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Abstract—We present ClusterSVDD, a methodology that unifies
support vector data descriptions (SVDDs) and k-means clustering
into a single formulation. This allows both methods to benefit
from one another, i.e. by adding flexibility using multiple spheres
for SVDDs and increasing anomaly resistance and flexibility
through Kernels to k-means. In particular, our approach leads
to a new interpretation of k-means as a regularized mode
seeking algorithm. The unifying formulation further allows for
deriving new algorithms by transferring knowledge from one-
class learning settings to clustering settings and vice versa.
As a showcase, we derive a clustering method for structured
data based on a one-class learning scenario. Additionally, our
formulation can be solved via a particularly simple optimization
scheme. We evaluate our approach empirically to highlight some
of the proposed benefits on artificially generated data, as well as
on real world problems, and provide a PYTHON software package
comprising various implementations of primal and dual SVDD
as well as our proposed ClusterSVDD.

Index Terms—Anomaly Detection, One-class Classification,
Support Vector Data Description, Clustering, k-means

I. INTRODUCTION

ACHINE learning methods and tools have become a

vital part of research and industry these days, where
raw data is cheaply available in huge amounts. Frequently,
though, this comes with an absence of ground truth labels and,
therefore, attention has been drawn recently to unsupervised
machine learning methods.

Two of the most prominent tasks within unsupervised
settings comprise one-class classification, the identification
of common sub-structures for a given set of samples, and
clustering, the identification of discriminative sub-structures
within a given set of samples.

One-class learning, a term that was first mentioned in Moya
and Hush [1], [2] in the context of neural networks, is at the
core of important applications such as anomaly detection, also
known as outlier detection, intrusion detection, and novelty
detection (e.g. [3], [4] for an overview). The most influential
methods comprise one-class support vector machines [5], [6]

1 klaus-

corresponding  authors
robert.mueller @tu-berlin.de)

Nico Gornitz, Klaus-Robert Miiller, and Shinichi Nakajima are with the
Berlin Institute of Technology, Machine Learning Group, Marchstr. 23, 10587
Berlin, Germany

Klaus-Robert Miiller is also with the Department of Brain and Cognitive
Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713,
Korea and with the Max Planck Institute for Informatics, Stuhlsatzenhausweg,
66123 Saarbriicken

Luiz A. Lima is with the Pontifcia Univ. Catlica do Rio de Janeiro, 22543-
900 Rio de Janeiro, Brazil and Petrobras, 20031-912 Rio de Janeiro, Brazil

Marius Kloft is with the Humboldt University of Berlin, Department of
Computer Science, Machine Learning Group, Rudower Chaussee 25, 12489
Berlin, Germany

(email: nico.goernitz@tu-berlin.de,

Fig. 1. Fitting multiple hyperspheres simultaneously with a pre-defined outlier
fraction is the core idea of our proposed method ClusterSVDD.

and support vector data descriptions [7], [8]; they have been
analyzed [9], [10], extended [11], [12], [13], [14], [15], [16],
[17], and refined [18], [19], [20], [21] many times since then.

Clustering, especially k-means clustering, has been around
a while. In 1967, MacQueen published his classic work on
multivariate classification [22], laying the foundation of one of
the most successful methods for data analysis ever. It has been
analyzed, extended, and adapted, and has served as a source
of inspiration hundreds of times [23], [24], [25], [26], [27],
[28], [23], [29], [24], [16], [30], with a still-active community
today. For an extensive overview we refer to Jain et al. [31].

In this work, we fuse k-means clustering and support vector
data description into a single framework, unifying one-class
classification and clustering. More precisely, our contributions
are:

o relating k-means clustering with one-class classification,
which leads to new insights on the properties of SVDDs
and k-means, i.e. identifying k-means as a regularized
mode seeking algorithm,

o natural extension for k-means to kernels and outlier
awareness through hypersphere formulation,

« natural extension for SVDDs for mixtures of distributions
through multiple spheres.

Along these lines, we show that our solution, ClusterSVDD,
has an especially simple form that allows for re-using existing
code of k-means and SVDDs. Furthermore, we provide an
open-source PYTHON software suite with implementations of
dual (kernel) SVDD, fast primal (sub-gradient descent) SVDD,
and our ClusterSVDD. A major focus of our paper is to give a
rigorous review of SVDDs and its properties, e.g. deriving



new theorems where necessary and summarizing the most
important properties from the works of [7], [6], [20], [19].
Finally, to leverage the link between one-class learning and
clustering, we derive a clustering method for structured data
based on an existing one-class scenario.

Instead of fitting cluster centers to the data, our Clus-
terSVDD minimizes hyperspheres such that the bulk of the
data is within (nominal data), with a pre-defined fraction
outside (anomalous data) of the spheres. From a SVDD point
of view, it is a natural extension from single spheres to multiple
spheres (cf. Fig. 1). Both formulations, k-means and SVDD,
are special cases of our ClusterSVDD.

To clarify, the intention of this work is to allow further
formal insight into the structure of two seemingly unrelated
learning problems. Therefore, our focus goes beyond extensive
comparison studies against all thinkable state of the art settings
and methods. Rather, we point out (cf. Table V) that the novel
holistic view on clustering and one-class problems permits
the solution of completely novel problem classes, such as
structured clustering (cf. Section V). In other words, our
efforts are orthogonal to standard algorithmic improvements;
the empirical evaluation serves the mere purpose of illustrating
the basic functionality of our approach.

