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Abstract

We propose a two-sample testing procedure
based on learned deep neural network repre-
sentations. To this end, we define two test
statistics that perform an asymptotic loca-
tion test on data samples mapped onto a
hidden layer. The tests are consistent and
asymptotically control the type-1 error rate.
Their test statistics can be evaluated in lin-
ear time (in the sample size). Suitable data
representations are obtained in a data-driven
way, by solving a supervised or unsupervised
transfer-learning task on an auxiliary (poten-
tially distinct) data set. If no auxiliary data
is available, we split the data into two chunks:
one for learning representations and one for
computing the test statistic. In experiments
on audio samples, natural images and three-
dimensional neuroimaging data our tests yield
significant decreases in type-2 error rate (up
to 35 percentage points) compared to state-
of-the-art two-sample tests such as kernel-
methods and classifier two-sample tests.∗

1 INTRODUCTION

For almost a century, statistical hypothesis testing
has been one of the main methodologies in statistical
inference (Neyman and Pearson, 1933). A classic prob-
lem is to validate whether two sets of observations are
drawn from the same distribution (null hypothesis) or
not (alternative hypothesis). This procedure is called
two-sample test.
∗We provide code at https://github.com/mkirchler/

deep-2-sample-test
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Two-sample tests are a pillar of applied statistics and
a standard method for analyzing empirical data in the
sciences, e.g., medicine, biology, psychology, and so-
cial sciences. In machine learning, two-sample tests
have been used to evaluate generative adversarial net-
works (Bińkowski et al., 2018), to test for covariate
shift in data (Zhou et al., 2016), and to infer causal
relationships (Lopez-Paz and Oquab, 2016).

There are two main types of two-sample tests: paramet-
ric and non-parametric ones. Parametric two-sample
tests, such as the Student’s t-test, make strong assump-
tions on the distribution of the data (e.g. Gaussian).
This allows us to compute p-values in closed form. How-
ever, parametric tests may fail when their assumptions
on the data distribution are invalid. Non-parametric
tests, on the other hand, make no distributional as-
sumptions and thus could potentially be applied in a
wider range of application scenarios. Computing non-
parametric test statistics, however, can be costly as it
may require applying re-sampling schemes or comput-
ing higher-order statistics.

A non-parametric test that gained a lot of attention
in the machine-learning community is the kernel two-
sample test and its test statistic: the maximum mean
discrepancy (MMD). MMD computes the average dis-
tance of the two samples mapped into the reproducing
kernel Hilbert space (RKHS) of a universal kernel (e.g.,
Gaussian kernel). MMD critically relies on the choice
of the feature representation (i.e., the kernel function)
and thus might fail for complex, structured data such
as sequences or images, and other data where deep
learning excels.

Another non-parametric two-sample test is the classifier
two-sample test (C2ST). C2ST splits the data into two
chunks, training a classifier on one part and evaluating
it on the remaining data. If the classifier predicts
significantly better than chance, the test rejects the
null hypothesis. Since a part of the data set needs to
be put aside for training, not the full data set is used
for computing the test statistic, which limits the power
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of the method. Furthermore, the performance of the
method depends on the selection of the train-test split.

In this work, we propose a two-sample testing proce-
dure that uses deep learning to obtain a suitable data
representation. It first maps the data onto a hidden-
layer of a deep neural network that was trained (in an
unsupervised or supervised fashion) on an independent,
auxiliary data set, and then it performs a location test.
Thus we are able to work on any kind of data that neu-
ral networks can work on, such as audio, images, videos,
time-series, graphs, and natural language. We propose
two test statistics that can be evaluated in linear time
(in the number of observations), based on MMD and
Fisher discriminant analysis, respectively. We derive
asymptotic distributions of both test statistics. Our
theoretical analysis proves that the two-sample test
procedure asymptotically controls the type-1 error rate,
has asymptotically vanishing type-2 error rate and is
robust both with respect to transfer learning and ap-
proximate training.

We empirically evaluate the proposed methodology in
a variety of applications from the domains of computa-
tional musicology, computer vision, and neuroimaging.
In these experiments, the proposed deep two-sample
tests consistently outperform the closest competing
method (including deep kernel methods and C2STs) by
up to 35 percentage points in terms of the type-2 error
rate, while properly controlling the type-1 error rate.

2 PROBLEM STATEMENT &
NOTATION

We consider non-parametric two-sample statistical test-
ing, that is, to answer the question whether two samples
are drawn from the same (unknown) distribution or not.
We distinguish between the case that the two samples
are drawn from the same distribution (the null hypoth-
esis, denoted by H0) and the case that the samples
are drawn from different distributions (the alternative
hypothesis H1).

We differentiate between type-1 errors (i.e,rejecting the
null hypothesis although it holds) and type-2 errors (i.e.,
not rejecting H0 although it does not hold). We strive
for both the type-1 error rate to be upper bounded by
some significance level α, and the type-2 error rate to
converge to 0 for unlimited data. The latter property is
called consistency and means that with sufficient data,
the test can reliably distinguish between any pair of
probability distributions.

Let p, q, p′ and q′ be probability distributions on Rd

with common dominating Borel measure µ. We abuse
notation somewhat and denote the densities with re-
spect to µ also by p, q, p′ and q′. We want to perform

a two-sample test on data drawn from p and q, i.e.
we test the null hypothesis H0 : p = q against the
alternative H1 : p 6= q. p′ and q′ are assumed to be in
some sense similar to p and q, respectively, and act as
auxiliary task for tuning the test (the case of p = p′ and
q = q′ is perfectly valid, in which case this is equivalent
to a data splitting technique).

