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Abstract
The L2-regularized hinge loss kernel SVM could be the most important and most
studied machine learning algorithm. Unfortunately, its computational training
time complexity is generally unsuitable for big data. Empirical runtimes can
however often be reduced using shrinking heuristics on the training sample set,
which exploit the fact that non-support vectors do not affect the decision bound-
ary. These shrinking heuristics are neither well understood nor especially reliable.
We present the first safe removal bound for data points which does not rely on
spectral properties of the kernel matrix. From there a relaxation provides us with
a shrinking heuristic that is more reliable and performs favorably compared to
a state-of-the-art shrinking heuristic suggested by Joachims [1], opening up an
opportunity to improve the state of the art.

1 Introduction
Kernel-based learning algorithms [2] have found diverse applications due to their distinct merits
such as their solid mathematical foundation [3] and modularity, which allows one to obtain non-
linear learning algorithms from simpler linear ones in a canonical way. Particularly successful is the
kernel support vector machine (kSVM) [4, 5], which has been shown to perform remarkably well
across a wide range of problem settings [6]. Unfortunately, its worst-case training time complexity
scales as O(n2(d+ n)), where n is the number of training samples and d the dimensionality of the
input space [7]. This generally prevents application to big data.
A first step towards reduced runtime complexity is achieved by employing exact screening rules or
approximate shrinking heuristics that allow for the exclusion of training points prior to or early in
the training process [8, 1]. The underlying principle here is that in kSVMs the decision boundary is
represented as weighted average of so-called support vectors—meaning that safely-identified non-
support vectors can be omitted from the training process. The shrinking heuristic used by two of the
most commonly used state-of-the-art kSVM solvers, LIBSVM [9] and SVMLight[1], dates back to
Joachims[1]. However, these shrinking heuristics are not well understood theoretically in the sense
that there is a lack in theoretical bounds indicating when a training point may be safely removed or
not. Which is why at some later stage one has to verify a posteriori whether every single previous
individual sample omission was justified. If not so, the algorithm has to be warm-started after going
through a costly descreening process of run-time complexity O(nnSV), where nSV is the current
number of support vectors.
In this paper, we derive safe sample removal bounds by exploiting the strong convexity properties of
the kSVM primal objective, thus advancing ideas put forward in [8][10][11][12][13][14][15]. Unlike
our predecessors, we however succeed in constructing a convex duality gap function in the primal
variable. Let ω : Rn 7→ H be the implicit linear mapping from the space of the dual variables α to
the reproducing kernel Hilbert space (RKHS). Then our main contribution is, at the tth iteration, an
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exact bound on ||ω(αt)−ω(α∗)||H, where (·)∗ denotes optimality. This implies a bound on the dual
variable gradient at the optimum which, combined with standard optimality conditions (K.K.T.)[16],
constitutes a demonstrably efficient safe screening rule on its own. Upon further relaxation, our safe
screening rule yields a f -parameterized shrinking heuristic. We demonstrate that, while being less
aggressive with data point removal, f-safe shrinking is more reliable than and performs favourably
compared to Joachims’ shrinking heuristic.

2 Related Work
Ghaoui et al. [15] were the first to develop a safe screening algorithm in order to remove training
features from optimization problems that are sparse in the primal. Subsequently, Ogawa et al. [10]
introduced a safe screening rule that allows for efficient a priori removal of kSVM training samples.
However, their screening can only be applied after solving the unscreened kSVM problem at least
twice in advance, which makes their method feasible only in computational path scenarios. Another
loosely-related result building up on Ogawa et al. is the work by Ndiaye et al. [8].
Hsieh et al. [17] suggest a divide-and-conquer algorithm which allows for fast parallelization of
large kSVM problems through initial training set m-segmentation using kernel kmeans clustering at
O(nmd). The optimal solutions to the resulting m independently-solved kSVMs are then used to
warm-start the global kSVM problem. [17] also present a screening rule that can be used to remove
training samples prior to the conquer step, however, their associated removal bounds ∝ λ−1min are in
practice meaningless as they require prior knowledge of λmin, the smallest eigenvalue of the kernel
matrix. Note that λmin is not cheaply available and secondly can be very small or even zero when
the kernel matrix is merely semi-definite.
Another attempt at improving kSVM performance is the work by Steinwart et al.[18], who do not
offer any novel screening rules, but present an improved working set selection scheme for the dual
variables.

