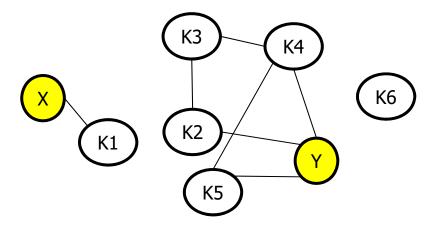


Algorithms and Data Structures Graphs 3: Finding Connected Components

Marius Kloft

- Finding Connected Components in Undirected Graphs
- Finding Strongly Connected Components in Directed Graphs
 - Why?
 - Pre/Postorder Traversal
 - Kosaraju's algorithm

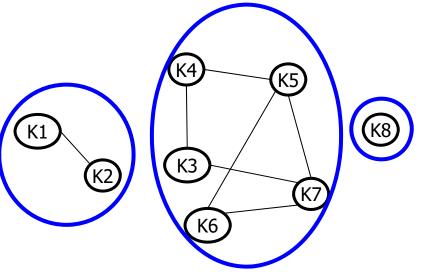
• Given a graph G, can we reach node Y from X?



• Solution for undirected graphs: Compute connected components of G

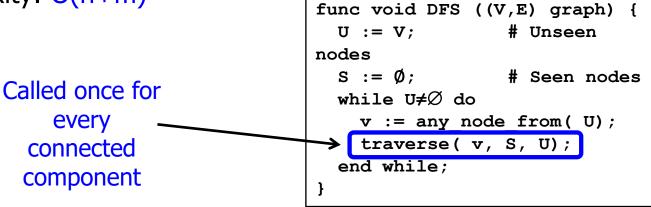
Recall Definition of Connected Components

- Let G=(V, E) be a graph.
 - An induced subgraph G'=(V', E') of G is called connected if G' contains a path between any pair $v, v' \in V'$
 - G' is called maximally connected, if no subgraph induced by a superset of V' is connected
 - Any maximal connected subgraph of G is called a connected component of G



Finding Connected Components in Undirected Graphs

- In an undirected graph, whenever there is a path from r to v and from v to v', then there is also a path from v' to r
 Simply go the path r → v → v' backwards
- Thus, DFS (and BFS) traversal can be used to find all connected components of an undirected graph G
 - Whenever you call traverse(v), create a new component
 - All nodes visited during traverse(v) are added to this component
 - Complexity: O(n+m)



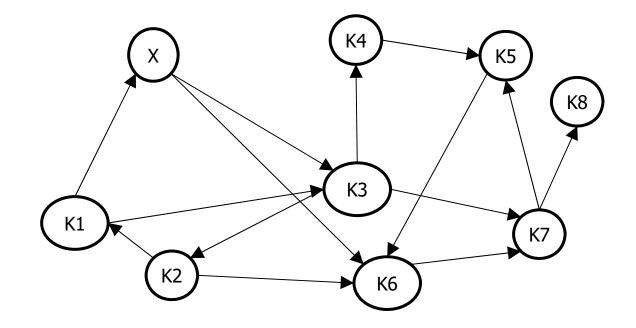
In Directed Graphs ("Digraphs")

- The problem is considerably more complicated for digraphs
- Still, it will turn out:
 - Tarjan's or Kosaraju's algorithm find all strongly connected components in O(n + m)!

- Finding Connected Components in Undirected Graphs
- Finding Strongly Connected Components in Directed Graphs
 - Why?
 - Pre/Postorder Traversal
 - Kosaraju's algorithm

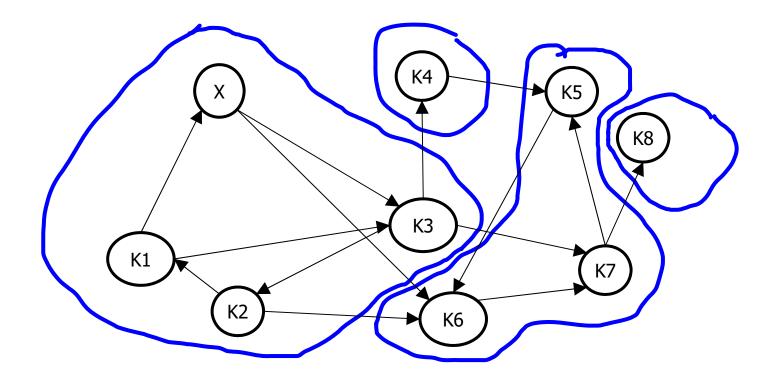
Recall Definition of Strongly Connected Components