We specify the setting and introduce k-means clustering as
well as support vector data descriptions (SVDDs) as com-
monly found in literature in Section II. In order to unify
both methods, we first analyze and re-formulate both methods
more precisely, and then we introduce our ClusterSVDD and
corresponding optimization in Section III. Section IV presents
empirical evaluations on artificially generated data as well as
on real-world data. In Section V, we derive an outlier resistant
clustering method as a showcase for leveraging the link
between one-class classification and clustering. We conclude
with Section VI, summarizing our work and outlining future
research directions.

II. PRELIMINARIES

Given a set of input instances X1, ...,X¢; € X, where X is
an arbitrary set that is commonly assumed to be realized from
a sequence of independent and identically distributed (i.i.d)
random variables. Furthermore, k£ denotes the number of clus-
ters and z; € {1,...,k} the membership of the corresponding
input instance x;. Memberships can be expressed by partition
sets {S;}5_,, where i € S; if and only if z; = j. It holds that
S;NS; =0 fori#jand Us_S;={1,...,0}.

Kernel based approaches [32], [23] allow the input instances
to be mapped into a reproducing kernel Hilbert space (RKHS)
‘H via a feature map ¢ : X — H for a more concise descrip-
tion thereof. The most important symbols are summarized in
Table I.

A. k-means Clustering

k-means clustering [22] (a recent overview is given in
[31]) is usually introduced as a (non-convex) optimization

TABLE I
GLOSSARY OF MATHEMATICAL SYMBOLS AND CORRESPONDING
EXPLANATION

Symbol [ Description

c Center of a (hyper-)sphere

T Corresponding threshold (squared radius)

¥ Variables denoted with an asterisk are optimal

v Hyperparameter or regularization parameter as used in
(Cluster)SVDDs and one-class SVMs

1 Number of datapoints

k Number of clusters (chosen in advance)

2 latent variable for instance @ (z; € {1,...,k})

&i Slack variable for training instance 7 (§; > 0)

Kernel function

Feature map: maps input instances into some
(high-dimensional) feature space ¢ : X — H
Euclidean norm

Reproducing kernel Hilbert space (RKHS)

X Input space

[ Ceiling function [z] = min{n € Z:n > z}
le" Dual variable

|- Cardinality of a set.

Si Partition set ¢: it holds that S; N.S; = @ for ¢ # j
and UF_ S5 ={1,...,¢}

problem of finding a partition {S; }§:1’ for a pre-defined k,

that minimizes the within cluster sum-of-squares (WCSS),

k
min > xi —¢?, )

{8i}j=1 55 ies,

with {c; € X }le being the means of the corresponding clus-
ters. Solving this problem (at least locally optimal) consists of
three simple steps:

(1) Initialize the cluster centers {c; };?:1 and repeat steps (2)
& (3) until no changes occur.

(2) Update the partitions {S;}%_, by identifying the nearest
cluster, given the intermediate cluster centers c., z; =
argminge gy ez — xi|%.

(3) Update the cluster centers c¢; = 1/|5;] Ziesj X, Vj =
1,...,k.

For our purposes, we need an alternative formulation of
k-means. Instead of stating that the cluster centers {c; };?:1
should be the means of input instances corresponding to the
cluster, we can re-write OP (1) more concisely as

k
min Zmin Z le; — xil|? .
Bt i3 ¥ des,

This yields the same solution, since it is a convex problem
w.r.t. c; (fixing the partitions), and we can analytically derive
the optimal solution by O (Zz‘esj llc; _Xin) /Oc; = 0,
therefore ¢; = 1/\Sj|2iesj x;. We can now define an
equivalent constrained formulation of OP (1).

Definition 1 (k-means Constrained Problem): The con-
strained optimization problem for k-means is given by

k

: .
‘Elr{gn > lles —xi ()
pm

i€S;

argmin ||c; — xl-||2 ,
ze{l,....k}

subject to z; =



where ¢ € S, if and only if 2; = j, Vi = 1,...,¢ and
Vi=1,...,k.

Since its introduction, efforts have been made to increase
the flexibility of the description [23], [24], [25], e.g. through
the use of kernels ([32], [23], [33] for an introduction to kernel
methods), and increasing the robustness of the method [26],
[27], [28] against outliers and the curse of dimensionality. In
this work, we tackle all of the above mentioned into a single
framework.

Another line of research, which we do not investigate further
in this work, deals with the inference of the correct number
of partitions k [29], [34], [35], [36], [37].

B. Support Vector Data Description (SVDD)

One-class SVMs [6], [5] and support vector data descrip-
tions (SVDD)[7] are among the most prominent methods for
one-class classification.

The aim of one-class classification is to fit a model of
normality, that is, to find a set containing the most typical
instances and reject instances that deviate significantly from
this model.

The task can be formally phrased within the framework of
density level set estimation as follows, where input instances
are drawn i.i.d. according to a probability distribution P. Let
p(z) denote the density of P for x € X so that p(z) =
P(X = z) for some random variable X taking values on
X and b, € [0,1] a threshold on the fraction of anomalies.

Denoting by X’ another i.i.d. copy according to P, the the-
oretically optimal nominal set is L, := {x € X' : p(z) > b, }
for v € [0,1] and b,, such that P(X ¢ L,) = v, which is
called the v density level set and can be interpreted as follows:
L, contains the most likely inputs under the density p, while
rare or untypical data are modeled to lie outside of L,. The
parameter v indicates the fraction of outliers in the model.

The aim is to compute, based on the data x1,...,2, € X,
a good approximation of L,, that is, to determine a function
f X — R giving rise to an estimated density level set
L, :={z € X : f(x) < 0}. It is desirable that L, closely
approximates the true density level set L,, i.e., L, converges
to L, in probability, that is,

P(L,\L, UL,\L,) — 0 for £ — co.

This implies that L, has asymptotically probability mass v,
that is, P(X ¢ L,) — v for £ — co.

