
Algorithms and Data Structures

Marius Kloft

Graphs 3: Finding Connected Components

Marius Kloft: Alg&DS, Summer Semester 2016 2

Content of this Lecture

• Finding Connected Components in Undirected Graphs
• Finding Strongly Connected Components in Directed Graphs

– Why?
– Pre/Postorder Traversal
– Kosaraju’s algorithm

Marius Kloft: Alg&DS, Summer Semester 2016 3

Reachability

• Given a graph G, can we reach node Y from X?

• Solution for undirected graphs: Compute connected
components of G

K5

X

K1 K2

K3 K4

Y

K6

Marius Kloft: Alg&DS, Summer Semester 2016 4

Recall Definition of Connected Components

• Let G=(V, E) be a graph.
– An induced subgraph G’=(V’, E’) of G is called connected if G’

contains a path between any pair v,v’∈V’
– G’ is called maximally connected, if no subgraph induced by

a superset of V’ is connected
– Any maximal connected subgraph of G is called a connected

component of G

K6

K1

K2 K3

K4 K5

K7

K8

Marius Kloft: Alg&DS, Summer Semester 2016 5

Finding Connected Components in Undirected Graphs

• In an undirected graph, whenever there is a path from r to
v and from v to v’, then there is also a path from v’ to r
– Simply go the path r  v  v’ backwards

• Thus, DFS (and BFS) traversal can be used to find all
connected components of an undirected graph G
– Whenever you call traverse(v), create a new component
– All nodes visited during traverse(v) are added to this component
– Complexity: O(n+m)

func void DFS ((V,E) graph) {
U := V; # Unseen

nodes
S := ∅; # Seen nodes
while U≠ do

v := any_node_from(U);
traverse(v, S, U);

end while;
}

Called once for
every

connected
component

Marius Kloft: Alg&DS, Summer Semester 2016 6

In Directed Graphs (“Digraphs”)

• The problem is considerably more complicated for digraphs
• Still, it will turn out:

– Tarjan‘s or Kosaraju’s algorithm find all strongly connected
components in O(n + m)!

Marius Kloft: Alg&DS, Summer Semester 2016 7

Content of this Lecture

• Finding Connected Components in Undirected Graphs
• Finding Strongly Connected Components in Directed Graphs

– Why?
– Pre/Postorder Traversal
– Kosaraju’s algorithm

Marius Kloft: Alg&DS, Summer Semester 2016 8

Recall Definition of Strongly Connected Components

• Let us now be given a directed graph G=(V, E).
– Any maximal connected subgraph of G is called a strongly

connected component of G

X

K1

K2

K3

K4
K5

K7

K8

K6

Marius Kloft: Alg&DS, Summer Semester 2016 9

Recall Definition of Strongly Connected Components

• Let us now be given a directed graph G=(V, E).
– Any maximal connected subgraph of G is called a strongly

connected component of G

X

K1

K2

K3

K4
K5

K7

K8

K6

Marius Kloft: Alg&DS, Summer Semester 2016 10

Recall Definition of Strongly Connected Components

• Let us now be given a directed graph G=(V, E).
– Any maximal connected subgraph of G is called a strongly

connected component of G

X

K1

K2

K3

K4
K5

K7

K8

K6

Marius Kloft: Alg&DS, Summer Semester 2016 11

Why? Contracting a Graph

• Consider finding the transitive closure (TC) of a digraph G
– If we know all SCCs, parts of the TC can be computed immediately
– Next, each SCC can be replaced by a single node, producing G’
– G’ must be acyclic – and is (much) smaller than G
– Intuitively: TC(G) = TC(G’) + SCC(G)

X

K1

K2

K3

K4 K5

K7

K8

K6

SCC1

SCC3

SCC4

SCC2

Marius Kloft: Alg&DS, Summer Semester 2016 12

Most algorithms for finding SCCs are based on
pre-/post-order labeling of nodes

• Let G=(V, E). We assign each
v∈V a pre-order and a post-
order by the following method:
– Init counters pre=post=0
– Perform a depth-first traversal

(DFS) of G, but use a modified,
recursive traverse function

– Whenever a node v is reached the
first time, assign it the value of pre
as pre-order value and increase pre

– Whenever a node v is left the last
time (all nodes below v traversed),
assign it the value of post as post-
order value and increase post

func void traverse (v node,
S,U list)

{
pre += 1;
pre(v) := pre;
U := U \ {n};
S := S  {n};
c := n.outgoingNodes();
foreach x in c do
if x∈U then
traverse(v,S,U);

end if;
end for;
post += 1;
post(v) := post;

