Algorithms and Data Structures

Graphs 2: Shortest Paths
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Distance in Graphs

e Definition
Let G=(V, E) be a graph. The distance d(u,v) between any
two nodes u and v from V is defined as

— If G Is un-weighted. The length of the shortest path from u to v, or
co jf no path from u to v exists

— If G Is weighted: The minimal aggregated edge weight of all non-
cyclic paths from u to v, or oo if no path from u to v exists

e Remark

— Distance in un-weighted graphs is the same as distance in
weighted graphs with unit costs

— Beware of negative cycles in directed graphs
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Single-Source Shortest Paths in a Graph

N

e Task: Find the distance between X and all other nodes
— Solution: Dijkstra’s Algorithm (see Lecture 13 on priority queues)

e Only positive edge weights allowed
— Bellman-Ford algorithm solves the general case in O(m*n)
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Example for Dijkstra’s Algorithm

e Pick X
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Example for Dijkstra’s Algorithm
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e Pick X K4 0
e Adapt distances to all neighbors K5 00
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Example for Dijkstra’s Algorithm

e Pick K3 (closest to x)
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Example for Dijkstra’s Algorithm

e Pick K3 K4
e Adapt distances (from x) to all neighbors K5
(of K3) K6
K7

K8
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Example for Dijkstra’s Algorithm
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Example for Dijkstra’s Algorithm
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Example for Dijkstra’s Algorithm

e Pick K2
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Example for Dijkstra’s Algorithm

e Pick K2 K4
e Adapt distances to all neighbors K5
— K1 was picked already — ignore K6

— We found a shorter path to K6 K7

K8
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Example for Dijkstra’s Algorithm

e And so on ...
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Dijkstra’s Algorithm — Single Operations

oo WDNDR

. G= (v, E);

. X : start node; # x€EV

. A : array of distances_from x;
. Vi: A[i]:= =;
. L =V,

. A[x] := 0;

. while L#0

k := L.get _closest node();
L :=L\ k;

0. forall (k,f,w)€EE do

1. if fe€elL then

# organized as PQ

12. new _dist := A[k]+w;
13. if new_dist < A[f] then

14. A[f]

= new_dist;

15. update( L) ;

6. end if;

17. end if;

8. end for;
9.end while;
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Assume a heap-based PQ L

L holds at most all nodes (n)
L4: O(n)

L5: O(n*log(n)) (build PQ)

L8: O(1) (getMin)

L9: O(log(n)) (deleteMin)

L10: with adjacency list O(k)
per iteration, O(m) altogether
L11: O(1)

— Requires additional array of nodes

L15: O(log(n)) (updatePQ)




Dijkstra’s Algorithm - Loops

1. G = (V, E);

2. x : start node; # x€EV

3. A : array of distances;

4. Vi: A[i]:= «=;

5. L :=V; # organized as PQ
6. A[x] := 0;

7. while L#0

8. k := L.get closest node();
9. L :=L\ k;

10. forall (k,f,w)EE do

11. if feL then

12. new _dist := A[k]+w;

13. if new_dist < A[f] then
14. A[f] := new_dist;

15. update( L) ;

16. end if;

17. end if;

18. end for;

19. end while;
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e Loops
— Lines 7-19: O(n)
— Line 10-18: All edges exactly
once, O(m)

— Together: O(m+n)
e Central costs
— L9: O(log(n)) (deleteMin)
— L15: O(log(n)) (del+ins)
e Altogether: O((n+m)*log(n))




Content of this Lecture

e Single-Source-Shortest-Paths: Dijkstra’s Algorithm
e Single-Source-Single-Target
e All-Pairs Shortest Paths

— Transitive closure & unweighted: Warshall’s algorithm
— Negative weights: Floyd’s algorithm
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Single-Source, Single-Target

N

e Task: Find the distance between X and only Y

— In general, there is no way to be WC-faster than Dijkstra /
Bellman-Ford

— We can stop as soon as Y appears at the min position of the PQ
e We can visit edges in order of increasing weight
o Worst-case complexity unchanged, average case is (slightly) better
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Single-Source, Single-Target