Density level set estimation is closely related to minimum
volume set estimation [38], excess mass estimation, and den-
sity estimation [9]. It has been—implicitly or explicitly—
applied to anomaly detection [3], [39], outlier detection, nov-
elty detection, and change detection.

Classic kernel-based [32] approaches include the one-class
support vector machine [6], [5] (OC-SVM) and the support
vector data description [8], [7] (SVDD).

The one-class SVM learns a hyperplane that separates the
bulk of the data from the origin with maximum margin. The

primal optimization problem reads:

¢
. 1 2 1
Join Sl —p+ - ;s 3)
subject to (w,p(x;)) > p—&, Vi=1,...,¢ ,

where p € R is a threshold, w € H the hyperplane parameter
and 0 < v < 1 controls the number of support vectors.
Moreover, one-class SVMs with RBF kernels have been shown
to be consistent density level set estimators [10].

The SVDD employs a quadratic model fy r(z) = |c —
#(z)||> — R2. It subsequently encloses a fraction of 1 — v
many inputs within a hypersphere, with center ¢ and radius
R.

The Primal SVDD Problem according to [8] is given by,
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4)
lce— (x> <R*+&, Vi=1,...,¢

for C > 0. It can be shown that both methods are equal
for specific kernels [12], i.e. translation-invariant kernels. In
Section III, we present an equivalent result for the primal
formulations and utilize it in Section V.

Extensions to semi-supervised and LPUE (learning with
positive and unlabeled examples) settings comprise [11], [12],
[13]. Using standard SVDD for clustering was first attempted
by [16]. Besides the obvious extension to multiple one-class
learning problems, attempts to integrate multiple spheres were
done in [14], [15], [40], [17], [18], [41]. Our work is in the
spirit of these attempts, but goes further by directly relating
k-means to SVDDs, being more extensive by reviewing details
and stating more precisely the problem, adding flexibility
through kernels, and also being more simple.

subject to

III. CLUSTERSVDD

In order to unify both worlds of k-means clustering and
support vector data description, we need to re-formulate and
analyze more precisely the underlying optimization problems
before we introduce our ClusterSVDD and corresponding
optimization.

A. Revisiting SVDD

As noted in the literature [20], [18], [19], there are some
issues with the original formulation of the SVDD as defined
in Section II-B. First, the formulation is not convex due to R?
in the constraints and second, the primal-dual relation breaks
down for 0 < C' < 1/¢. However, this can be fixed, and we
derive here a rigorous formulation of the SVDD based on the
work of Chang et al. [20].

Definition 2 (Primal Constrained Problem): The primal
SVDD optimization problem as a quadratically constrained
linear program (QCLP) is given by:

¢
. 1
BTt gy 2 ®
subject to |[c —p(x)|IP<T+¢& Vi=1,....0



for all 0 < v < 1 the constraint 7' > 0 is dispensable (cf.
Lemma (2)). We will denote the OP (5) as Svdd(v, {x;}¢_,).

Note that & in OP (5) can be substituted, which allows for
an unconstrained formulation of the SVDD.

Definition 3 (Primal Unconstrained Problem): The primal
convex, non-smooth, and unconstrained SVDD optimization
problem is given by:

L _ 2
anl“gloT —|— Z l'IlaX 0 ||C (Xz) H ) (6)

This definition is important for solving SVDDs practically,
using sub-gradient based solvers (cf. Section III-E).

Deriving a linearly constrained quadratic program (QP)
allows us to pin the relation between SVDDs and OC-SVMs,
which will become important later in Section V.

Theorem 1 (Quadratic Program Formulation and Equiv-
alence to One-class SVM): The SVDD primal optimization
problem, given by OP (5), can be transformed into the follow-
ing equivalent linearly constrained quadratic program (QP):

¢
wr/r)lg;wllvvll p+ ”z—;& (7)
1
subject to  (w, d(x;)) > p+ §H¢(X¢)||2 &, Vi=1,...,0,
i.e. for Lo-normalized feature vectors ||¢(x)|| = const, the

above formulation reduces to the one-class SVM formulation
as given in OP (3).

Proof: Starting from the formulation of the primal SVDD
in OP (5), we first extend the constraints from ||c —¢(x;)||? <
T +¢& to [lc]|* — 2(c, ¢(x:)) + Hfb(xz)l\2 < T +¢;. Second,
we re-arrange terms and arrive at lle ‘2 + H¢(’;‘)H &< <

2
(c,d(x;)). In a third step, we substitute p = % € R,
G = % € RT, and ¢ = w € H, which changes the objective

. l L

function T+ - 3=, & towards |[wl|> —2p+ £ >, 2¢
Without changing the minimizer, we can multiply the objective
by 2 and arrive at the one-class SVM objective 3| w]|? —
p+ ﬁ Zle ¢; with corresponding constraints (w, ¢(x;)) >
p+ 3]|¢(x:)||* — ¢ This proves the first part of the theorem.
For the sefond part, a simple substitution p = p+1 ¢ (x;)||*> =
p—+ <% € R leads to the desired outcome. [ |

The following lemmas are important for understanding
the various solutions to the SVDD problem. These lemmas
help establishing the link between k-means and our proposed
method ClusterSVDD (cf. Section III-B)

Lemma 1: Assume v < 1/¢ is given, then OP (5) reduces
to the minimum enclosing ball (MEB) problem, i.e. it holds
that {&;}¢_, = 0 (hard margin).