3 Problem Setup and Notation
LetX and Y be input and output spaces, respectively, and let (x1, y1), . . . , (xn, yn) ∈ X×Y be a set
of training samples. Let k : X ×X → R be a kernel corresponding to a mapping φ : X → H where
H is a reproducing kernel Hilbert space (RKHS). The primal and dual optimization tasks of the
kernel SVM are then to minimize the primal and maximize the dual objective functions P : H → R
and D : [0, C]n → R, respectively, defined as [19]

P (w) :=
1

2
||w||2H + C

n∑
i=1

[(1− yi 〈φ(xi), w〉]+ , D(α) :=

n∑
i=1

αi −
1

2
(α ◦ y)TK(α ◦ y).

Here [z]+ denotes max(0, z) andC ∈ ]0,+∞[ is the regularization parameter. Using the Lagrangian
formalism it can be shown [19] that the primal and dual optima w∗ and α∗ are related by the linear
function ω : [0, C]n → H defined as ω(α) :=

∑n
i=1 yiαiφ(xi), through the identity w∗ = ω(α∗).

We define the duality gap functions GP : H 7→ R and GD : [0, C]
n 7→ R as

GP (w) := min
α∈[0,C]n:

ω(α)=w

GD(α) = P (w)− max
α∈[0,C]n:

ω(α)=w

D(α)

and GD(α) := P (ω(α)) − D(α), respectively. Note that Slater’s condition holds in the optimum
[19] and hence GP (w∗) = 0 = GD(α

∗).

4 Bounding the Primal Distance
In this section we present our main result: a bound on the gradients of the dual objective function,
which we use in the subsequent section to derive a safe dual variable removal rule and a novel
shrinking heuristic.

Proposition 4.1. The duality gap GP : ω ([0, C]
n
) → R is strongly convex with parameter 2 [16]

satisfying:

GP (w1) ≥ GP (w2) + 〈∇GP (w2), w1 − w2〉+ ||w1 − w2||2H, ∀w1, w2 ∈ ω ([0, C]
n
)
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Proof. The definition of the function ω implies that D(α) =
∑n
i=1 αi −

1
2 ||ω(α)||

2
H. Thus

GP (w) = C

n∑
i=1

[(1− yi 〈φ(xi), w〉)]+ + ||w||2H − max
α∈[0,C]n:

ω(α)=w

n∑
i=1

αi

︸ ︷︷ ︸
=:h(w)

For invertible kernel matrices, the last term is trivially linear in w, for semi-definite kernels we can
prove its convexity as follows:
Note that h(w) is for any w the solution of a linear program. Hence, by strong duality,

h(w) = min
λ∈Rn

max
α∈[0,C]n

n∑
i=1

αi − 〈ω(α)− w, λ〉 = min
λ∈Rn

f(λ) + 〈w, λ〉 = −g(w)

where g(w) = maxλ∈Rn −f(λ)−〈w, λ〉 and f(λ) = maxα∈[0,C]n
∑n
i=1 αi−〈ω(α), λ〉. Danskin’s

theorem shows that both f and g are convex functions. Thus one can writeGp(w) = A(w)+ ||w||2H,
where A is convex, and the proposition follows.

Corollary 4.2. Let w∗ be the primal optimum. Then for all α ∈ [0, C]
n, we have

||ω(α)− w∗||H ≤
√
GD(α)

Proof. Reconsidering the strong convexity inequality from the above property, we have

GP (ω(α)) ≥ GP (w∗) + 〈∇GP (w∗), ω(α)− w∗〉+ ||ω(α)− w∗||2H
≥ GP (w∗) + ||ω(α)− w∗||2H

where the last inequality follows from the optimality of w∗ implying 〈∇GP (w∗), ω(α)− w∗〉 ≥ 0.
The strong duality of SVM impliesGP (w∗) = 0, thusGD(α) ≥ GP (ω(α)) ≥ ||ω(α)−w∗||2H.

Corollary 4.3. Let α∗ be the dual optimum. Denote kij the entries of the associated kernel matrix,
then for all i = 1, . . . , n and all α ∈ [0, C]

n we have:

|∇D(α∗)i −∇D(α)i| ≤
√
kii ·GD(α).

Proof. It is straightforward to see that for all α ∈ [0, C]
n we have∇D(α)i = 1− yi 〈ω(α), φ(xi)〉.

