

Algorithms and Data Structures

The Last Lesson

Marius Kloft

This Course

•	Introduction	2
•	Complexity analysis	1
•	Abstract Data Types	1
•	Styles of algorithms	1
•	Lists, stacks, queues	2
•	Sorting (lists)	3
•	Searching (in lists, PQs, SOL)	5
•	Hashing (to manage lists)	2
•	Trees (to manage lists)	4
•	Graphs (no lists!)	4
•	The End	1
•	Sum	26/26

- Knapsack hard, but "approximable"
 - The Problem
 - Dynamic programming solution
 - Approximation
- Your Feedback
- What's next

Real-world Motivation

• Project management: Resource Allocation

- Maximize success of project
 - Given a maximal budget or personal resources

 Given a set S of items, |S|=n, with weights w_i and value v_i and a maximal weight M; find the subset T_⊆S such that

$$\sum_{i \in T} w_i \le M$$
 and $\sum_{i \in T} v_i = \max$

How to find best set of items T ??

- Brute-force approach: Enumerate all possible T_⊆S
- For each T, computing its value and weight is in O(n)
- How many different T exist?
 - Every item from S can be part of T or not
 - This gives 2*2*2* *2=2ⁿ different options
- Bottom line: brute-force O(2ⁿ)
 - Actually cannot do better in complexity: The knapsack problem is NP-complete

Variations

- Our formulation is called 0/1 knapsack problem
 - Every item can be in the set at most once no copies
- In the unbounded knapsack problem, a number x_i of copies of each item (w_i, v_i) may be used:

$$\sum_{i \in T} x_i * w_i \le M \qquad \sum_{i \in T} x_i * v_i = \max$$

- All x_i must be integer
- Bounded Knapsack has an upper bound on each x_i as additional constraint
- Also NP-complete
- But ...

Idea

- Consider unbounded case and $\forall i:w_i > 0$, M>0 and $\exists i:w_i \le M$
- Let opt(m) be the optimal solution for some m with $m \le M$:

opt(m) := max(
$$\sum_{i \in T} x_i * v_i$$
) under $\sum_{i \in T} x_i * w_i \le m$

- Idea: Use dynamic programming
 - Find solution for opt(0), then for opt(1), then for opt(2), ...
 - Until opt(M)

Dynamic Programming Solution

- Assume we know opt(0), ..., opt(m-1) for some $m \le M$
- We can use this knowledge to construct a solution for m
 - The "new" knapsack has 1 kg of weight more capacity
 - An optimal solution either fills this 1 kg or not
 - If it does fill it, this kg can be used only by exactly one item
- Thus:

$$opt(m) = \max(opt(m-1), \max_{i:w_i < m}(v_i + opt(m-w_i)))$$

we do not fill the additional 1kg we use one item extra (with weight w_i), thus

(with weight w_i), thus there is only m-w_i weight left

$$opt(m) = \max(opt(m-1), \max_{i:w_i < m}(v_i + opt(m-w_i)))$$

Computing opt(M) requires bottom-up computation of opt(0), opt(1), ... opt(M-1), opt(M)

In every step, we consider at most n different items

Together: O(n*M)

- No contradiction to NP-completeness: $O(n^*M) = O(n^*2^{\#bits(M)})$ length of input

Good runtime for small M

DP for 0/1 Knapsack (Sketch)

- A similar DP approach works for 0/1 Knapsack
- Define opt(m,i) := optimal value under budget m when using only the first i items
- Can show: if $w_i \leq m$, then $opt(m,i) = max(opt(m,i-1), v_i + opt(m-w_i,i-1))$
- Thus can again use a dynamic programming approach
 - First loop over #items i
 - Then loop over size m
 - Fills opt(m,i)

- Knapsack: Outlook
 - The Problem
 - Dynamic programming solution
 - Approximation
- Your Feedback
- What's next

- Consider the unbounded knapsack problem
- Intuitively, we want items with high value and low weight
- We compute items' relative value $p_i = v_i/w_i$

Source: http://www.vectorhq.com/premium/cartoon-diamond-ring-374494

Source: http://www.seilnacht.com/Lexikon/bleisenk.JPG

Marius Kloft: Alg&DS, Summer Semester 2016

p_i high

- We sort items by their relative value $p_i = v_i/w_i$
- Iteratively choose items for T as follows:
 - Always use the item next with the best relative value that fits
 - Always put as many copies of an item as fit into the knapsack

- First step is in O(n*log(n))
- Never look back, never withdraw a previously put item
- But: How good are the solutions it computes?

Example

- Let M=20kg and S = { (\$5,7kg), (\$11,17kg) }
- Relative values: 5/7=0,71 and 11/17=0,64
- Greedy packs 2*item 1 (value=10, weight=14)
- Packing 1*item 2 would be better: value=11, weight=17

• How bad can greedy get?

Example

- Let M=20kg and S = { (\$5,7kg), (\$11,17kg) }
- Relative values: 5/7=0,71 and 11/17=0,64
- Greedy packs 2*item 1 (value=10, weight=14)
- Packing 1*item 2 would be better: value=11, weight=17

- Let A be an algorithm computing solutions A(I) for instances I of an optimization problem P. Let OPT(I) be a function computing the optimal solution for I
- Assume P is a maximization problem: Large is good
- If, for all instances I, OPT(I)/A(I) ≤ ε, then A is called an ε-approximation algorithm for P

– ϵ is called the relative performance guarantee of A for P

 We are interested in polynomial algorithms A for hard problems P with small ε

Greedy Knapsack is a 2-Approximation

- Proof sketch
 - Only look at the best item i=(v, w) that fits into M (first iteration)
 - Assume i fits k times into M
 - − If $k^*w \le M/2$, another i would fit. If follows: $k^*w > M/2$
 - Assume rest=M-k*w is filled exactly by i'=(v',w') using k' instances
 - i' cannot be better than i, or we had used it for the first iteration
 - Assume i' is almost as good as i
 - It follows that k*v>k'*v'
 - Since k*v+rest-value=OPT, we have OPT/k*v≤2