Proof: Assume an optimal solution of OP (5) is
given by (T* c*, {&}_,). Assume another solution (7 +
*,c* {0} _)), where &, = maxe(1,...¢} §» which is a

feasible solution. Therefore,

&~

4
s%}jgg":f See .

i= i\m

—

is strictly fulfilled for v < 1/¢ and hence, any optimal solution
must include {¢7}¢_, = {0}¢_, and for v = 1/¢, the set of
optimal solutions does include {&7}¢_, = {0}¢_,. ]
Lemma 2: Assume 0 < v < 1 is given, then the non-
negativity constraint in OP (5),T > 0, can be omitted.
Proof: (According to [20], Theorem 3, Proof in Ap-
pendix A) Assume an optimal solution of OP (5) is given
by (T*,c*,{&}i_,). Further, assume that 7% = —|T*| and
another feasible solution that does not change the constraints
is given by (0, c*, {€ — [T*[}_y). ie. 0 < [le” — o2 <
—|T*| + &;. It holds that
¢
Z & =T

0
1
—|T* —E *>0
‘ |+‘€l/i:1£z_
14

v Jrﬁyzgi

=1

is true for v < 1 and hence, is a contradiction to the
assumption that —|T™*| = T*. |

Lemma 3: Assume v > 1 is given, then due to the non-
negativity constraint in OP (5),7 > 0, the optimal solution
must have T = 0.

Proof: (According to [20], Theorem 3, Proof in Ap-
pendix A) Assume an optimal solution of OP (5) is given
by (T*,c*,{&}¢_,) and another feasible solution, that does
not change the constraints, is given by (0, c*, {&F +T*}¢_,).
It holds that

| ¢ . |
+E;§i2 z::@‘FT = +E;£ia

is true for v > 1 and hence, the optimal solution must have
T =0. [ |
Therefore, we can now state precise primal and dual opti-
mization problems. Furthermore, we can derive a closed form
solution to a special case of OP (5).
Theorem 2 (Primal Problem and Solution for v > 1): If
v > 1 the primal optimization problem reduces to

0
min ) e — o(xi)|I?, ®)
=1

and the optimal solution is given by ¢ = 1/¢ ZZ 1 O(x3).
Proof: According to Lemma 3, 7" = 0 and i > 0 can
be discarded, hence we arrive at

¢
C{glozgfi
subject to  [jc —p(x)|* <& Vi=1,...,L



Further, ¢; > 0 is due to the 2-norm always fulfilled and
minimization yields the smallest possible & = ||c — ¢(x;)]|?,
which reads unconstrained

IIllIlL Z e — o(x:)|* .
This quadratic form has a unique optimum at OL(c)/dc = 0,
which is ¢ =1/¢ Zle o(x;)-

For v > 1, the dual problem can be solved analytically by
a=1/L. |

To employ kernelized versions of the SVDD (i.e. OP (5)),
we need to derive the corresponding dual problem.

Theorem 3 (Dual Problem): For 0 < v < 1 and appro-
priately defined Mercer-kernel k : H x H — R, k(x,y) —
(p(x), #(y)), the dual problem is given by

¢ VA
max Zaik(xi,xi)—Zzaiajk(xiaxj) ©))

<a<it
Osesz i i=1 j=1

subject to Zai =1

i=1
with expansions ¢ = Zle a;d(x;).
Proof: Due to Lemma 2, we can skip the non-negativity

constraint 7' > 0 of the convex OP (5). The resulting
Lagrangian arrives at

L(a,B8,¢,T,¢) =

¢ ¢
Z +2_aillle - o(x)]”
i=1 i=1

¢

-5

=T - 61
and solving for the Lagrange dual function g(e, 3) (with o >
0,8 >0 and g(cv, B) = mine 7¢ L(x, B, ¢, T, §)) yields
(1) £ —B;—a;=0and hence, 0 < o < L
(2) the expansion ¢ = Zf 1 aigﬁ(xl)

(3) the equality constraint Z o =1.

Substitution and re-arrangement then gives us the dual opti-
mization problem in OP (9). In order for strong duality to
hold, some constraint qualifications, such as Slater’s condi-
tion, must be fulfilled (which holds trivially, cf. [20] Section
3.1). For any primal (c*,7*,£") and dual optimal solution
(a*, "), the complementary slackness constraints are given
by af ([c* — d(xi)[> —T* — &) =0 and 576 =0.  m
Interestingly, the above formulation reduces to the dual one-
class SVM optimization problem [6], if k(x,y) is a constant
for x = y. Also, the dual formulation allows for a neat
interpretation of the v parameter.

Finally, we show that the hyper-parameter v relates to
the fraction of outliers, which makes the SVDD an suitable
method for anomaly detection.

Theorem 4: Given 0 < v < 1, then [fv] is a lower bound
on the number of support vectors and an upper bound on the
number of outliers.

Proof: Due to the complementary slackness constraints
(Thm. 3, cf. [20], Eq. (12,17)), we know that constraints in
Eq. (5) that are not strictly fulfilled yield a* = 1/0v (& >

0= B =0and £ — 87 — & = 0 must hold), whereas
constraints that are strictly fulfilled receive a* = 0 (£ = 0,
lc* —é(x;)||? < T* and complementary slackness must hold).
For data points lying exactly on the border, it holds that 0 <
a* < 1/tv (¢ =0 and ||c* — ¢(x;)||* = T*). Therefore, in
order to fulfill the equality constraint in Problem (9), at most
[¢v] data points can strictly lie outside and there must be at
least that many support vectors. [ ]
Therefore, it makes sense to restrict v to be in range |0, 1].

B. ClusterSVDD

In this section, we introduce our unifying formulation Clus-
terSVDD and prove that k-means and SVDD can be recovered
as special cases.