Thus, in particular

∇D(α∗)i = 1− yi 〈w∗, φ(xi)〉
= 1− yi 〈ω(α), φ(xi)〉 − yi 〈w∗ − ω(α), φ(xi)〉
= ∇D(α)i − yi 〈w∗ − ω(α), φ(xi)〉

thus |∇D(α∗)i − ∇D(α)i| = | 〈w∗ − ω(α), φ(xi)〉 |. We can bound the last term by Cauchy-
Schwarz:

| 〈w∗ − ω(α), φ(xi)〉 | ≤ ||w∗ − ω(α)||H
√
kii ≤

√
kiiGD(α)

where the last inequality follows from the previous corollary.

5 Safe screening and f -Safe shrinking heuristic
Remark 5.1. By the K.K.T. conditions [16] it holds in the optimal point:

If ∇D(α∗)i > 0, then α∗i = C; if∇D(α∗)i < 0, then α∗i = 0.
Using the bound of Corollary 4.3, we are able to give a safe screening rule as follows:

if ∇D(α)i >
√
kiiGD(α), then α∗i = C; if ∇D(α)i < −

√
kiiGD(α), then α∗i = 0.

While the safe removal might not be sufficient to reduce the training sample set size, we can derive
an efficient shrinking heuristic by introducing a factor 0 < f < 1. The f -safe shrinking heuristic
reads

∇D(αt)i > f
√
kiiGD(αt) ⇒ remove training point(αi = C)

∇D(αt)i < −f
√
kiiGD(αt) ⇒ remove training point(αi = 0)

(1)
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Algorithm 1: (SMO TYPE SVM DUAL SOLVER WITH F-SAFE
SHRINKING).

1: input: kernel matrix K = (k(xi, xj))
n
i,j=1

labels y1, . . . , yn ∈ {−1, 1}
optimization precision ε

2: initialize:
3: ∇Di := 1, αi := 0 ∀i = 1, . . . , n
4: Gap := nC
5: A := {1 . . . n}
6: while ¬ optimality conditions satisfied within ε do
7: while ¬ optimality conditions satisfied within ε do
8: Working set optimization:

update α for a working set s ⊂ A
9: Update: compute new∇Di for i ∈ A and Gap

10: shrinking: reduce A by points satisfying (1)
11: end while
12: Reset working set: A := {1 . . . n}
13: Update: compute new∇Di for i ∈ A and Gap
14: end while
15: output: ε-accurate α

1e+6 1e+7 1e+8
1e-1

1e+0

1e+1

1e+2

1e+3

1e+4

no shrinking
Joachims
safe screening
f=0.1

Figure 1: Duality gap (y-axis) vs. num-
ber of kernel evaluations (x-axis) [MNIST
digits 3/5]

6 Preliminary Experiments
In the following, we study the performance of f -safe shrinking based on MNIST binary digit clas-
sification [20]. We use working sets of size one [18] with a stopping rule[9]. All experiments are
implemented in MATLAB and use a RBF kernel (σ = 6) and C = 1.
Experiment A [Table 1] shows that our f -safe shrinking heuristic can be easily tuned to substan-
tially outperform Joachims’ shrinking. In future work, we will investigate model selection algo-
rithms for f . Experiment B [Figure 1] shows that a hardly tuned f -safe shrinking heuristic can
have a similar convergence rate as Joachims’ shrinking, while effectively avoiding episodes of slow
convergence due to remediation of false removals. Note that our safe screening rule only marginally
outperforms unscreened kSVMs for practically large ε-precision.

Dual gap Safe screening f=0.32 f=0.1 f=0.032 f=0.01 Joachims’

at removal of 50% 8.3e-01 7.9e+00 6.1e+01 2.6e+02 1.1e+03 1.6e+02

at removal of 75% 3.5e-01 3.5e+00 3.3e+01 1.5e+02 4.3e+02 7.2e+01

at removal of 87.5% 0 1.0e+00 1.0e+01 6.5e+01 2.3e+02 2.7e+01

at removal of 93.8% 0 0 9.7e-01 1.5e+01 6.0e+01 9.3e+00

Reshrinkings 0 0 0 14 37 270

Kernel evaluations 6.2e+06 3.3e+06 1.8e+06 7.7e+06 4.4e+06 9.4e+06

Table 1: Typical performance metric [MNIST digits 0/7]