N

e Things are different in planar graphs: O(n)

— Henzinger, Monika R., et al. "Faster shortest-path algorithms for
planar graphs." Journal of Computer and System Sciences 55.1
(1997): 3-23.
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Content of this Lecture

e Single-Source-Shortest-Paths: Dijkstra’s Algorithm
e Single-Source-Single-Target
e All-Pairs Shortest Paths

— Transitive closure & unweighted: Warshall’s algorithm
— Negative weights: Floyd’s algorithm
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All-Pairs Shortest Paths: General Case

e Given a digraph G with positive or negative edge weights,
find the distance between all pairs of nodes
— Transitive closure with distances

Marius Kloft: Alg&DS, Summer Semester 2016




Recall: Transitive Closure

e Definition
Let G=(V,E) be a digraph and v, v,eV. The transitive
closure of G Is a graph G'=(V, E’) where (v, v,)EE” iff G
contains a path from v; to v,
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All-Pairs Shortest Paths

e To compute shortest paths for all pairs of nodes, we could
n times call a single-source-shortest-path algorithm
e Positive edge weights: Dijkstra — O(n*(m+n)*log(n))
o Negative edge weights: Bellman-Ford - O(m*n?2)

— Is O(n*) for dense graphs
— Will turn out: Floyd-Warshall solves the general problem in O(n3)
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Why Negative Edge Weights?

e One application: Transportation company

— Every route incurs cost (for fuel, salary, etc.)

— Every route creates income (for carrying the freight)
e If cost>income, edge weights become negative

— But still important to find the best route
— Example: Best tour from X to C
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No Dijkstra

e Dijkstra’s algorithm does not work
— Recall that Dijkstra enumerates nodes by their shortest paths

— Now: Adding a subpath to a so-far shortest path may make it
“shorter” (by negative edge weights)
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No Dijkstra

e Dijkstra’s algorithm does not work
— Recall that Dijkstra enumerates nodes by their shortest paths

— Now: Adding a subpath to a so-far shortest path may make it
“shorter” (by negative edge weights)
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Moreover: Negative Cycles

e Shortest path
between X and K57
— X-K3-K4-K5: 5
— X-K3-K4-K5-X-K3-K4-K5: 4
—  X-K3-K4-K5-X-K3-K4-K5-X-K3-K4-K5: 3

e SP-Problem undefined if G contains a negative cycle
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Content of this Lecture

e Single-Source-Shortest-Paths: Dijkstra’s Algorithm
e Single-Source-Single-Target
e All-Pairs Shortest Paths

— Transitive closure & unweighted: Warshall’s algorithm
— Negative weights: Floyd’s algorithm
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All-Pairs: First Approach

e We start with a simpler problem: Computing the transitive
closure of a digraph G without edge weights
— Solution for negative edge weights will be similar

e First idea
— Reachability is transitive: x—y and y—»z = x>z
— We use this idea to iteratively build longer and longer paths
— First extend edges with edges — path of length 2
— Extend those paths with edges — paths of length 3

— No necessary path can be longer than |V|

e In each step, we store “reachable by a path of length <k”
IN @ matrix
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Naive Algorithm

for i = 1..n do

for j =1..n do
if M’'[i,j]=1 then
for k=1 to n do
if M[j,k]=1 then
M ’[i,k] :=1;
end if;
end for;
end if;
end for;
end for;
end for;

Z appears nowhere; it is
there to ensure that we
stop when the longest
possible shortest paths has
been found
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e M is the adjacency matrix of G,
M” eventually the TC of G

e M’. Represents paths <z
e Loops i and j look at all pairs

reachable by a path of length at

most z+1

e Loop k extends path of length at

most z by all outgoing edges

e Analysis: O(n%)
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Observation

AB|C|D|E AIB|C|D|E AIB|C|D|E
A 1 A 1 1 A
B 1 B 1|1 B
C 1 » C 1(1 C
D 1 D1 1 D
Ell E{1|1(1 E
e In the first step, we actually compute M*M, and then

replace each value >1 with 1

— We only state that there is a path; not how many and not how long

e Computing TC can be described as matrix operations
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Paths in the Naive Algorithm