Definition 4 (Primal Problem): Primal non-convex Clus-
terSVDD optimization problem (again 0 < v < 1):

k

1[z; = j]
i T = % (10)
{ei ¥y ,Tzo,szoz 721; 1[z = jlv
subject to  ||c., —p(xi)||3 < To, + &, Vi=1,...,¢
with z; = argmin ||c; — ¢(x;)||? — T
ze{1,...,k}

Theorem 5 (Decomposability): The Problem (10) is decom-
posable into k sub-problems with k disjunct sets of hypersh-
pere constraints and ¢ global cluster membership constraints.

Proof: Notice that the data can be partitioned, that is,
each datum z; can only belong to a single set S; at any given
time, where i € S; for j € 1,...,k iff z; = j. It follows that
S;NS; =0 fori# jand UF_,S; = {1,...,£}. Re-writing
S le[z;l JJ]V@ = 5 Lics, & (in Problem (10)) and
arranging terms accordmgly achieves

1
Fisl Z .

o(x)|I> < T; +£z-, v@ € sj,j =1

k

min E

{cj};?:pTzo,szoj

(1)

min
C.7‘7T7‘207£>0

subject to  ||c; —

le; —op(x)|> <Tj+&,VieS;,i=k
px)IP=T:, Vi=1,... L

with z; = argmin ||c; —
ze{l,...,k}
The above optimization problem is now decomposed into &
distinct SVDD optimization problems that are coupled solely
through the global cluster assignment constraint. Hence, by
applying the notation introduced in Def. 2, the ClusterSvdd
optimization problem OP (11) can be written as

Z Svdd(v

Zi = argmln
k

{Xl i€S; ) (12)

—(b(Xi)H2—T2, \V’ZZL,K

subject to



This is also an interesting result for the optimization in
Section III-D. Notably, given the partitions {S;}% j=1, OP (12)
is just a sum of convex optimization problems, which itself is
a convex optimization problem [42]. Because the problem de-
composes neatly into SVDD sub-problems (with exact primal-
dual relations where strong duality holds), using kernels is
straightforward by simply solving the dual SVDD Problem (9)
instead of the primal version. We now proceed further and
show the equivalence to k-means when v > 1.

Theorem 6 (Equivalence I): Assume v > 1 given and ¢ :
X — &, x — x being the identity function ¢dy, then the
ClusterSVDD optimization problem is identical to the k-means
optimization problem: OP (10) = OP (2).

Proof: Since the OP (5) can be decomposed into OP (12)
and Thm. 2 holds for each sub-SVDD,

k
Z Svdd(v > 1, {x;}ies;) Zmln Z lej — ()|
j=1 i€S;
subject to z; = argmin ||c; — (xz)||2 , Vi=1,...,¢
ze{1,...,k}
which is identical to the k-means OP (2). [ |

Theorem 7 (Equivalence II): Assume k = 1 given, then the
ClusterSVDD optimization problem is identical to the SVDD
optimization problem: OP (10) = OP (5).

Proof: Since the OP (5) can be decomposed into
OP (12), the sum can be omitted, as well as the cluster
membership constraints, as they always deliver 1 = z; =
argminge gy llez —o(xi)||*, Vi =1,..., ¢ The resulting
optimization problem is SVDD(v, {x;}¢_,), which is in fact
the original SVDD formulation as defined in Def. 2. ]

C. Relation to Kernel k-means and Spectral Clustering

From the decomposability theorem (Thm. 5) a kernelized
version of our ClusterSVDD can be derived using the dual
of the SVDD, as given in Thm. 3. Due to the expansion of
c = Zle a;¢(x;) of a single SVDD, we can equivalently
rewrite the global cluster membership constraint of OP (10)
as

z; = argmin Z QO K (X, X))
je{1,.. k}mnES
-2 Z amk; (Xm, %) + Kj (x5, %) — T
meS;

Moreover, a proper dual version of k-means can be derived
as a special case due to Thm. 6, which ensures the equivalence
to kernel k-means [25]. Interestingly, Dhillon et al. [24]
showed that an explicit theoretical connection between kernel
k-means and spectral clustering [43] can be drawn under
certain conditions. In return, there is also a connection between
our ClusterSVDD and spectral clustering, with kernel k-means
being the link.

D. Optimization

Following the ideas of CCCP [44] (concave-convex pro-
cedure), a variant of DC-programming [45] (difference of
convex functions), which itself is a special instance of MM

(majorization-minimization), we separate the problem into two
sub-problems:

(1) inferring the partition, and

(2) calculating the new hypersphere centers and radii.

This approach does not guarantee the globally optimal so-
lution (except for k = 1), but will provide locally optimal
solutions. Due to Theorem (5), the optimization is similar to
the original k-means optimization, where the first step also
considers kernels, and the second step can be solved using
existing SVDD implementations. The resulting optimization
algorithm is described in Algorithm 1 (a kernelized version is
given in Appendix A). Despite the non-convex nature of the

Algorithm 1 ClusterSVDD
input data x1,...,z, and outlier fraction v > 0
putt =0
choose z; € {1,...,k} Vi€ {1,...,¢} (e.g. randomly)
let (ct,T}) be the optimal arguments when solving the
SVDD optimization problem OP (5) with subset x;, ¢ € S},
Vi=1,...,k.

repeat
ti=t+1
fori=1,...,¢ do
o = argmingeqr, g et — 66| — i1
end for
let (cf,T}) be the optimal arguments when solving the

SVDD optimization problem OP (5) with subset x;, ¢ €
S;,Vi=1,...,k.

until Vi=1,...,0: 2! —zt !

Return optimal model parameters c. := c!, T. = T*, the
cluster memberships z; := z! Vi = 1,...,¢, and the
anomaly scores s; := |[c — ¢(x;)[|* — T7

optimization problem, we found in our experiments that the
algorithm tends to converge fast.