}

Marius Kloft: Alg&DS, Summer Semester 2016 13

Example

X

K1

K2

K3

K4

K5

K7

K8

K6

X

K1

K2

K3

K4

K5

K7

K8

K6

Marius Kloft: Alg&DS, Summer Semester 2016 14

Example

X

K1

K2

K3

K4

K5

K7

K8

K6

X

K1

K2

K3

K4

K5

K7

K8

K6

Marius Kloft: Alg&DS, Summer Semester 2016 15

Example

X

K1

K2

K3

K4

K5

K7

K8

K6

X

K1

K2

K3

K4

K5

K7

K8

K6

1,

2,

3,

4

Last visit of K1: Could only go again
to X, which was “seen” already;

so set post(K1)=1

Marius Kloft: Alg&DS, Summer Semester 2016 16

Example

X

K1

K2

K3

K4

K5

K7

K8

K6

1,

2,

3,

4,1

6,4

7,2 8,3

X

K1

K2

K3

K4

K5

K7

K8

K6

Last visit of K7: Could only go again to K5
and K8, which were “seen” already (whole

subtree below K7 already explored);
so set post(K7)=4

Marius Kloft: Alg&DS, Summer Semester 2016 17

Example

X: 1,9

K1: 4, 1

K2: 3,6

K3: 2,8

K4: 9,7

K5: 8,3

K7: 6,4

K8: 7,2

K6: 5,5

X

K1

K2

K3

K4

K5

K7

K8

K6

1,9

2,8

3,6

4,1 5,5

6,4

7,2 8,3

9,7

Marius Kloft: Alg&DS, Summer Semester 2016 18

Content of this Lecture

• Finding Connected Components in Undirected Graphs
• Finding Strongly Connected Components in Directed Graphs

– Why?
– Pre/Postorder Traversal
– Kosaraju’s algorithm

Marius Kloft: Alg&DS, Summer Semester 2016 19

Kosaraju‘s Algorithm

• Definition:
Let G=(V,E). The graph GT=(V, E‘) with (v,w)E‘ iff (w,v)
E is called the transposed graph of G.

X

K1

K2

K3

K4
K5

K7

K6

K1

X

K2

K3

K4
K5

K7

K8

K6

G GT

Marius Kloft: Alg&DS, Summer Semester 2016 20

Kosaraju‘s Algorithm

• Kosaraju’s algorithm is very short
– Compute post-order labels for all nodes from G using a first DFS

• Here, we actually don’t need the pre-order values
– Compute GT

– Perform a second DFS on GT always choosing as next node in the
main loop of the FDS function the one with the highest post-order
label according to the first DFS

– All trees that emerge from the second DFS are SCC of G (and GT)

func void DFS ((V,E) graph) {
U := V; # Unseen nodes
S := ∅; # Seen nodes
while U≠ do
v := highest_post_order_node_from(U);
traverse(v, S, U);

end while;
}

func void DFS ((V,E) graph) {
U := V; # Unseen nodes
S := ∅; # Seen nodes
while U≠ do
v := any_node_from(U);
traverse(v, S, U);

end while;
}

Marius Kloft: Alg&DS, Summer Semester 2016 21

Example

K8
X

K1

K2

K3

K4
K5

K7

K6

X:9
K3:8
K4:7
K2:6
K6:5
K7:4
K5:3
K8:2
K1:1

K1

X

K2

K3

K4
K5

K7

K8

K6

X

K1

K2

K3

K4

K5

K7

K8K6
X

K1

K2

K3

K4
K5

K7

K8

K6

Marius Kloft: Alg&DS, Summer Semester 2016 22

Correctness

• We prove that two nodes v, w are in the same tree of the
second DFS iff v and w are in the same SCC in G

• Proof
– : Suppose vw and wv in G. One of the two nodes (assume it

is v) must be reached first during the second DFS. Since v can be
reached by w in G, w can be reached by v in GT. Thus, when we
reach v during the traversal of GT, we will also reach w further
down the same tree, so they are in the same tree of GT.

v

z

u
w

x

y v

z

u
w

x

y

Marius Kloft: Alg&DS, Summer Semester 2016 23

Correctness

• : Suppose v and w are in the same DFS-tree of GT

– Suppose r is the root of this tree
– Since rv in GT, it must hold that vr in G
– Because of the order of the second DFS: post(r)>post(v) in G
– Thus, there must be a path rv in G: Otherwise, last visit of r had

been before v in G and thus r would have a smaller post-order
– Since vr and rv in G, the same is true for GT

– The same argument shows that wr and rw in G
– By transitivity, it follows that vw and wv via r in G (and in GT)

r

v

In GT r

v

r:4

v:2

r

v

r

vIn G
 

Marius Kloft: Alg&DS, Summer Semester 2016 24

Examples (p() = post-order())

• vw
• Thus, wv in GT

• Because w↛v in G,
p(v)>p(w)

• First tree in GT starts
in v; doesn’t reach w

• v, w not in same tree

r

z

v

w

x

y

r

z

v

w

x

y

• vw and wv in G
and in GT

• Assume w is first in
1st DFS: p(w)>p(v)

• w has higher p-value,
thus 2nd DFS starts in
w and reaches v

• v, w in same tree

r

z

v

w

x

y

• Let’s start 1st DFS in r:
p(r)>p(w)>p(v)

• 2nd DFS starts in r, but
doesn’t reach w

• Second tree in 2nd DFS
starts in w and reaches
v

• v, w in same tree

Marius Kloft: Alg&DS, Summer Semester 2016 25

Complexity

• Both DFS are in O(m+n), computing GT is in O(m)
• Instead of computing post-order values and sort them, we

can simple push nodes on a stack when we leave them the
last time – needs to be done O(n) times

• Together: O(m+n)
– Needs one more array to remove selected nodes during second

DFS from stack in constant time
• Since in WC we need to look at each edge and node at

least once to find SCCs, the problem is in Ω(m+n)
• There are faster algorithms that find SCCs in one traversal

– Tarjan’s algorithm, Gabow’s algorithm