A{B|C|D|E A{B|C|D A|{B|C|D|E A|B|C|D|E A|B|C|D|E
A 1 A 1 1 A (1|11 [A|L1{1|1{21|1|[AlT}{1{1]|1|1
B 1 B 1 B|1 1(1||B|1(1{1f{1|1(|B|1|1|1|1|1
C 1 C 1 Cl1 1|1((C{1|1|1|1|1]|C|1|1|1]|1]|1
D 1{|{D|1 DI1|1]|1 1(|Dl1|11|1(1||Dj1|1]|1|1|1
El1l E|1({1]1 E|l1]1|1]|1 E|1{1(1|1|1||Ef1|1|1(1|1

e The naive algorithm always extends pat
— Computes M*M, M2*M, M3*MV, ... M"1*M
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NS by one edge
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Idea for Improvement

e Why not extend paths by all paths found so-far?

— We compute

M,=M*M: Path of length at most 2
M;=M,*M,: Path of length at most 4
M4=M;*M;: Path of length at most 8

Mlog(n)+1_MIog(n) Miogny- Path of length at most n
— [We will implement it differently]

e Trick: We can stop much earlier

— The longest shortest path can be at most n
— Thus, it suffices to compute Mqogny)+1
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Algorithm Improved

G = (V, E);
M := adjacency matrix( G);
n := |V[;
for z := 1. .ceil(log(n)) do
for i = 1..n do
for j = 1..n do
if M[i,j]=1 then
for k=1 to n do
if M[j,k]=1 then
M[i,k] := 1;
end if;
end for;
end if;
end for;
end for;
end for;
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We use only one matrix M

In the extension, we see if a path
of length <271 (stored in M) can
be extended by a path of length
<2%1 (stored in M) to a path of
length 22

Analysis: O(n3*log(n))

But ... we still can be faster




Example — After z=1, 2, 3

A|B|C|D|E A|B|C|D|E A|B|C|D|E
A 1 Al [1]1]1 Al1f1]1|1]1
B 1 B 11| [B|1|1]1|1]1
C 1 C 1|1 |Cl1]1]|1]|1|1
D 1||D|1 1| (D|1|1f{1]|1]1
E|l1 E|1]|1]1 E[1]1|1]1]1
Path length: <2 <4 Done
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Further Improvement

|—L
|—L
Rl |~ |O

m| O|O|®®| >
|
m| O|O|®| >

e Note: The path A—D is found twice: A>B—D / A—-»C—D
e Can we stop “searching” A—D once we found A>B—D?

e (Can we enumerate paths such that redundant paths are
discovered less often (i.e., less paths are tested)?
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Warshall’s Algorithm

e Warshall, S. (1962). A theorem on Boolean matrices.
Journal of the ACM 9(1): 11-12.

o Key idea: Enumerate paths by the IDs of the nodes they
may use as internal nodes
— Suppose a path i—k and (i,k)¢E
— Then there must be at least one node j with i—j and j—k
— Let j be the “smallest” such node (the one with the smallest ID)
— If we fix the highest allowable ID t, then i—k is found iff j<t

— Suppose we found all paths consisting only of nodes smaller than t
(excluding the edge nodes i,k)

— We increase t by one, i.e., we allow the usage of node t+1
— Every new path must have the form x—(t+1)—y
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Algorithm

1. G = (V, E);
e tgives the highest allowed S Adacencymatmix ()
node ID inside a path 4. for t i= 1..n do
5. for 1 = 1..n do
e Thus, node t must be on & i M[i,t]o1 then
any new path B 7. for k=1 to n do
. . . . 8. —3 if M[t,k]=1 then
o We find all pairs i,k with o MI1 K] iz 1:
i—t and t—k 10. end if;
. 11. end for;
e For every such pair, we set 12.  end if;
the path i—»k to 1 o ond fom
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Proof of Correctness

e Induction: Case t=1 is clear

1. G = (V, E);
® Go|ng from t_l to t 2. M := adjacency matrix( G);
. 3. n := |V]|;
— Assumption: We know all reachable 4. for t := 1..n do
pairs using as bridges only nodes with |5. for i =1..n do
ID<t 6. if M[i,t]=1 then
. 7. for k=1 to n do
— We enter the i-loop g if M[t k]=1 then
— L5-6 builds new paths over t 9. M[i k] :=1;
. .y 10. end if;
- L7-11. adds all path_s which additionally | end for;
contain the node with ID t 12. end if;
— Induction assumption true for t 13. end for;
14. end for;

e These are all paths once t=n
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Example — Warshall’s Algorithm