We have access to four (independent) sets Xn,Yn,X ′n′ ,
and Y ′n′ of observations drawn from p, q, p′, and q′,
respectively. Here Xn = {X1, . . . , Xn} ⊂ Rd and Xi ∼
p for all i (analogue definitions hold for Yn,X ′n′ , and
Y ′n′). Empirical averages with respect to a function f
are denoted by f(Xn) := 1

n

∑n
i=1 f(Xi).

We investigate function classes of deep ReLU networks
with a final tanh activation function:

T FN :=
{

tanh ◦WD−1 ◦ σ ◦ . . . ◦ σ ◦W1 : Rd → RH
∣∣

W1 ∈ RH×d,Wj ∈ RH×H for j = 2, . . . , D − 1,

D−1∏
j=1

||Wj ||Fro ≤ βN , D ≤ DN


Here, the activation functions tanh and σ(z) :=
ReLU(z) = max(0, z) are applied elementwise, || · ||Fro
is the Frobenius norm, H = d + 1 is the width and
DN and βN are depth and weight restrictions onto the
networks. This can be understood as the mapping onto
the last hidden layer of a neural network concatenated
with a tanh activation.

3 DEEP TWO-SAMPLE TESTING

In this section, we propose two-sample testing based on
two novel test statistics, the Deep Maximum Mean
Discrepancy (DMMD) and the Deep Fisher Dis-
criminant Analysis (DFDA). The test asymptoti-
cally controls the type-1 error rate, and it is consistent
(i.e., the type-2 error rate converges to 0). Further-
more, we will show that consistency is preserved under
both transfer learning on a related task, as well as only
approximately solving the training step.

3.1 Proposed Two-sample Test

Our proposed test consists of the following two steps.
1. We train a neural network over an auxiliary training
data set. 2. We then evaluate the maximum mean
discrepancy test statistic (Gretton et al., 2012a) (or
a variant of it) using as kernel the mapping from the
input domain onto the network’s last hidden layer.

3.1.1 Training Step

Let the training data be X ′n′ and Y ′m′ . Denote N = n′+
m′. We run a (potentially inexact) training algorithm



Kirchler, Khorasani, Kloft, Lippert

to find φN ∈ T FN with:∣∣∣∣∣∣
∣∣∣∣∣∣ 1

N

 n′∑
i=1

φN (X ′i)−
m′∑
i=1

φN (Y ′i )

∣∣∣∣∣∣
∣∣∣∣∣∣+ η

≥ max
φ∈T FN

∣∣∣∣∣∣
∣∣∣∣∣∣ 1

N

 n′∑
i=1

φ(X ′i)−
m′∑
i=1

φ(Y ′i )

∣∣∣∣∣∣
∣∣∣∣∣∣ .

Here, η ≥ 0 is a fixed leniency parameter (independent
of N); finding true global optima in neural networks
is a hard problem, and an η > 0 allows us to settle
with good-enough, local solutions. This procedure is
also related to the early-stopping regularization tech-
nique, which is commonly used in training deep neural
networks (Prechelt, 1998).

3.1.2 Test Statistic

We define the mean distance of the two test populations
Xn,Ym measured on the hidden layer of a network φ
as

Dn,m(φ) := φ(Xn)− φ(Ym).

Using φN from the training step, we define the Deep
Maximum Mean Discrepancy (DMMD) test statistic
as

Sn,m(φN ,Xn,Ym) :=
nm

n+m
||Dn,m(φN )||2 .

We can normalize this test statistic by the (inverse)
empirical covariance matrix:

Tn,m(φN ,Xn,Ym) :=
nm

n+m
Dn,m(φN )>Σ̂−1n,mDn,m(φN ).

This leads to a test statistic (which we call Deep Fisher
Discriminant Analysis—DFDA) with an asymptotic
distribution that is easier to evaluate. Note that the
empirical covariance matrix is defined as:

Σ̂n,m := Σ̂n,m(φN ) :=

1

n+m− 1

m+n∑
i=1

(φN (Zi)− φN (Z))(φN (Zi)− φN (Z))>

+ ρn,mI,

where ρn,m > 0 is a factor guaranteeing numerical
stability and invertibility of the covariance matrix, and
Z = {Z1, . . . , Zm+n} = {X1, . . . , Xn, Y1, . . . , Ym}.

3.1.3 Discussion

Intuitively, we map the data onto the last hidden layer
of the neural network and perform a multivariate loca-
tion test on whether both map to the same location.
If the distance Dn,m between the two means is too
large, we reject the hypothesis that both samples are
drawn from the same distribution. Consistency of this
procedure is guaranteed by the training step.

Interpretation as Empirical Risk Minimization
If we identify X ′i with (Z ′i, 1) and Y ′i with (Z ′n′+i,−1)
in a regression setting, this is equivalent to an (inexact)
empirical risk minimization with loss function L(t, t̂) =
1− tt̂:

max
φ

∣∣∣∣∣
∣∣∣∣∣ 1

N

N∑
i=1

t′iφ(Z ′i)

∣∣∣∣∣
∣∣∣∣∣ = max

φ
max
||w||≤1

1

N

N∑
i=1

t′iw
>φ(Z ′i),

which is equivalent to

min
φ

min
||w||≤1

R′N (w>φ) :=
1

N

N∑
i=1

L(t′i, w
>φ(Z ′i)), (1)

where we denote by R′N the empirical risk; the cor-
responding expected risk is R′(f) = E[1 − t′f(Z ′)].
Assuming that Pr(t′ = 1) = Pr(t′ = −1) = 1

2 , we have
for the Bayes risk R′∗ = inff :Rd→[−1,1]R

′(f) = 1 − ε′
with ε′ > 0 if and only if p′ 6= q′. As long as p′ and q′
are selected close enough to p and q, respectively, the
corresponding test will be able to distinguish between
the two distributions.

Since we discard w after optimization and use the
norm of the hidden layer on the test set again, this
implies some fine-tuning on the test data, without
compromising the test statistic (see Theorem 3.1 below).
This property is especially helpful in neural networks,
since for practical transfer learning, only fine-tuning
the last layer can be extremely efficient, even if the
transfer and actual task are relatively different (Lu
et al., 2015).