- Let us now be given a directed graph G=(V, E).
 - Any maximal connected subgraph of G is called a strongly connected component of G



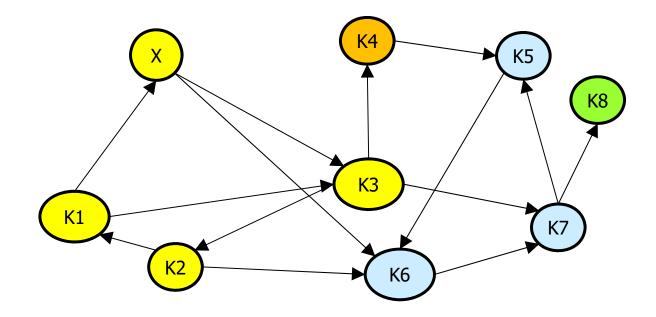
Recall Definition of Strongly Connected Components

- Let us now be given a directed graph G=(V, E).
 - Any maximal connected subgraph of G is called a strongly connected component of G



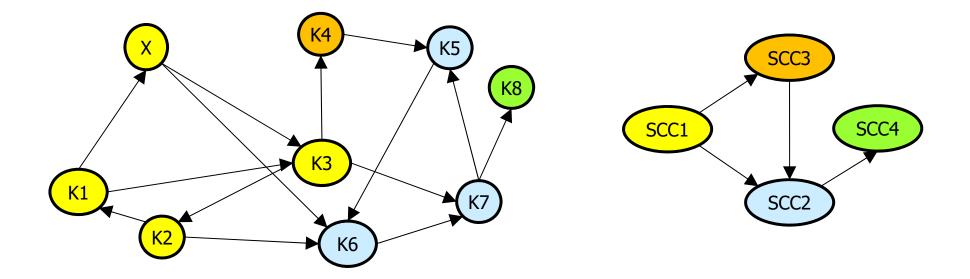
Recall Definition of Strongly Connected Components

- Let us now be given a directed graph G=(V, E).
 - Any maximal connected subgraph of G is called a strongly connected component of G



Why? Contracting a Graph

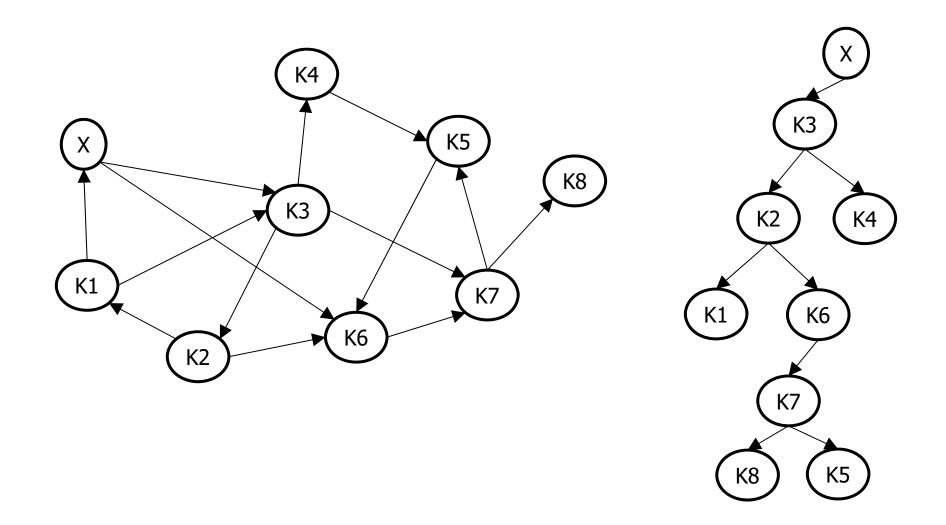
- Consider finding the transitive closure (TC) of a digraph G
 - If we know all SCCs, parts of the TC can be computed immediately
 - Next, each SCC can be replaced by a single node, producing G'
 - G' must be acyclic and is (much) smaller than G
 - Intuitively: TC(G) = TC(G') + SCC(G)