7 Conclusion and Outlook
Our key technical contribution is a proven safe screening rule that we extend to a high-performance
shrinking heuristic. Preliminary experiments indicate that our f -safe shrinking heuristic consistently
outperforms state of the art screening algorithms, including the one used by LIBSVM[1].
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As immediate next steps, we will implement our approach in a runtime-optimized environment
and extend the solver by an improved working set selection scheme [18], kernel kmeans clustering
warm-starting [17] and with a hierarchical f -shrinking heuristic. Subsequently, we will present a
family of parallelized solvers inspired by state-of-the-art DCSVM[17] and GTSVM[21]. We will
also apply our results to SVR and other suitable algorithms. In doing this, we hope to contribute
toward making kernel support vector methods big data-friendly.

Acknowledgments

This work was partly funded by the German Research Foundation (DFG) award KL 2698/2-1.

References
[1] T. Joachims, “Advances in kernel methods,” ch. Making Large-scale Support Vector Machine Learning

Practical, pp. 169–184, Cambridge, MA, USA: MIT Press, 1999.
[2] B. Schölkopf and A. Smola, Learning with Kernels. Cambridge, MA: MIT Press, 2002.
[3] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of machine learning. MIT press, 2012.
[4] B. Boser, I. Guyon, and V. Vapnik, “A training algorithm for optimal margin classifiers,” in Proceedings

of the 5th Annual ACM Workshop on Computational Learning Theory (D. Haussler, ed.), pp. 144–152,
1992.

[5] C. Cortes and V. Vapnik, “Support vector networks,” Machine Learning, vol. 20, pp. 273–297, 1995.
[6] M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim, “Do we need hundreds of classifiers to

solve real world classification problems?,” Journal of Machine Learning Research, vol. 15, pp. 3133–
3181, 2014.

[7] J. C. Platt, “Sequential minimal optimization: A fast algorithm for training support vector machines,”
tech. rep., ADVANCES IN KERNEL METHODS - SUPPORT VECTOR LEARNING, 1998.

[8] E. Ndiaye, O. Fercoq, A. Gramfort, and J. Salmon, “GAP Safe screening rules for sparse multi-task and
multi-class models,” ArXiv e-prints, June 2015.

[9] C.-C. Chang and C.-J. Lin, “Libsvm: A library for support vector machines,” ACM Trans. Intell. Syst.
Technol., vol. 2, pp. 27:1–27:27, May 2011.

[10] K. Ogawa, Y. Suzuki, and I. Takeuchi, “Safe screening of non-support vectors in pathwise svm computa-
tion,” in Proceedings of the 30th International Conference on Machine Learning (ICML-13) (S. Dasgupta
and D. Mcallester, eds.), vol. 28, pp. 1382–1390, JMLR Workshop and Conference Proceedings, May
2013.

[11] Z. Xiang and P. Ramadge, “Fast lasso screening tests based on correlations,” in Acoustics, Speech and
Signal Processing (ICASSP), 2012 IEEE International Conference on, pp. 2137–2140, March 2012.

[12] Z. J. Xiang, H. Xu, and P. J. Ramadge, “Learning sparse representations of high dimensional data on large
scale dictionaries,” in Advances in Neural Information Processing Systems 24 (J. Shawe-taylor, R. Zemel,
P. Bartlett, F. Pereira, and K. Weinberger, eds.), pp. 900–908, 2011.

[13] L. Dai and K. Pelckmans, “An ellipsoid based, two-stage screening test for bpdn,” in Signal Processing
Conference (EUSIPCO), 2012 Proceedings of the 20th European, pp. 654–658, Aug 2012.

[14] J. Wang, P. Wonka, and J. Ye, “Lasso screening rules via dual polytope projection,” CoRR,
vol. abs/1211.3966, 2012.

[15] L. E. Ghaoui, V. Viallon, and T. Rabbani, “Safe feature elimination in sparse supervised learning,” CoRR,
vol. abs/1009.3515, 2010.

[16] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY, USA: Cambridge University Press,
2004.

[17] C. Hsieh, S. Si, and I. S. Dhillon, “A divide-and-conquer solver for kernel support vector machines,”
CoRR, vol. abs/1311.0914, 2013.

[18] I. Steinwart, D. Hush, and C. Scovel, “Training svms without offset,” J. Mach. Learn. Res., vol. 12,
pp. 141–202, Feb. 2011.
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