Relation to kernel-based tests The test statistic
Sn,m is a special case of the standard squared Maximum
Mean Discrepancy (Gretton et al., 2012b) with the ker-
nel k(z1, z2) := 〈φ(z1), φ(z2)〉 (analogously for Tn,m
and the Kernel FDA Test (Harchaoui et al., 2008)).
For a fixed feature map φ this kernel is not charac-
teristic, and hence the resulting test not necessarily
consistent for arbitrary distributions p, q. However, by
first choosing φ in a data-dependent way, we can still
achieve consistency.

3.2 Control of Type-1 Error

Due to our choice of φN , there need not be a unique,
well-defined limiting distribution for the test statistics
when n,m→∞. Instead, we will show that for each
fixed φ, the test statistic Sn,m has a well-defined lim-
iting distribution that can be well evaluated. If in
addition the covariance matrix is invertible, then the
same holds for Tn,m.

In particular, the following theorem will show that
Dn,m(φ) converges towards a multivariate normal dis-
tribution for n,m → ∞. Sn,m then is asymptotically
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distributed like a weighted sum of χ2 variables, and
Tn,m like a χ2

H (again, if well-defined).

Theorem 3.1. Let p = q, φ ∈ T F and Σ :=
Cov(φ(X1)) and assume that n

n+m → r ∈ (0, 1) as
n,m→∞.

(i) As n,m→∞, it holds that√
mn

m+ n
Dn,m(φ)

d→ N (0,Σ).

(ii) As n,m→∞,

Sn,m(φ,Xn,Ym)
d→

H∑
i=1

λiξ
2
i ,

where ξi
iid∼ N (0, 1) and λi are the eigenvalues of

Σ.

(iii) If additionally Σ is invertible, and ρn,m ↓ 0 then
as n,m→∞

Tn,m(φ,Xn,Ym)
d→ χ2

H .

Sketch of proof (full proof in Appendix A.1). (i) As
under H0 φ(Xi) and φ(Yj) are identically distributed,
Dn,m(φ) is centered and one can show the result using
a Central Limit Theorem.

(ii) and (iii) then follow from the continuous map-
ping theorem and properties of the multivariate normal
distribution.

Under some additional assumptions we can also use
a Berry-Esseen type of result to quantify the quality
of the normal approximation of Dn,m(φN ) conditioned
on the training. In particular, if we assume that n =
m and Σ = Covp,q(φN (X1))|X ′n,Y ′n invertible, then
Bentkus (2005) shows that the normal approximation
on convex sets is O

(
H1/4
√
n

)
. Computing p-values for

both Sn,n and Tn,n only requires computation over
convex sets, so the result is directly applicable.

3.2.1 Computational Aspects

Testing with Sn,m As shown in Theorem 3.1, the
null distribution of Sn,m can be approximated as the
weighted sum of independent χ2-variables. There are
several approaches to computing the cumulative distri-
bution function of this distribution, see Bausch (2013)
for an overview and Zhou and Guan (2018) for an im-
plementation. However, computing p-values with this
method can be rather costly.

Alternatively, note that the test statistic Sn,m is linear
in the number of observations and dimensions. Hence,

estimating the null distribution via Monte-Carlo per-
mutation sampling (Ernst et al., 2004) is feasible. Note
also that it suffices to evaluate the feature map φ on
each data point only once and then permute the class
labels, saving more time.

In practice we found that the resampling-based test
performed considerably faster. Hence, in the remainder
of this work, we will evaluate the null hypothesis of the
DMMD via the resampling method.

Testing with Tn,m Since in many practical situa-
tions one wants to use standard neural network archi-
tectures (such as ResNets), the number of neurons in
the last hidden layer H may be rather large, compared
to n,m. Therefore, using the full, high-dimensional
hidden layer representation might lead to suboptimal
normal approximations. Instead, we propose to use
a principal component analysis on the feature repre-
sentation (φ(Zi))

n+m
i=1 to reduce the dimensionality to

Ĥ � m + n. In fact, this does not break the asymp-
totic theory derived in Theorem 3.1, even though the
PCA is both trained and evaluated on the test data;
details can be found in Appendix C. Unfortunately,
the O

(
H1/4
√
n

)
rate of convergence is not valid anymore,

due to the observations not being independent. We
still need to grow Ĥ towards H with n,m in order
for the consistency results in the next section to hold,
however. Empirically we found Ĥ = min

(√
n+m

2 , H
)

to perform well.

The cumulative distribution function of the χ2
H distri-

bution can be evaluated very efficiently. Although for
the DFDA it is also possible to estimate the null hy-
pothesis via a Monte Carlo permutation scheme, doing
so is more costly than for the DMMD, since it involves
either a matrix inversion once or solving a linear system
for each permutation draw. Hence, in this work we
focus on using the asymptotic distribution.

3.3 Consistency

In this section we show that if (a), the restrictions
βN , DN on weights and depth of networks in T FN are
carefully chosen, (b), the transfer task is not too far
from the original task, and (c), the leniency parameter
η in the training step is small enough, then our pro-
posed test is consistent, meaning the type-2 error rate
converges to 0.

Theorem 3.2. Let p 6= q, n = n′,m = m′ with n
m → 1,

N = n+m, R′∗ = 1−ε′ the Bayes error for the transfer
task with ε′ > 0, and assume that the following holds:

(i) β2
NDN

N → 0, βN → ∞ and DN → ∞ for N → ∞
for the parameters of the function classes T FN ,
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(ii) ||p− p′||L1(µ) + ||q − q′||L1(µ) ≤ 2δ,

(iii) 0 ≤ δ + η < ε′, where η ≥ 0 is the leniency
parameter in training the network, and

(iv) p′ and q′ have bounded support on Rd.†

Then, as N → ∞ both test test statistics
Sn,m(φN ,Xn,Ym) and Tn,m(φN ,Xn,Ym) diverge in
probability towards infinity, i.e. for any r > 0

Pr (S(φN ,Xn,Ym) > r)→ 1 and
Pr (T (φN ,Xn,Ym) > r)→ 1.