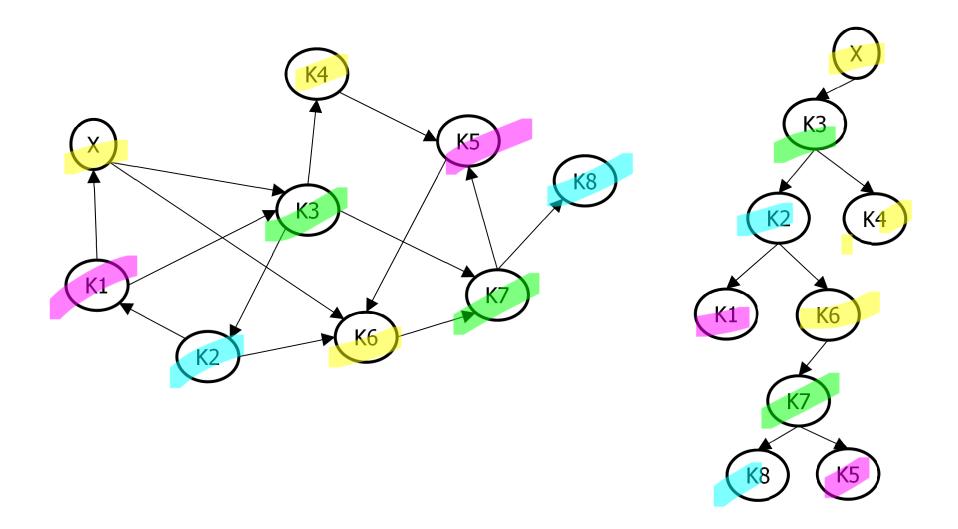


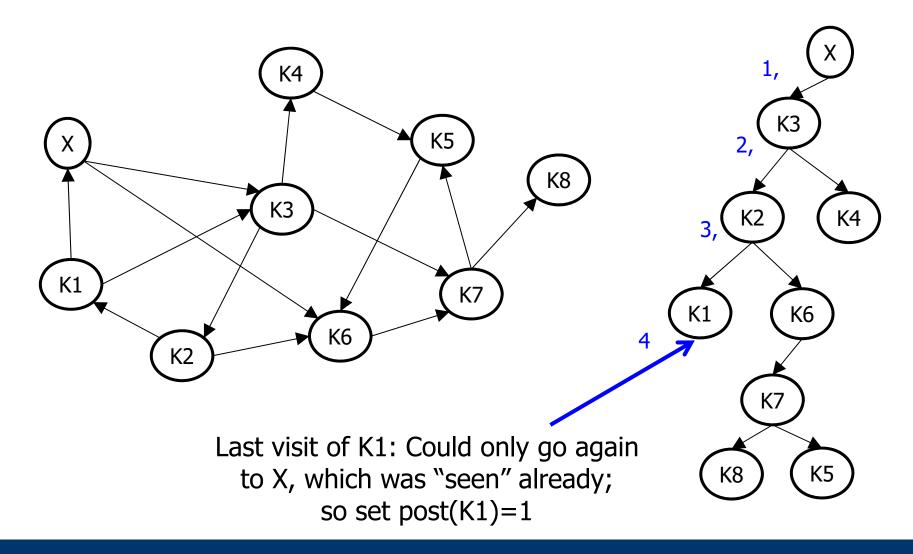
Most algorithms for finding SCCs are based on pre-/post-order labeling of nodes

