges only nodes with ID<t
 - We enter the i-loop
 - L5-6 builds new paths over t
 - L7-11 adds all paths which additionally contain the node with ID t
 - Induction assumption true for t
- These are all paths once t=n

```
1. G = (V, E);
2. M := adjacency matrix(G);
3. n := |V|;
4. for t := 1..n do
     for i = 1..n do
       if M[i,t]=1 then
         for k=1 to n do
           if M[t,k]=1 then
8.
             M[i,k] := 1;
           end if:
10.
         end for;
11.
12.
       end if:
13.
     end for;
14. end for:
```

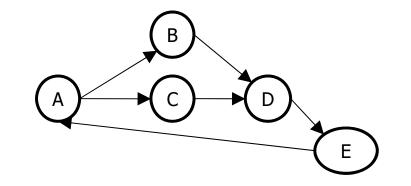
Example – Warshall's Algorithm



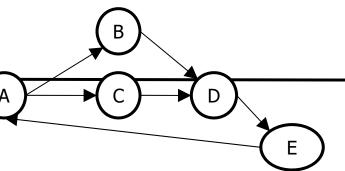
A allowed Connect E-A with A-B, A-C

maxlen=2

	Α	В	С	D	Е
Α		1	1		
В				1	
С				1	
D					1
Е	1	1	1		



Example – After t=A,B,C,D,E



maxlen=2

=4

=8

	Α	В	C	D	Е
Α		1	1		
В				1	
С				1	
D					1
Е	1	1	1		

	Α	В	С	D	Е
Α		1	1	1	
В				1	
С				1	
D					1
E	1	1	1	1	

	Α	В	С	D	Ε
Α		1	1	1	
В				1	
С				1	
D					1
Ε	1	1	1	1	

	Α	В	С	D	Е
Α		1	1	1	1
В				1	1
С				1	1
D					1
Е	1	1	1	1	1

	Α	В	С	D	Ε
Α	1	1	1	1	1
В	1	1	1	1	1
С	1	1	1	1	1
D	1	1	1	1	1
Ε	1	1	1	1	1

B allowed

Connect A-B/E-B

with B-D

C allowed

Connect

A-C/E-C with C-D

No news

D allowed

Connect

A-D, B-D,

C-D,E-D

with D-E

E allowed

Connect

everything

with

everything

Little change – Consequence: Save a Loop

```
G = (V, E);
M := adjacency matrix(G);
n := |V|;
for z := 1...ceil(log(n)) do
  for i = 1..n do
    for j = 1..n do
      if M[i,j]=1 then
        for k=1 to n do
          if M[j,k]=1 then
            M[i,k] := 1;
          end if;
        end for;
      end if;
    end for;
  end for;
end for;
```


Swap i and j loop

Rephrase j into t

```
1. G = (V, E);
2. M := adjacency matrix(G);
3. n := |V|;
4. for t := 1..n do
     for i = 1..n do
       if M[i,t]=1 then
         for k=1 to n do
           if M[t,k]=1 then
            M[i,k] := 1;
          end if:
10.
11.
        end for;
12.
      end if;
13.
    end for:
14. end for;
```

 $O(n^3log(n))$

 $O(n^3)$

Content of this Lecture

- Single-Source-Shortest-Paths: Dijkstra's Algorithm
- Single-Source-Single-Target
- All-Pairs Shortest Paths
 - Transitive closure & unweighted: Warshall's algorithm
 - Negative weights: Floyd's algorithm

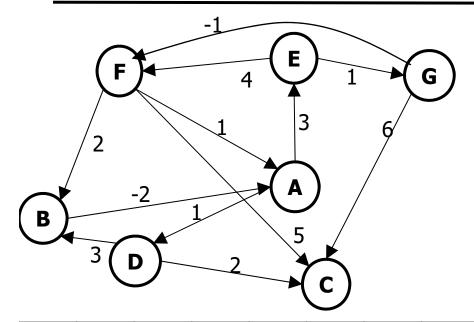
Back to our Original Problem ...

... of computing the all-pairs shortest paths for graphs with negative edges:

- We use the same idea: Enumerate paths using only nodes smaller than t
- Invariant: Before step t, M[i,j] contains the length of the shortest path that uses no node with ID higher than t
- When increasing t, we find new paths i→t→k and look at their lengths
- Thus: $M[i,k]:=min(M[i,k] \cup \{M[i,t]+M[t,k] \mid i\rightarrow t \land t\rightarrow k\})$

Floyd, R. W. (1963). Algorithm 97: Shortest Path. *Communications of the ACM 5(6): 345.*

Example



	A	В	С	D	Е	F	G
A				1	3		
В	-2			-1	1		
С							
D	1	3	2	2	4		
E						4	1
F	0	2	5	1	3		
G			6			-1	

	A	В	C	D	Е	F	G
A				1	3		
В	-2						
С							
D		3	2				
E						4	1
F	1	2	5				
G			6			-1	

	A	В	С	D	Е	F	G
A				1	3		
В	-2			-1	1		
U							
D		3	2				
Е						4	1
F	1	2	5	2	4		
G			6			-1	

Summary

- Warshall's algorithm computes the transitive closure of any unweighted digraph G in O(|V|³)
- Floyd's algorithm computes the distances between any pair of nodes in a digraph without negative cycles in O(|V|³)
- Storing both information requires O(|V|²)
- Problem is easier for ...
 - undirected graphs: Connected components (next lecture)
 - graphs with only positive edge weights: All-pairs Dijkstra
 - trees