Sketch of proof (full proof in Appendix A.2). The test
statistics Sn,m is lower-bounded by a rescaled version
of
√
N(1 − Rn,m(ψN )), where ψN = w>NφN with wN

selected as in (1). Then, if 1−Rn,m(ψN ) ≥ c > 0, the
test statistic diverges.

The finite-sample error Rn,m(ψN ) approaches its popu-
lation version R(ψN ) for large n,m, and the difference
between R(ψN ) and R′(ψN ) can be controlled over δ.
The rest of the proof is akin to standard consistency
proofs in regression and classification. Namely, we can
split R′N (ψN )−R′∗ into approximation and estimation
error and control these via a Universal Approximation
Theorem (Hanin, 2017), and Rademacher complexity
bounds on the neural network function class (Golowich
et al., 2017), respectively.

The main caveat of Theorem 3.2 is that it gives no
explicit directions to choose the transfer task p′ and
q′. Whether the respective µ-densities are L1-close to
the testing densities in general cannot be answered,
and similarly the Bayes error rate 1− ε′ is not known
beforehand. If abundant data for the testing task is at
hand, then splitting the data is the safe way to go; if
data is scarce, Theorem 3.2 gives justification that a
reasonably close transfer task will have good power as
well.

The bounded support requirement (iv) on p′ and q′ can
be circumvented as well – by choosing the support large
enough one can always just truncate (X ′i) and (Y ′i ) and
will still satisfy requirements (ii) and (iii), especially
also in the case of p′ = p and q′ = q with unbounded
support. This procedure, however, requires knowledge
of where to truncate the transfer distributions. Instead
one can also grow the support of p′ and q′ with N ; for
more details, see Appendix B.

†A similar Theorem holds also for the case of unbounded
support, see Appendix B

4 RELATED WORK

In this section, we give an overview over the state-
of-the-art in non-parametric two-sample testing for
high-dimensional data.

Kernel Methods The methods most related to our
method are the kernelized maximum mean discrepancy
(MMD) (Gretton et al., 2012a) and the kernel Fisher
discriminant analysis (KFDA) (Harchaoui et al., 2008).
Both methods effectively metricize the space of prob-
ability distributions by mapping distribution features
onto mean embeddings in universal reproducing kernel
Hilbert spaces (RKHS, (Steinwart and Christmann,
2008)). Test statistics derived from these mean embed-
dings can be efficiently evaluated using the kernel trick
(in quadratic time in the number of observations, al-
though there are lower-powered linear-time variations).
Mean Embeddings (ME) and Smoothed Characteristic
Functions (SCF) (Chwialkowski et al., 2015; Jitkrittum
et al., 2016) are kernel-based linear-time test statistics
that are (almost surely) proper metrics on the space
of probability distributions. All four methods rely on
characteristic kernels to yield consistent tests and are
closely related.

Deep Kernel Methods In the context of train-
ing and evaluating Generative Adversarial Networks
(GANs), several authors have investigated the use of
the MMD with kernels parametrized by deep neural
networks. In Bińkowski et al. (2018); Li et al. (2017);
Arbel et al. (2018), the authors feed features extracted
from deep neural networks into characteristic kernels.
Jitkrittum et al. (2018) use deep kernels in the con-
text of relative goodness-of-fit testing without directly
considering consistency aspects of this approach. Ex-
tensions from the GAN literature to two-sample testing
is not straightforward since statistical consistency guar-
antees strongly depend on careful selection of the re-
spective function classes. To the best of our knowledge,
all previous works made simplifying assumptions on
injectivity or even invertibility of the involved networks.

In this work we show that a linear kernel on top of
transfer-learned neural network feature maps (as has
also been done by Xu et al. (2018) for GAN evaluation)
is not only sufficient for consistency of the test, but also
performs considerably better empirically in all settings
we analyzed. In addition to that, our test statistics can
be directly evaluated in linear instead of quadratic time
(in the sample size) and the corresponding asymptotic
null distributions can be exactly computed (in contrast
to the MMD & KFDA).

Classifier Two-Sample Tests (C2ST) First pro-
posed by Friedman (2003) and then further analyzed by
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Kim et al. (2016) and Lopez-Paz and Oquab (2016), the
idea of the C2ST is to utilize a generic classifier, such
as a neural network or a k-nearest neighbor approach
for the two-sample testing problem. In particular, they
split the available data into training and test set, train
a classifier on the training set and evaluate whether the
performance on the test set exceeds random variation.
The main drawback of this approach is that the data
has to be split in two chunks, creating a trade-off: if
the training set is too small, the classifier is unlikely
to find a statistically relevant signal in the data; if the
training set is large and thus the test set small, the
C2ST test loses power.

Our method circumvents the need to split the data in
training and test set – Theorem 3.2 shows that training
on a reasonably close transfer data set is sufficient.
Even more, as shown in Section 3.1.3, our method
can be interpreted as empirical risk minimization with
additional fine-tuning of the last layer on the testing
data, guaranteed to be as least as good as an equivalent
method with fixed last layer.

5 EXPERIMENTS

In this section, we compare our proposed deep learning
two-sample tests with other state-of-the-art approaches.