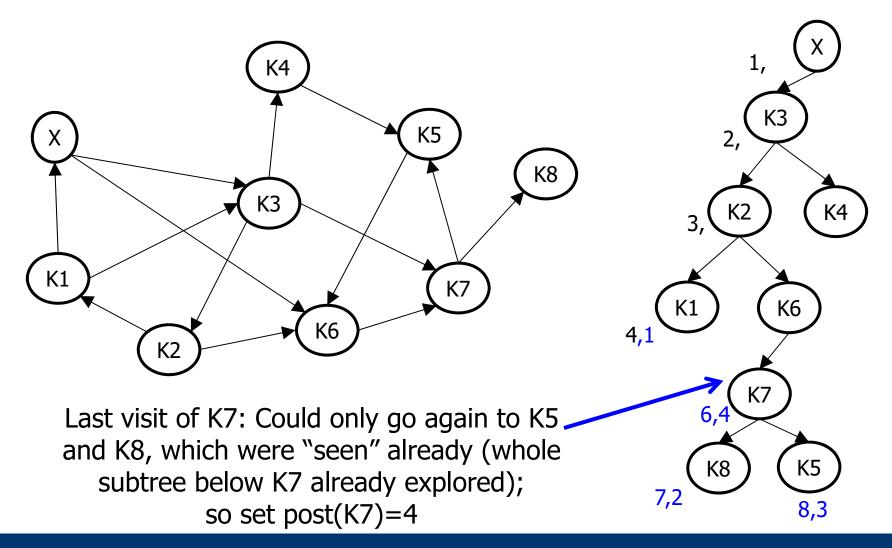
- Let G=(V, E). We assign each v∈V a pre-order and a postorder by the following method:
 - Init counters pre=post=0
 - Perform a depth-first traversal (DFS) of G, but use a modified, recursive traverse function
 - Whenever a node v is reached the first time, assign it the value of pre as pre-order value and increase pre
 - Whenever a node v is left the last time (all nodes below v traversed), assign it the value of post as postorder value and increase post

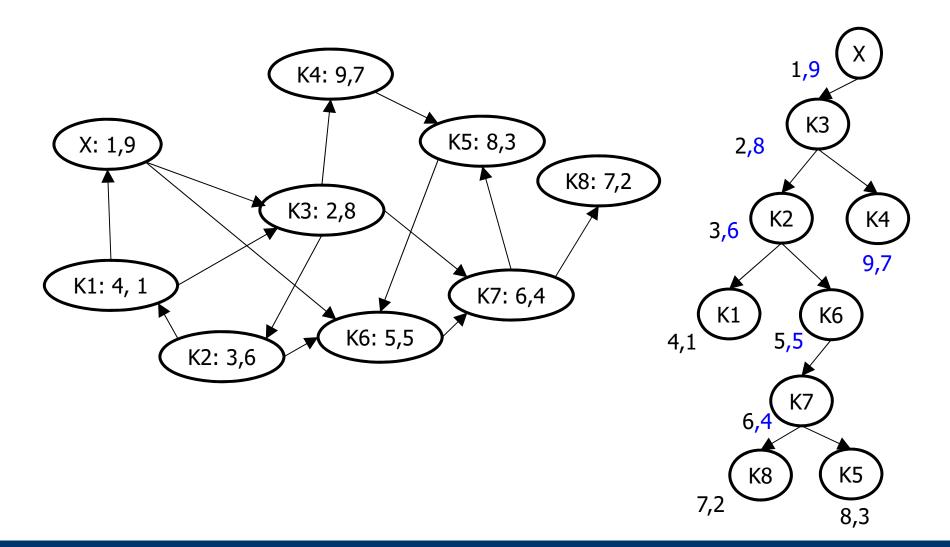
```
func void traverse (v node,
                       S,U list)
{
  pre += 1;
  pre(v) := pre;
  U := U \setminus \{n\};
  S := S \cup \{n\};
  c := n.outgoingNodes();
  foreach x in c do
    if xEU then
       traverse(v,S,U);
    end if;
  end for;
  post += 1;
  post(v) := post;
}
```