E. Implementation & Practical Considerations

We provide a PYTHON software package that includes
a primal subgradient descent solver and a dual quadratic
program solver for the SVDD, as well as an imple-
mentation of our unifying method ClusterSVDD. The
package can be installed conveniently using pip install
git+https://github.com/nicococo/ClusterSvdd. git.

The implementation of the primal SGD SVDD is based on
Def. 3 and hence, does not allow for kernelization. Instead,
it is a lightweight implementation that solely depends on the
PYTHON-NUMPY library. This is in contrast to the dual QP
SVDD, as defined in OP 9, where choosing an appropriate
kernel is mandatory and the implementation depends on third-
party frameworks like CVXOPT, which itself can work as a
wrapper for commercial heavy-load solvers, i.e. MOSEK.

Subgradient descent methods usually do not exhibit the best
convergence behavior. Luckily, SVDDs come with simple,
always feasible (and often near-optimal) warm-start solutions,
namely, the center-of-mass method with some appropriate
radius 0 < T' < max;eq1,.. ¢y [|l¢ — d(xs) 2.



Unlike the primal case, when optimizing the dual QP
SVDD the radius 7" needs to be estimated after optimization.
Choosing the correct radius is not straightforward. Since SVs
lying on the boundary are in the range 0 < o < 1/lv, there
are cases where all SVs are a = 1/¢v. In our framework, we
therefore choose 7 = min;esy ||c* — ¢(x;)||*> as an upper
bound on the true radius. This particular problem is discussed
in Wang et al. [19].

IV. EXPERIMENTS

To sketch the benefits of our ClusterSVDD, we conducted
experiments on artificially generated data and on real-world
data. First, we would like to show that multiple spheres can be
beneficial for anomaly detection tasks. Second, we will attempt
to show that our ClusterSVDD can be beneficial for cluster
membership identification. We emphasize that the experiments
are of a descriptive nature, showing that improvements can,
for anomaly detection and clustering, be achieved by using
ClusterSVDD under comparable conditions.

To get a rough idea how clustering and anomaly detection
benefits from our ClusterSVDD formulation, we show results
for the two settings in Fig. 2 and Fig. 3 respectively. In
both cases, we generated data from four Gaussians and added
uniformly generated anomalies on top. The plots show the
ground truth, the solution for our ClusterSVDD as well as the
corresponding baseline method (k-means for clustering and
SVDD for anomaly detection). Further, results are shown for
linear cases and for RBF kernel cases.

For each of the experiments, we report area under the ROC
curve (AUROC) for anomaly detection accuracy and adjusted
Rand index (ARI) for cluster membership accuracy. AUROC
is defined as the integral of the curve given by the true positive
rate (y-axis) and false positive rate (x-axis) in the interval
[0,1]. AUROC can be seen as a ranking measure of how well
positive labeled data is separated from the negative data, which
makes it also applicable in unbalanced label settings. The
adjusted Rand index (ARI) is an extension of the Rand index
(RI) and measures the accuracy of the predicted assignment
when compared to the ground truth assignment (e.g. regardless
of the permutations of cluster numbering) adjusted for chance
level. The ARI is a natural choice for assessing cluster method
performance in the presence of ground truth label data.

A. Concise Descriptions for Anomaly Detection

We draw 1.000 training instances and 2.000 test instances
from three isotropic Gaussian distributions in two dimensions.
Experiments were repeated 50 times, and we report means
and standard errors. Two out of three Gaussians are labeled as
normal, and one will serve as an anomaly source. The fraction
of outliers is fixed to 5%, and we report AUROC scores
for our ClusterSVDD with k = 2,3,4 as well as standard
SVDD using the primal formulation (cf. Fig. 4, left) and RBF
kernels (cf. Fig. 4, right). For both experiments, we varied
the regularization parameter v and chose additional parameters
(i.e. RBF variance 02 € {0.1,0.25,0.5,1.0,2.0}) using a cross
validation approach where training data was further split into
training and validation data. Results for primal formulation,

in Fig. 4 (left), suggest that our multiple spheres approach
is beneficial when the description is not overly rich (e.g.
k > 2). Otherwise, the multiple spheres tend to enclose the
outliers as well as the normal data, making them harder to
distinguish. Due to the rich description in the case of RBF
kernels (cf. Fig. 4, right), we assume not much difference
in accuracy for both methods. And, indeed, despite a small
advantage for ClusterSVDD, we observe similar maximum
accuracy. However, ClusterSVDD shows an overall more stable
behavior for the whole range of regularization parameters.

B. Robustness for Cluster Identification

Again, we draw 1.000 training instances and 2.000 test
instances from three isotropic Gaussian distributions in two di-
mensions. Experiments were repeated 50 times, and we report
means and standard errors. Here, we test cluster identification
accuracy in adjusted Rand index (ARI) for a varying number
of k = 2,3,4 for ClusterSVDD and k-means. Fig. 5 (left)
shows the results for cluster identification against k-means
(red, v = 1). It can be seen that, even in the isotropic Gaussian
case, which is the Gold standard for k-means, improvements
can be achieved when using our ClusterSVDD. Interestingly,
below a certain threshold (v < 0.225), the accuracy drops
drastically. This can be explained by a significant change of
the cluster means towards uncommon data points, which need
to be embedded within the hypershperes boundaries. Fig. 5
(right) shows the same setting, but with the kernelized version
of our method, which especially includes solutions for kernel
k-means. Here, a similar behavior is visible, with our method
achieving highest accuracy, although it seems to behave less
stably in the region around v € [0.6,0.9].

