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This Course

• Introduction 2
• Complexity analysis 1
• Abstract Data Types 1
• Styles of algorithms 1
• Lists, stacks, queues 2
• Sorting (lists) 3
• Searching (in lists, PQs, SOL) 5
• Hashing (to manage lists) 2
• Trees (to manage lists) 4
• Graphs (no lists!) 4
• The End 1
• Sum 26/26
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Content of this Lecture

• Knapsack – hard, but “approximable”
– The Problem
– Dynamic programming solution
– Approximation 

• Your Feedback
• What’s next
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Real-world Motivation

• Project management: Resource Allocation

• Maximize success of project 
– Given a maximal budget or personal resources

Source: Wikipedia.org
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Knapsack Problem

• Given a set S of items, |S|=n, with weights wi and value vi
and a maximal weight M; find the subset TS such that

and 

How to find best set of items T ??               
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Source: Wikipedia.de
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Complexity

• Brute-force approach: Enumerate all possible TS
• For each T, computing its value and weight is in O(n)
• How many different T exist?

– Every item from S can be part of T or not
– This gives 2*2*2* …. *2=2n different options

• Bottom line: brute-force O(2n)
– Actually cannot do better in complexity: 

The knapsack problem is NP-complete
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Variations

• Our formulation is called 0/1 knapsack problem
– Every item can be in the set at most once – no copies

• In the unbounded knapsack problem, a number xi of 
copies of each item (wi, vi) may be used:

– All xi must be integer
– Bounded Knapsack has an upper bound on each xi as additional 

constraint
• Also NP-complete
• But …
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Idea

• Consider unbounded case and ∀i:wi>0, M>0 and ∃i:wi≤M
• Let opt(m) be the optimal solution for some m with m≤M:

under

• Idea: Use dynamic programming
– Find solution for opt(0), then for opt(1), then for opt(2), …
– Until opt(M)

mwx
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Dynamic Programming Solution

• Assume we know opt(0), …, opt(m-1) for some m≤M
• We can use this knowledge to construct a solution for m

– The “new” knapsack has 1 kg of weight more capacity
– An optimal solution either fills this 1 kg or not
– If it does fill it, this kg can be used only by exactly one item

• Thus:
)))((max),1(max()(

: iimwi
wmoptvmoptmopt

i




we do not fill the 
additional 1kg

we use one item extra 
(with weight wi), thus there 
is only m-wi weight left
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Analysis

• Computing opt(M) requires bottom-up computation of
opt(0), opt(1), … opt(M-1), opt(M)
– In every step, we consider at most n different items

• Together: O(n*M)
– No contradiction to NP-completeness:

O(n*M) = O(n*2#bits(M))

– Good runtime for small M

)))((max),1(max()(
: iimwi
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length of input
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DP for 0/1 Knapsack (Sketch)

• A similar DP approach works for 0/1 Knapsack
• Define opt(m,i) := optimal value under budget m when

using only the first i items
• Can show: if wi ≤ m, then

opt(m,i) = max( opt(m,i-1), vi + opt(m-wi,i-1) )
• Thus can again use a dynamic programming approach

– First loop over #items i
– Then loop over size m
– Fills opt(m,i)

…
…

m

i
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Content of this Lecture

• Knapsack: Outlook
– The Problem
– Dynamic programming solution
– Approximation

• Your Feedback
• What’s next
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Greedy Algorithm

• Consider the unbounded knapsack problem
• Intuitively, we want items with high value and low weight
• We compute items’ relative value pi = vi/wi

pi high

Source: http://www.vectorhq.com/premium/cartoon-diamond-ring-374494 Source: http://www.seilnacht.com/Lexikon/bleisenk.JPG

pi low
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Greedy Algorithm

• We sort items by their relative value pi = vi/wi
• Iteratively choose items for T as follows:

– Always use the item next with the best relative value that fits
– Always put as many copies of an item as fit into the knapsack

• First step is in O(n*log(n))
• Never look back, never withdraw a previously put item
• But: How good are the solutions it computes?
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Example

• Let M=20kg and S = { ($5,7kg), ($11,17kg) }
• Relative values: 5/7=0,71 and 11/17=0,64
• Greedy packs 2*item 1 (value=10, weight=14)
• Packing 1*item 2 would be better: value=11, weight=17

• How bad can greedy get?
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Approximate Solution

• Let A be an algorithm computing solutions A(I) for
instances I of an optimization problem P. Let OPT(I) be a
function computing the optimal solution for I

• Assume P is a maximization problem: Large is good
• If, for all instances I, OPT(I)/A(I) ≤ ε, then A is called an

ε-approximation algorithm for P
– ε is called the relative performance guarantee of A for P

• We are interested in polynomial algorithms A for hard
problems P with small ε
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Greedy Knapsack is a 2-Approximation

• Proof sketch
– Only look at the best item i=(v, w) that fits into M (first iteration)
– Assume i fits k times into M
– If k*w≤M/2, another i would fit. If follows: k*w>M/2
– Assume rest=M-k*w is filled exactly by i’=(v’,w’) using k’ instances

• i’ cannot be better than i, or we had used it for the first iteration
• Assume i’ is almost as good as i

– It follows that k*v>k’*v’
– Since k*v+rest-value=OPT, we have OPT/k*v≤2

M/2 M