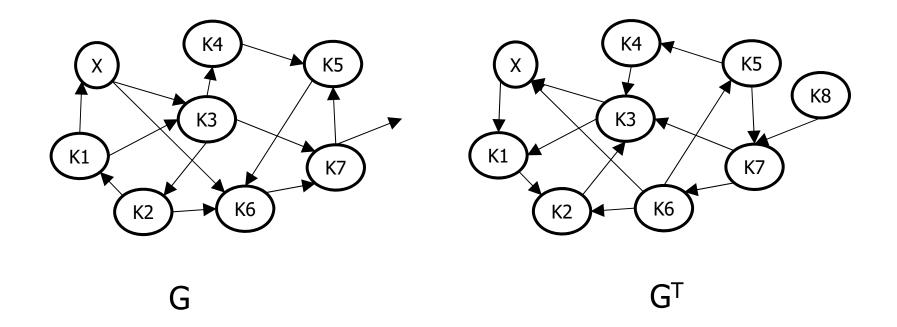


- Finding Connected Components in Undirected Graphs
- Finding Strongly Connected Components in Directed Graphs
 - Why?
 - Pre/Postorder Traversal
 - Kosaraju's algorithm

Kosaraju's Algorithm

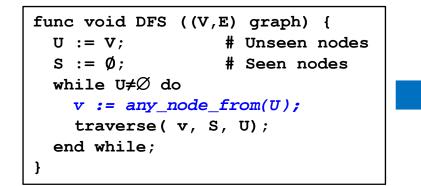
• Definition:

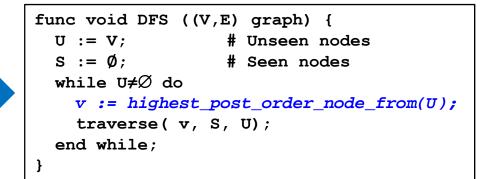
Let G=(V,E). The graph $G^T=(V, E')$ with $(v,w) \in E'$ iff $(w,v) \in E$ is called the transposed graph of G.

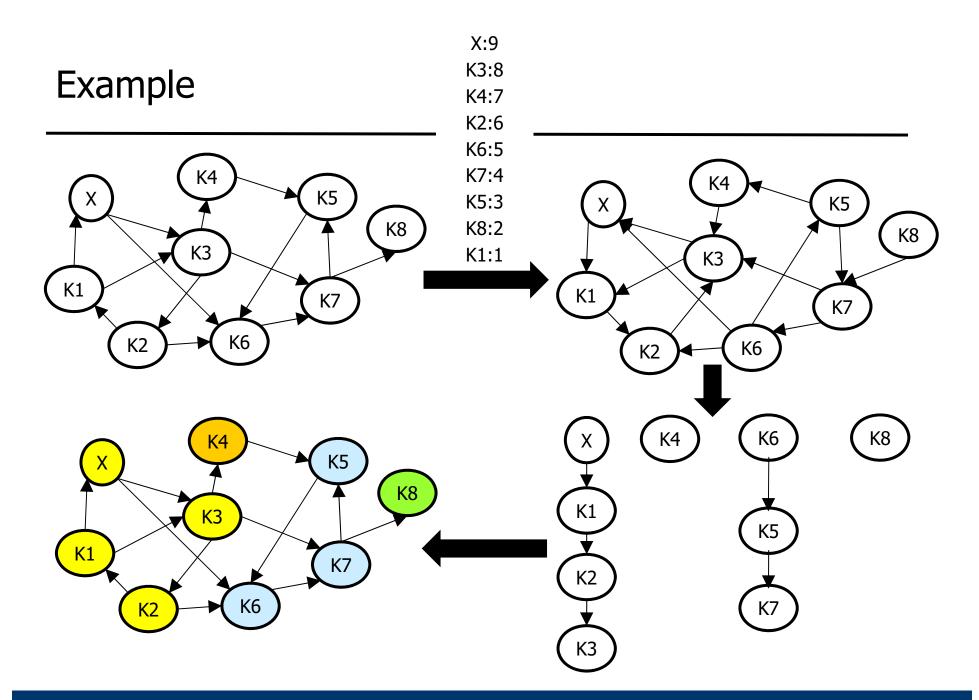


Kosaraju's Algorithm

- Kosaraju's algorithm is very short
 - Compute post-order labels for all nodes from G using a first DFS
 - Here, we actually don't need the pre-order values
 - Compute G^{T}
 - Perform a second DFS on G^T always choosing as next node in the main loop of the FDS function the one with the highest post-order label according to the first DFS
 - All trees that emerge from the second DFS are SCC of G (and G^T)