C. Results on Real-world Data Sets

In the previous sections IV-A and IV-B, we showed very
well on artificially generated data that our approach can indeed
be useful for improving cluster membership identification
accuracy and anomaly detection accuracy. In this section,
however, we apply our method to real world data sets.

We selected two multi-class data sets from the libSVM data
set library! where features are normalized between [—1, +1]
(details shown in Table II). Half of the data was used for
training, and the other half for testing. Validation data was fur-
ther split from training data for model selection. Experiments
are repeated 10 times, and means and standard deviations
are reported. We injected 0%, 2%, 5%, 10% and 15% of
uniformly generated random data points as outliers (which we
refer to as noise level), and tested various k (cf. Table II)
and v € {1.0,0.95,0.9,0.5,0.1,0.01}. Results are shown in
Table III and Table IV.

In both experiments, a data description with multiple
spheres proved beneficial for anomaly detection, when com-
pared to the traditional single sphere description of the SVDD.
This comes as no surprise, as the data consists of multiple
clusters and anomalies emerge as a convex combination of
normal data.

Uhttps://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Fig. 2. Results for anomaly detection settings for our ClusterSVDD (right column) and SVDD (center column) for linear settings (top row) and RBF kernel
settings (bottom row) by assumption of 10% outlier (v = 0.1). Ground truth (left column) shows nominal data in green color and outliers in red. Note that

the description learned by our ClusterSVDD is much more concise than for SVDD for the linear and the kernel case.

TABLE II
OVERVIEW OF USED DATA SETS AND TESTED NUMBER OF CLUSTERS.
[ Name | Features Instances Classes | k |
Segment 19 2.310 7 1,5, 7, 10, 14
SatImage 36 4,435 6 1,3,6,9

Interestingly, cluster membership accuracy did only improve
slightly (cf. Table III), or not at all (cf. Table IV). A possible
explanation for this discovery led us to a re-interpretation
of k-means clustering. Traditionally, k-means is supposed to
be an un-regularized, non-convex optimization problem that
assumes all data to be normal but from Thm (7) and Thm (6)
we can directly relate k-means to SVDDs with v = 1. The
regularization parameter v itself has an interpretation as an
outlier fraction (cf. Thm (4)) and as a density level set (cf.
Section II). Applied to k-means, this means k-means does
indeed assume a maximum amount of outliers in the data,
or, in other words, it is aiming for the mode of the density.

Furthermore, SVDDs and related one-class SVMs (Thm (1))
are properly regularized risk minimization problems. This
makes k-means also a properly regularized risk minimization
problem.

In light of these results, together with the theoretical frame-
work derived in Section III, we therefore should re-interpret
k-means clustering:

k-means clustering is a regularized
mode seeking algorithm.

V. DISCUSSION: DERIVING NEW ALGORITHMS

The previous section shed some light on the properties of
our ClusterSVDD and delivered insights into SVDD and k-

TABLE III
RESULTS ON SEGMENT DATA SET.
AUROC ARI
Noise level SVDD ClusterSVDD k-means ClusterSVDD
0% -/- -/- 0.52/0.04 0.52/0.05
2% 0.98/0.01 1.00/0.00 0.50/0.03 0.50/0.01
5% 0.98/0.00 1.00/0.00 0.52/0.02 0.53/0.03
10% 0.97/0.00 1.00/0.00 0.49/0.05 0.52/0.02
15% 0.97/0.01 1.00/0.00 0.50/0.05 0.51/0.03
TABLE IV
RESULTS ON SATIMAGE DATA SET.
AUROC ARI
Noise level SVDD ClusterSVDD k-means ClusterSVDD
0% -/- -/- 0.54/0.01 0.54/0.01
2% 0.94/0.01 1.00/0.00 0.55/0.04 0.55/0.04
5% 0.93/0.01 1.00/0.00 0.52/0.03 0.52/0.03
10% 0.93/0.01 1.00/0.00 0.55/0.04 0.55/0.04
15% 0.93/0.00 1.00/0.00 0.53/0.02 0.53/0.02

means when used in anomaly detection and clustering tasks
on artificial and real data. In this section, however, we show
how new algorithms can be derived by leveraging the link
between clustering and one-class learning. Specifically, we
derive a clustering method for structured data by transferring
knowledge from some one-class setting, namely joint kernel
support estimation (JKSE) [46], to clustering. Therefore, we
are blending the ideas of k-means, kernel k-means, SVDD,
One-class SVM, and JKSE into a single framework for cluster-
ing structured data (cf. Table V). At the same time, we extend
JKSE with a multiple spheres mixture model and evaluate the
structured output accuracy.

Joint kernel support estimate [46] is an unsupervised
method to estimate the support of a joint probability density



Fig. 3. Clustering results for our ClusterSVDD and k-means for linear settings (top row) and RBF kernel settings (bottom row). The ground truth (left column)
was generated from four Gaussians with similar variance plus some uniformly generated anomalies (red dots). As can be seen, (kernel) k-means assigns one
cluster center to fit the anomalies and is therefore not able to reveal the four Gaussian clusters, whereas our ClusterSVDD concisely finds the four Gaussians.