5.1 Experimental setup

For theDFDA andDMMD tests we train a deep neu-
ral network on a related task; details will be deferred
to the corresponding sections. We report both the per-
formance of the deep MMD Sn,m where we estimate
the null hypothesis via a Monte Carlo permutation
sample (Ernst et al., 2004) (we fix M = 1000 resam-
pling permutations except otherwise noted), and the
deep FDA statistic Tn,m, for which we use the asymp-
totic χ2

H distribution. As explained in Section 3.2.1,
for the DFDA we project the last hidden layer onto
Ĥ < H dimensions using a PCA. We found the heuris-
tic Ĥ :=

√
m+n

2 to perform well across a number of
tasks (disjoint from the ones presented in this section).
For the DMMD we do not need any dimensionality
reduction. We calibrated parameters of both tests on
data disjoint from the ones that we report results on
in the subsequent sections.

For the C2ST, we train a standard logistic regression
on top of the pretrained features extracted from the
same neural network as for our methods.

For the kernel MMD we report two kernel band-
width selection strategies for the Gaussian kernel. The
first variant is the “median distance“ heuristic (Gretton
et al., 2012a) which selects the median of the euclidean

distances of all data points (MMD-med). The second
variant, reported by Gretton et al. (2012b), splits the
data in two disjoint sets and selects the bandwidth
that maximizes power on the first set and evaluates
the MMD on the second set (MMD-opt). We use the
implementation provided by Jitkrittum et al. (2016),
which estimates the null hypothesis via a Monte Carlo
permutation scheme (we again use M = 1000 permuta-
tions).

For the Smoothed Characteristic Functions (SCF)
and Mean Embeddings (ME), we select the number
of test locations based on the task and sample size. The
locations are selected either randomly (as presented by
Chwialkowski et al. (2015)) or optimized on half of the
data via the procedure described by Jitkrittum et al.
(2016). The kernel was either selected using the me-
dian heuristic, or via a grid search as by Chwialkowski
et al. (2015); Jitkrittum et al. (2016). In each case we
report the kernel and location selection method that
performed best on the given task, with details given
in the corresponding paragraphs. Note that for very
small sample sizes, both SCF and ME oftentimes do
not control the type-1 error rate properly, since they
were designed for larger sample sizes. This results in
highly variable type-2 error rate for small m in the ex-
periments. Again, we use the implementation provided
by Jitkrittum et al. (2016).

In addition to these published methods, we also com-
pare our method against a deep kernel MMD test
(k-DMMD), i.e. the MMD test where the output of a
pretrained neural network gets fed into a Gaussian ker-
nel (instead of a linear kernel as in our case). Jitkrittum
et al. (2018) used this method for relative goodness-
of-fit testing instead of two-sample testing. For image
data, we select the bandwidth parameter for the Gaus-
sian kernel via the median heuristic, and for audio data
via the power maximization technique (in each case
the other variant performs considerably worse); the
pretrained networks are the same as for our tests and
the C2ST.

All experiments were run over 1000 runs. Type-1 error
rates are estimated by drawing both samples (without
replacement) from the same class and computing the
rate of rejections. Similarly, type-2 error rates are esti-
mated as the rate of not rejecting the null hypothesis
when sampling from two distinct classes. All figures of
type-1 and type-2 error rates show the 95% confidence
interval based on a Wilson Score interval (and a “rule-of-
three“ approximation in the case of 0-values (Eypasch
et al., 1995)). In all settings we fixed the significance
level at α = 0.05. In addition to that we show in Ap-
pendix D.3 empirically that also for smaller significance
levels high power can be preserved. Preprocessing for
image data is explained in Appendix D.2.
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(a) Type-1 error rate on AM audio data.
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(b) Type-2 error rate on AM audio data.
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(c) Type-2 error rate on aircraft data.
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(d) Type-2 error rate on KDEF data.
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(e) Type-2 error rate on dogs data.

Figure 1: Results on AM audio (top row) and natural image (bottom row) data sets. Suffixes “-sup“ indicate
supervised pretraining, “-unsup“ indicates unsupervised pretraining.

5.2 Control of Type-1 Error Rate

Since the presented test procedures are not exact tests
it is important to verify that the type-1 error rate is
controlled at the proper level. Figure 1a shows that
the empirical type-1 error rate is well controlled for the
amplitude modulated audio data introduced in the next
section. For the other data sets, results are provided
in Appendix D.4.

5.3 Power Analysis

Amplitude Modulated Audio Data Here we an-
alyze the proposed test on the amplitude modulated
audio example from (Gretton et al., 2012b). The task
in this setting is to distinguish snippets from two dif-
ferent songs after they have been amplitude modulated
(AM) and mixed with noise. We use the same pre-
processing and amplitude modulation as Gretton et al.
(2012b). We use the freely available music from Gra-
matik (2014); distribution p is sampled from track four,
distribution q from track five and the remaining tracks
on the album were used for training the network in a
multi-class classification setting. As our neural network
architecture we use a simple convolutional network, a
variant from Dai et al. (2017), called M5 therein; see

Appendix D.6 for details.

Figure 1b reports the results with varying number of
observations under constant noise level σ2 = 1. Our
method shows high power, even at low sample sizes,
whereas kernel methods need large amounts of data
to deal with the task. Note that these results are
consistent with the original results in Gretton et al.
(2012b), where the authors fixed the sample size atm =
10, 000 and consequently only used the (significantly
less powerful) linear-time MMD test.

Aircraft We investigate the Fine-Grained Visual
Classification of Aircraft data set (Maji et al., 2013).
We select two visually similar aircraft families, namely
Boeing 737 and Boeing 747 as populations p and q,
respectively. The neural network embeddings are ex-
tracted from a ResNet-152 (He et al., 2016) trained on
ILSVRC (Russakovsky et al., 2015). Figure 1c shows
that all neural network architectures perform consid-
erably better than the kernel methods. Furthermore,
our proposed tests can also outperform both the C2ST
and the deep kernel MMD.