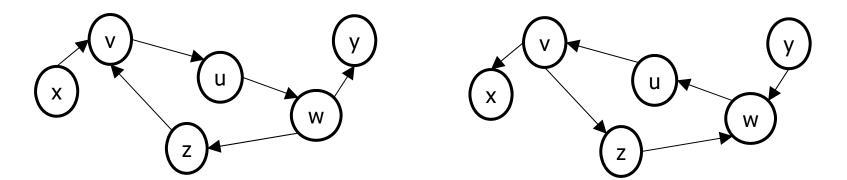






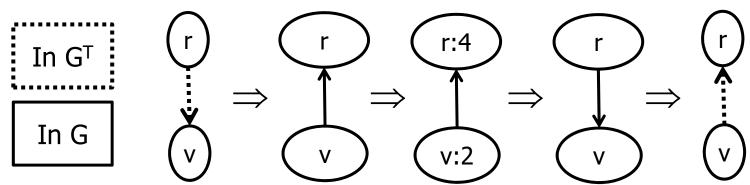
Correctness

- We prove that two nodes v, w are in the same tree of the second DFS iff v and w are in the same SCC in G
- Proof
 - ⇐: Suppose v→w and w→v in G. One of the two nodes (assume it is v) must be reached first during the second DFS. Since v can be reached by w in G, w can be reached by v in G^T. Thus, when we reach v during the traversal of G^T, we will also reach w further down the same tree, so they are in the same tree of G^T.

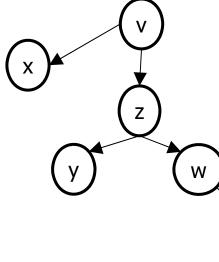


Correctness

- \Rightarrow : Suppose v and w are in the same DFS-tree of G^T
 - Suppose r is the root of this tree
 - Since $r \rightarrow v$ in G^T , it must hold that $v \rightarrow r$ in G
 - Because of the order of the second DFS: post(r)>post(v) in G
 - Thus, there must be a path $r \rightarrow v$ in G: Otherwise, last visit of r had been before v in G and thus r would have a smaller post-order
 - Since v \rightarrow r and r \rightarrow v in G, the same is true for G^T
 - The same argument shows that $w \rightarrow r$ and $r \rightarrow w$ in G
 - By transitivity, it follows that $v \rightarrow w$ and $w \rightarrow v$ via r in G (and in G^{T})



Examples (p() = post-order())



y r

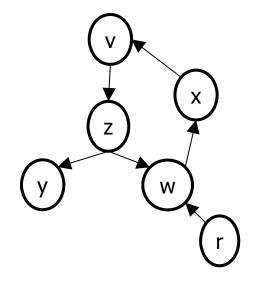
- V→W
- Thus, $w \rightarrow v$ in G^T
- Because $w \nleftrightarrow v$ in G, p(v)>p(w)
- First tree in G^T starts in v; doesn't reach w
- v, w not in same tree

 v→w and w→v in G and in G^T

Ζ

W

- Assume w is first in 1st DFS: p(w)>p(v)
- w has higher p-value,
 thus 2nd DFS starts in
 w and reaches v
- v, w in same tree



- Let's start 1st DFS in r: p(r)>p(w)>p(v)
- 2nd DFS starts in r, but doesn't reach w
- Second tree in 2nd DFS starts in w and reaches v
- v, w in same tree

- Both DFS are in O(m+n), computing G^T is in O(m)
- Instead of computing post-order values and sort them, we can simple push nodes on a stack when we leave them the last time – needs to be done O(n) times
- Together: O(m+n)
 - Needs one more array to remove selected nodes during second DFS from stack in constant time
- Since in WC we need to look at each edge and node at least once to find SCCs, the problem is in Ω(m+n)
- There are faster algorithms that find SCCs in one traversal
 - Tarjan's algorithm, Gabow's algorithm