AN,
maxlen=2 ° G Q

A|B|C|D|E A|B|C|D|E wa
A 1 Al [1]1
B 1 B 1
C 1 C 1
D 1 D 1
E|1 El1]1]1
A allowed
Connect
E-A with
A-B, A-C
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Example — After t=A,B,C,D,E

maxlen=2 =4 =8

A|B|C|D A|B|C|D A|B|C|D|E A|B|C|D|E A|B|C|D|E
Al [1]1 Al [1]1]1 Al |1]1]1 A 1]1|1] [A[1|1]1]1]1
B 1 B 1 B 1 B 11| [Bl1|1]1]1]1
C 1 C 1 C 1 C 11| [C[1|1]1]1]1
D D D 1| |D 1| |D[1|1]1]1]1
E|1|1]1 E|1|1|1]1 E|1|1|1]1 El1|1|1|1|1] |E|1|1|1|1]|1

B allowed C allowed D aIIovﬁ E allowed

Connect Connect Connect Connect

A-B/E-B A-C/E-C A-D, B-D, everything

with B-D with C-D C-D,E-D with

No news with D-E everything
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Little change — Consequence: Save a Loop

G = (V, E);
M := adjacency matrix( G);
n := |V]|;
for z := 1..ceil(log(n)) do
for i = 1..n do
for j = 1..n do
if M[i,j]=1 then
for k=1 to n do
if M[j,k]=1 then
M[i,k] :=1;
end if;
end for;
end if;
end for;
end for;
end for;

O(n3log(n))
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)

Swap i and
j loop

Rephrase j
into t

1. G = (V, E);

2. M := adjacency matrix( G);
3. n :=|V|;

4. for t :=1..n do

5. for i = 1..n do

6. if M[i,t]=1 then

7. for k=1 to n do

8. if M[t,k]=1 then
9. M[i,k] :=1;
10. end if;

11. end for;

12. end if;

13. end for;

14. end for;

O(n3)
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Content of this Lecture

e Single-Source-Shortest-Paths: Dijkstra’s Algorithm
e Single-Source-Single-Target
e All-Pairs Shortest Paths

— Transitive closure & unweighted: Warshall’s algorithm
— Negative weights: Floyd’s algorithm
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Back to our Original Problem ...

... of computing the all-pairs shortest paths for graphs with
negative edges:

e We use the same idea: Enumerate paths using only nodes
smaller than t

e Invariant: Before step t, M[i,j] contains the length of the
shortest path that uses no node with ID higher than t

e When increasing t, we find new paths i—»t—k and look at
their lengths

e Thus: M[i k]:=min( M[i,k] U { M[i,t]+M[t,k] | it A t—>k} )

Floyd, R. W. (1963). Algorithm 97: Shortest Path. Communications of
the ACM 5(6).: 345.
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Example

A B C D E F G
A 1 3
B | -2
C
D 3 2
E 4 1
F 1 2 5
G 6 -1
\ 4
B C D F G
1 3
B | -2 -1
C
D 3 2
E 4 1
F 1 2 5 2 4
G 6 -1




Summary

e Warshall's algorithm computes the transitive closure of any
unweighted digraph G in O(|V|3)

e Floyd's algorithm computes the distances between any pair
of nodes in a digraph without negative cycles in O(|V|3)

e Storing both information requires O(|V|?)

e Problem is easier for ...
— undirected graphs: Connected components (next lecture)

— graphs with only positive edge weights: All-pairs Dijkstra
— trees

Marius Kloft: Alg&DS, Summer Semester 2016