Facial Expressions The Karolinska Directed Emo-
tional Faces (KDEF) data set (Lundqvist et al., 1998)
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Table 1: Results on neuroimaging data, comparing
subjects who are cognitive normal (CN), have mild cog-
nitive impairment (MCI) or have Alzheimer’s disease
(AD). APOE has neutral variant ε3 and risk-factor
variant ε4. Numbers in parentheses denote sample size.

X (# obs) Y (# obs) p-value

CN (490) AD (314) 9.49 · 10−5

CN (490) MCI (287) 2.44 · 10−4

MCI (287) AD (314) 1.45 · 10−3

APOE ε3 (811) APOE ε4 (152) 1.40 · 10−2

has been previously used by Jitkrittum et al. (2016);
Lopez-Paz and Oquab (2016). The task is to distin-
guish between faces showing positive (happy, neutral,
surprised) and negative (afraid, angry, disgusted) emo-
tions. The feature embeddings are again obtained from
a ResNet-152 trained on ILSVRC. Results can be found
in Figure 1d. Even though the images in ImageNet
and KDEF are very different, the neural network tests
again outperform the kernel methods. Also note that
the apparent advantage of the mean embedding test
for low sample sizes is due to an unreasonably high
type-1 error rate (> 0.11 and > 0.085 at m = 10, 15,
respectively).

Stanford Dogs Lastly, we evaluate our tests on the
Stanford Dogs data set (Khosla et al., 2011), consisting
of 120 classes of different dog breeds. As test classes
we select the dog breeds ‘Irish wolfhound‘ and ‘Scot-
tish deerhound‘, two breeds that are visually extremely
similar. Since the data set is a subset of the ILSVRC
data, we cannot train the networks on the whole Im-
ageNet data again. Instead, we train a small 6-layer
convolutional neural network on the remaining 118
classes in a multi-class classification setting and use
the embedding from the last hidden layer. To show
that our tests can also work with unsupervised transfer-
learning, we also train a convolutional autoencoder on
this data; the encoder part is identical to the super-
vised CNN, see Appendix D.7 for details. Note that
for this setting, the theoretical consistency guarantees
from Theorem 3.2 do not hold, although the type-1
error rate is still asymptotically controlled. Figure 1e
reports the results, with *-sup denoting the supervised,
and *-unsup the unsupervised transfer-learning task.
As expected, tests based on the supervised embedding
approach outperform other tests by a large margin.
However, the unsupervised DMMD and DFDA still
outperform kernel-based tests. Interestingly, both the
C2ST and the k-DMMD method seem to suffer more
severely from the mediocre feature embedding than our
tests. One potential explanation for this phenomenon
is the ability of DMMD and DFDA to fine-tune on the

Figure 2: Slices of 3D-MRI scans of an Alzheimer’s
disease patient (A) and a cognitively normal individ-
ual (B). Note the enlargement of the lateral ventricles
(indicated by red arrows) in the Alzheimer’s disease
patient.

test data without the need to perform a data split.

Three-dimensional Neuroimaging Data In this
section, we apply the DFDA test procedure to 3D
Magnetic Resonance Imaging (MRI) scans and genetic
information from the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) (Mueller et al., 2005). To this
end, we transfer a 3D convolutional autoencoder that
has been trained on MRI scans from the Brain Ge-
nomics Superstruct Project (Holmes et al., 2015) to
perform statistical testing on the ADNI data. Details
on preprocessing and network architecture are provided
in Appendix D.10.

The ADNI dataset consists of individuals diagnosed
with Alzheimer’s Disease (AD), with Mild Cognitive
Impairment (MCI), or as cognitively normal (CN);
Figure 2 shows exemplaric images of an AD and a
CN subject. Table 1 shows that our test can detect
statistically significant differences between MRI scans
of individuals with a different diagnosis. Additionally,
we evaluate whether our test can detect differences
between individuals who have a known genetic risk
factor for neurodegenerative diseases and individuals
without that risk factor. In particular, we compare the
two variants ε3 (the “normal” variant) and ε4 (the risk-
factor variant) in the Apolipoprotein E (APOE ) gene,
which is related to AD and other diseases (Corder et al.,
1993). By grouping subjects according to which variant
they exhibit we test for statistical dependence between
a (binary) genetic mutation and (continuous) variation
in 3D MRI scans. Table 1 shows that individuals with
ε4 and ε3 APOE variants are significantly different,
suggesting a statistical dependence between genetic
variation and structural brain features.
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A PROOF OF THEOREMS

A.1 Control of type-1 error rate

Proof of Theorem 3.1. (i) Under p = q, it holds
that E[φ(X1)] = E[φ(Y1)] and Σ = Cov(φ(X1)) =
Cov(φ(Y1)). Then we have√

nm

n+m
Dn,m(φ)

=

√
nm

n+m

(
1

n

n∑
i=1

φ(Xi)− E[φ(Xi)]

− 1

m

m∑
i=1

φ(Yi)− E[φ(Yi)]

)

=

√
m

n+m

1√
n

n∑
i=1

(φ(Xi)− E[φ(Xi)])

−
√

n

n+m

1√
m

m∑
i=1

(φ(Yi)− E[φ(Yi)])

Then the first term in the last expression converges
in distribution against N (0, rΣ) and the second term
converges in distribution against N (0, (1− r)Σ) by a
multivariate Central Limit Theorem (note that φ(X1)
lies within [−1, 1]H and hence all moments are finite).
Since allXi and Yj are jointly independent, the limiting
distributions are also independent, hence the whole
term converges against N (0, rΣ) − N (0, (1 − r)Σ) =
N (0,Σ).

(ii) By (i) and the continuous mapping theorem,
Sn,m(φ,Xn,Ym)

d→ ||ζ||2, where ζ ∼ N (0,Σ). Since
Σ is positive semi-definite, there exist an orthogonal
matrix Q and a diagonal matrix L = diag(λ1, . . . , λd)
such that Σ = QLQ>. Then we have

||Qζ||2 = ζ>Q>Qζ = ζ>ζ = ||ζ||2,

and Qζ ∼ N (0, L), hence the claim.

