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Content of this Lecture

• Finding Connected Components in Undirected Graphs
• Finding Strongly Connected Components in Directed Graphs

– Why?
– Pre/Postorder Traversal
– Kosaraju’s algorithm



Marius Kloft: Alg&DS, Summer Semester 2016 3

Reachability

• Given a graph G, can we reach node Y from X?

• Solution for undirected graphs: Compute connected 
components of G
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Recall Definition of Connected Components

• Let G=(V, E) be a graph.
– An induced subgraph G’=(V’, E’) of G is called connected if G’ 

contains a path between any pair v,v’∈V’ 
– G’ is called maximally connected, if no subgraph induced by 

a superset of V’  is connected
– Any maximal connected subgraph of G is called a connected 

component of G
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Finding Connected Components in Undirected Graphs

• In an undirected graph, whenever there is a path from r to 
v and from v to v’, then there is also a path from v’ to r 
– Simply go the path r  v  v’ backwards

• Thus, DFS (and BFS) traversal can be used to find all 
connected components of an undirected graph G
– Whenever you call traverse(v), create a new component
– All nodes visited during traverse(v) are added to this component
– Complexity: O(n+m)

func void DFS ((V,E) graph) {
U := V;    # Unseen 

nodes
S := ∅; # Seen nodes
while U≠ do

v := any_node_from( U);
traverse( v, S, U);

end while;
}

Called once for 
every 

connected 
component
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In Directed Graphs (“Digraphs”)

• The problem is considerably more complicated for digraphs
• Still, it will turn out: 

– Tarjan‘s or Kosaraju’s algorithm find all strongly connected 
components in O(n + m)!
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Content of this Lecture

• Finding Connected Components in Undirected Graphs
• Finding Strongly Connected Components in Directed Graphs

– Why?
– Pre/Postorder Traversal
– Kosaraju’s algorithm



Marius Kloft: Alg&DS, Summer Semester 2016 8

Recall Definition of Strongly Connected Components

• Let us now be given a directed graph G=(V, E). 
– Any maximal connected subgraph of G is called a strongly 

connected component of G
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Recall Definition of Strongly Connected Components

• Let us now be given a directed graph G=(V, E). 
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Recall Definition of Strongly Connected Components

• Let us now be given a directed graph G=(V, E). 
– Any maximal connected subgraph of G is called a strongly 

connected component of G
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Why? Contracting a Graph

• Consider finding the transitive closure (TC) of a digraph G
– If we know all SCCs, parts of the TC can be computed immediately
– Next, each SCC can be replaced by a single node, producing G’
– G’ must be acyclic – and is (much) smaller than G
– Intuitively: TC(G) = TC(G’) + SCC(G)
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Most algorithms for finding SCCs are based on 
pre-/post-order labeling of nodes

• Let G=(V, E). We assign each 
v∈V a pre-order and a post-
order by the following method:
– Init counters pre=post=0
– Perform a depth-first traversal 

(DFS) of G, but use a modified, 
recursive traverse function

– Whenever a node v is reached the 
first time, assign it the value of pre
as pre-order value and increase pre

– Whenever a node v is left the last 
time (all nodes below v traversed), 
assign it the value of post as post-
order value and increase post

func void traverse (v node, 
S,U list) 

{
pre += 1;
pre(v) := pre;
U := U \ {n};
S := S  {n};
c := n.outgoingNodes();
foreach x in c do
if x∈U then
traverse(v,S,U);

end if;
end for;
post += 1;
post(v) := post;

}
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Last visit of K1: Could only go again 
to X, which was “seen” already;

so set post(K1)=1



Marius Kloft: Alg&DS, Summer Semester 2016 16

Example
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Example
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Content of this Lecture

• Finding Connected Components in Undirected Graphs
• Finding Strongly Connected Components in Directed Graphs

– Why?
– Pre/Postorder Traversal
– Kosaraju’s algorithm
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Kosaraju‘s Algorithm

• Definition:  
Let G=( V,E). The graph GT=(V, E‘) with (v,w)E‘ iff (w,v) 
E is called the transposed graph of G.
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Kosaraju‘s Algorithm

• Kosaraju’s algorithm is very short
– Compute post-order labels for all nodes from G using a first DFS

• Here, we actually don’t need the pre-order values
– Compute GT

– Perform a second DFS on GT always choosing as next node in the 
main loop of the FDS function the one with the highest post-order 
label according to the first DFS

– All trees that emerge from the second DFS are SCC of G (and GT)

func void DFS ((V,E) graph) {
U := V;    # Unseen nodes
S := ∅; # Seen nodes
while U≠ do
v := highest_post_order_node_from(U);
traverse( v, S, U);

end while;
}

func void DFS ((V,E) graph) {
U := V;    # Unseen nodes
S := ∅; # Seen nodes
while U≠ do
v := any_node_from(U);
traverse( v, S, U);

end while;
}
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Correctness

• We prove that two nodes v, w are in the same tree of the 
second DFS iff v and w are in the same SCC in G

• Proof
– : Suppose vw and wv in G. One of the two nodes (assume it 

is v) must be reached first during the second DFS. Since v can be 
reached by w in G, w can be reached by v in GT. Thus, when we 
reach v during the traversal of GT, we will also reach w further 
down the same tree, so they are in the same tree of GT.

v

z

u
w

x

y v

z

u
w

x

y



Marius Kloft: Alg&DS, Summer Semester 2016 23

Correctness

• : Suppose v and w are in the same DFS-tree of GT

– Suppose r is the root of this tree 
– Since rv in GT, it must hold that vr in G 
– Because of the order of the second DFS: post(r)>post(v) in G
– Thus, there must be a path rv in G: Otherwise, last visit of r had 

been before v in G and thus r would have a smaller post-order
– Since vr and rv in G, the same is true for GT

– The same argument shows that wr and rw in G 
– By transitivity, it follows that vw and wv via r in G (and in GT)
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Examples (p() = post-order())

• vw
• Thus, wv in GT

• Because w↛v in G, 
p(v)>p(w)

• First tree in GT starts 
in v; doesn’t reach w

• v, w not in same tree

r

z

v

w

x

y

r

z

v

w

x

y

• vw and wv in G 
and in GT

• Assume w is first in 
1st DFS: p(w)>p(v)

• w has higher p-value, 
thus 2nd DFS starts in 
w and reaches v

• v, w in same tree
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• Let’s start 1st DFS in r:
p(r)>p(w)>p(v)

• 2nd DFS starts in r, but 
doesn’t reach w

• Second tree in 2nd DFS 
starts in w and reaches 
v

• v, w in same tree
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Complexity

• Both DFS are in O(m+n), computing GT is in O(m)
• Instead of computing post-order values and sort them, we 

can simple push nodes on a stack when we leave them the 
last time – needs to be done O(n) times

• Together: O(m+n)
– Needs one more array to remove selected nodes during second 

DFS from stack in constant time
• Since in WC we need to look at each edge and node at 

least once to find SCCs, the problem is in Ω(m+n)
• There are faster algorithms that find SCCs in one traversal

– Tarjan’s algorithm, Gabow’s algorithm