Fig. 4. Anomaly detection accuracy (in AUROC) of standard SVDD against our ClusterSVDD with k = 2, 3, 4 for varying regularization parameter v and a
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TABLE V
SUMMARY OF METHODS AND THEIR RESPECTIVE PROPERTIES.

| Citation Clustering  Outlier-detection  Kernels ~ Mixture-models  Latent State Inference  Structured Output |
k-means | [22] X - - X X -
Kernel k-means | [23] X - X X X -
SVDD | [8], [7] - X X - - -
One-class SVM | [6] - X X - - -
JKSE | [46] - X X - X
ClusterSVDD for structured data | Section V X X X X X X

Class 0
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Fig. 6. The generated structured data consists of multivariate (3 dimensions: Feature 0, Feature 1, and Feature 2) Gaussian sequences of length 500 (red) and
corresponding 2-state label sequences (white and gray areas) of three classes and a fraction of anomalies. Notice that the differences between the classes are

subtle, rendering the overall problem non-trivial.

p({xi,yi}f_,) of observations x; € X and corresponding
output structures y; € ). For that, JKSE employs the one-class
SVM with an adaptation of the feature vector to joint feature
maps of both observations and labels ¢(x;) = ¥(x;,y:)-
Given the estimated solution w* of the one-class SVM, the
latent state structure y is obtained by solving the maximum-
a-posteriori (MAP) inference problem:

y = argmax(w”, U(x,y)) .
yey

13)

In the case of sequences with corresponding latent states
(hidden Markov models), this can be efficiently solved by
dynamic programming (i.e. Viterbi [47]).

Leveraging the relations between one-class SVMs and
SVDDs (Thm (1)), SVDDs and ClusterSVDD (Thm (6)), and
finally ClusterSVDD and k-means clustering (Thm (7)), we
only need to apply JKSE using our ClusterSVDD and increase
k =1 for a clustering setting.

In order to conform to the properties that tie one-class SVMs
and SVDDs together, we need to ensure that only translation-
invariant kernels are used, or, that the (joint) feature maps are
Lo-normalized. Then, the latent state sequence can be inferred
by OP (13) with ¢} =: w* for given z € {1,...,k}:

y = argmin [|eX — ¥(x,y)|* - T%

yey

= argmin [|c}||* - 2(c%, ¥(x,9)) + [|U(x,9)|]* - T%
ye

= argmax(c;, ¥(x,¥))
yey

Finally, cluster membership z of a given input instance x can
be inferred by

z:= argmin ||c} — ¥(x,argmax(c}, ¥(x,y)))||* — T .
ze{l,....,k} y

Here, we summarize the steps that lead us from JKSE to
structured clustering using our methodology:

1. JKSE uses one-class SVMs to train a generative model
of examples with dependency structure using the notion
of joint feature maps [46], [48].

2. One-class SVMs are equivalent to SVDDs if (a) transla-

tion invariant kernels (e.g. RBF) are used, or, (b) if input

instances are Lo-normalized (Thm (1))

ClusterSVDD is equivalent to SVDD for k = 1 (Thm (7))

4. If k > 1 and v = 1 ClusterSVDD is equivalent to k-means
(or kernel k-means respectively, Thm (6))

[O8]

For our example, we generated 2500 sequences of length
500 from multivariate Gaussians where the mean depends
on a corresponding latent 2-state label sequence. While for
state 1, all sequences stem from a zero-mean Gaussian, for
the second state, one out of three features is generated from
a Gaussian with mean 0.5, depending on the corresponding
class. This simulates complex structured labels, where single
state sequences can be generated by different processes (cf.
Fig. 6). A real-world example that exhibits this behavior is
the problem of gene finding, where label sequences consist of
‘genic’ and ‘intergenic’ states, but both have biases depending
on position on the DNA, sequencing technique, etc. We would
like to emphasize that no changes to the algorithm need to be
made if the sequences have varying lengths. The total length of
all training sequences was 1,000,000, and for testing, 250,000.

We measure the structured output loss in Hamming-distance
of the true to the predicted latent state sequence (denoted as
AHamming) and normalize it to be in the range [0,1] (where O
is perfect reconstruction and 1 is the inverse reconstruction)
and, as usual, the cluster membership identification accuracy
in ARI. The experiment was repeated 10 times, and means
and standard deviations are reported. Results are shown in
Table VI for a range of regularization parameter v and show
a near-perfect cluster membership identification for v = 0.1




TABLE VI
RESULTS FOR CLUSTERING ON STRUCTURED DATA.

AHamming-108s ARI
Regularizer v SVDD ClusterSVDD | k-means  ClusterSVDD
1.00 0.33/0.00 0.30/0.02 0.84/0.20 0.84/0.20
0.90 0.34/0.00 0.30/0.02 -/- 0.75/0.20
0.50 0.33/0.00 0.29/0.01 -/- 0.84/0.24
0.10 0.33/0.00 0.28/0.01 -/- 0.95/0.14
0.01 0.33/0.00 0.31/0.02 -/- 0.53/0.35

with an ARI of 0.95. Furthermore, a multiple spheres approach
decreases the structured output loss by 5%.

VI. CONCLUSIONS

In this work, we introduced ClusterSVDD, blending the
ideas of clustering using k-means and one-class classification
using support vector data descriptions (SVDDs) into a sin-
gle framework. We rigorously reviewed their properties and
showed empirically that the new methodology performs better
in clustering and anomaly detection settings. The revealed re-
lation between k-means clustering and one-class classification
enabled us to identify k-means as a mode seeking algorithm
solving a regularized risk minimization problem. With our new
method, we were able to turn JKSE, a structured prediction
method, into a clustering method for structured data. For
the practitioner, we provide an easy-to-use PYTHON software
package, which can be conveniently installed using pip install
git+https://github.com/nicococo/ClusterSvdd. git.

Future lines of research will focus on more sophisticated
optimization schemes [49], [50], representation learning such
as multiple kernel learning (MKL) [51], [52], [53], [54], and
imputation of missing information as well as handling of
additional (e.g. label) information [12].
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APPENDIX
A. Kernel ClusterSVDD Algorithm

A kernelized version for Algorithm 1 is given in Algo-
rithm 2.
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