(iii) By the weak law of large numbers, Σ̂n,m
p→ Σ, and

hence by (i) and Slutsky’s Theorem√
nm

n+m
Σ̂
− 1

2
n,mDn,m(φ)

d→ N (0, I).

The rest follows again by the continuous mapping the-
orem.

A.2 Proof of Consistency

Before we begin the proof we start with some auxiliary
definitions and preliminary results.

As in Section 3.1 we can use the regression framework
with (Zi, ti)i ⊂ Rd × {−1, 1}. Then Zi|ti = 1 ∼ p,

Zi|ti = −1 ∼ q and similarly for (Z ′i, t
′
i) and all jointly

independent. As we assume Pr(t = 1) = Pr(t = −1) =
1
2 , the distribution of (Z, t) is fully determined by spec-
ifying p and q and hence we write for the expected
value e.g. Ep,q[f(Z, t)] for some function f .

We define the loss function

L(t, t̂) := 1− tt̂ ∈ [0, 2]

with corresponding empirical and expected risks

R′N (ψ) =
1

N

N∑
i=1

1− t′iψ(Z ′i),

R′(ψ) = 1− Ep′,q′ [tψ(Z)].

The Bayes risk under the transfer task will be denoted
as R′∗ = inff∈MR′(f) = 1− ε′ whereM is class of all
Borel-measurable functions from Rd → [−1, 1]

Selecting φN is equivalent to (inexact) empirical risk
minimization over GN := {w>φ|φ ∈ T FN , ||w|| ≤ 1},
i.e.

R′N (ψN ) ≤ min
ψ∈GN

R′N (ψ) + η

where ψN = w>φN ∈ GN for some ||wN || ≤ 1.

The following Lemma is based on Theorem 1 in
(Golowich et al., 2017) and we will need it to bound the
complexity of the neural network function class GN .
Lemma A.1. Let the data be a.s. be bounded by some
B > 0 and

G :=
{
w> tanh ◦WD′−1 ◦ σ ◦ . . . ◦ σ ◦W1 : Rd → R

∣∣
W1 ∈ RH×d,Wj ∈ RH×H for j = 2, . . . , D′ − 1,

w ∈ RH with ||w|| ≤ 1,

D′−1∏
j=1

||Wj ||Fro ≤ β,D′ ≤ D


Then, the empirical Rademacher complexity of G can
be bounded as:

R̂N (G) ≤
B(d+ 1)(

√
2 log(2)(D − 1) + 1)β√

N
.

Proof of Lemma A.1. We define auxiliary function
classes

GsD−1 :=
{
WD′−1 ◦ σ ◦ . . . . . . σ ◦W1 : Rd → Rs

∣∣
W1 ∈ RH×d,Wj ∈ RH×H for j = 2, . . . , D′ − 2,

WD′−1 ∈ Rs×H ,

D′−1∏
j=1

||Wj ||Fro ≤ β,D′ ≤ D


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for s ∈ {1, H}.

Then we can rewrite G as

G = {
H∑
j=1

wj tanh ◦φj |||w|| ≤ 1, φ ∈ GHD−1}

⊂ {
H∑
j=1

wj tanh ◦φj |||w|| ≤ 1, φj ∈ G1D−1}

⊂
H∑
j=1

{w tanh ◦φ||w| ≤ 1, φ ∈ G1D−1}.

Therefore we can bound the Rademacher complexity
as

R̂N (G) ≤ HR̂n({w tanh ◦φ||w| ≤ 1, φ ∈ G1D−1})
≤ HR̂n({tanh ◦φ|φ ∈ G1D−1})
≤ HR̂n(G1D−1)

by standard learning theory arguments. For G1D−1, we
use the Rademacher bound found in (Golowich et al.,
2017) Theorem 1 (we cannot use the Theorem directly
on G since tanh is not positive homogeneous):

R̂N (G1D−1) ≤
B(
√

2 log(2)(D − 1) + 1)β√
N

.

The original Theorem 1 in (Golowich et al., 2017) holds
for depth D − 1 networks, but we allowed networks of
lower depth. However, one can fill up the networks to
depth D− 1 with identity weight matrices and identity
activation functions; inspection of the proof of the
Theorem then shows that the claim still holds.

Since H = d+ 1, the claim follows.

With these preliminary notions set up, we can proceed
with the actual proof of consistency.

Proof of Theorem 3.2. We intend to show that
Rn,m(ψN ) is asymptotically strictly smaller than 1; the
divergence of the test statistic then follows easily. We
will proceed in 5 steps. First, we split R(ψN )−R′∗ into
transfer error, estimation error (of the transfer task)
and approximation error (of the transfer task). Sec-
ond, we show that the approximation error converges
to zero (due to a Universal Approximation Theorem
for deep networks); third we show that the estimation
error is asymptotically bounded by η, using a learning
theory bound on the Rademacher complexity of the
neural network function class. This together implies
that R(ψN ) and R′∗ are (δ + η)-close asymptotically.
Fourth, we show that the Rn,m(ψN ) − R(ψN )

p→ 0
and from this we finally deduce that the test statistics
diverge to +∞.

1. Splitting the terms We have

R(ψN )−R′∗ = [R(ψN )−R′(ψN )] + [R′(ψN )−R′∗] .

The first term is bounded as follows:

|R(ψN )−R′(ψN )|
= |Ep,q[tψN (Z)]− Ep′,q′ [tψN (Z)]|

≤ ||ψN ||∞
2

(||p− p′||L1(µ) + ||q − q′||L1(µ))

≤ δ,

due to boundedness of ψN and requirement (ii).

The second term can again be split:

R′(ψN )−R′∗

=

[
R′(ψN )− min

ψ∈GN
R′(ψ)

]
+

[
min
ψ∈GN

R′(ψ)−R′∗
]
.

2. Convergence of minGN R
′(ψ) − R′∗: Let µ̂ be

the Borel measure of Z (not conditioned on t), i.e.
Pr(Z ∈ A) = µ̂(A) for any A ⊂ Rd Borel. Following
a similar argument as Lemma 30.2 in (Devroye et al.,
2013) then yields the following. For any fixed ε > 0,
select a measurable function h : Rd → [−1, 1] such
that |R(h)−R∗| ≤ ε

4 , and a compact set K ⊂ Rd with
µ̂(K) ≥ 1− ε

8 . Then, since compact-support continuous
functions are dense in L1(µ), there exists a continuous
function f : Rd → [−1, 1] with

E[|f(Z)− h(Z)|1Z∈K ] ≤ ε

4
.

From the universal approximation theorem for deep
ReLU networks in (Hanin, 2017), there exists N0 ≥ 1
such that for all N ≥ N0 we can find a ψ ∈ GN with

sup
z∈K
|f(z)− ψ(z)| ≤ ε

4
.

Note that the Theorem in (Hanin, 2017) holds for ReLU-
networks, but since tanh is invertible one can apply
the universal approximation theorem on the first node
in the last hidden layer, select the wN = [1, 0, . . . , 0]>

and still get the universal approximation property.

Combining these yields, for N large enough,

min
ψ∈GN

R′(ψ)−R′∗ ≤ R′(ψ)−R′∗

=Ep′,q′ [−tψ(Z) + th(Z)] +R′(m)−R′∗

≤E[|ψ(Z)− h(Z)|1Z∈K ] + 2µ̂(Kc) +
ε

4
≤E[|ψ(Z)− f(Z)|1Z∈K ]

+ E[|f(Z)− h(Z)|1Z∈K ] +
ε

2
≤ε.

Then, since ε > 0 was arbitrary, and minψ∈GN R
′(ψ) ≥

R′∗ we get minGN R
′(ψ)→ R′∗ as N →∞.



Two-sample Testing Using Deep Learning

3. Asymptotic closeness of R′(ψN ) and
minGN R

′(ψ): We can first bound by standard argu-
ments:

R′(ψN )− min
ψ∈GN

R′(ψ)

= [R′(ψN )−R′N (ψN )] +

[
R′N (ψN )− min

ψ∈GN
R(ψ)

]
≤ max
ψ∈GN

[|R′(ψ)−R′N (ψ)|]

+

[
min
ψ∈GN

R′N (ψ) + η − min
ψ∈GN

R(ψ)

]
≤ 2 max

ψ∈GN
|R′(ψ)−R′N (ψ)|+ η

= 2 sup
h∈HN

∣∣∣∣∣E[h(Z ′, t′)]− 1

N

N∑
i=1

g(Z ′i, t
′
i)

∣∣∣∣∣+ η

as R′N (ψN ) ≤ minR′N (ψ) + η, where we define HN :=
{(z, t) 7→ L(ψ(Z), t)|ψ ∈ GN} as the conjunction of neu-
ral networks with the loss function. The first term
can be bound with high probability by two-sided
Rademacher inequalities:

Pr

(
sup
h∈HN

∣∣∣∣∣E[h(Z ′, t′)]− 1

N

N∑
i=1

g(Z ′i, t
′
i)

∣∣∣∣∣
≤ 2R̂N (GN ) + 6

√
log(4/ζ)

2N

)
≥ 1− ζ

for any ζ > 0. This complexity bound follows from
Theorem 11.3 in (Mohri et al., 2018) if we insert the
function class Ĥ := HN ∪ 2−HN by noting that the
loss function is 1-Lipschitz in both its arguments non-
negative and bounded from above by 2.

Setting ε := 2R̂N (GN ) + 6
√

log(4/ζ)
2N then yields

Pr

(
sup
h∈HN

∣∣∣∣∣E[h(Z ′, t′)]− 1

N

N∑
i=1

g(Z ′i, t
′
i)

∣∣∣∣∣ > ε

)

≤ 4 exp

(
−N(ε− 2R̂N (GN ))2

18

)
. (2)

But Lemma A.1 bounds the Rademacher complexity
as

R̂N (GN ) ≤
B(d+ 1)

(√
2 log(2)(DN − 1) + 1

)
βN

√
N

≤ C
√
DNβN√
N

(3)

for some C > 0 and DN large enough. Then

N(ε− 2R̂N (GN ))2 ≥ Nε2 − 4NR̂N (GN )

≥ Nε2 − 4C
√
N
√
DNβN ,

and the last term diverges to ∞ if β
2
NDN

N → 0. Hence,
the right-hand side in equation (2) converges to 0.

This shows that

Pr(R′(ψN )− min
ψ∈GN

R′(ψ) ≤ ε+ η)→ 1

for any ε > 0, i.e. R′(ψN ) is asymptotically η-close to
minGN R

′(ψ) (in probability).

4. Rn,m(ψN)−R(ψN)
p→ 0 Next we need to show

that the empirical risk (over (Z, t), not (Z ′, t′)) also is
asymptotically smaller than 1.

We look at ξN,i := tiψN (Zi), which is a triangular array
of random variables on [−1, 1]. We will use a weak law
of large numbers for triangular arrays, see Theorem
2.2.11 in (Durrett, 2019). Both requirements in the
Theorem are satisfied since ξN,i is bounded, and hence
we get

1

N

N∑
i=1

tiψN (Zi)− E[tψN (Z)]

=

∑N
i=1 ξN,i −NE[ξN,i]

N

p→ 0,

or equivalently Rn,m(ψN )−R(ψN )
p→ 0.

But as shown above, R(ψN ) is δ-close to R′(ψN ) and
R′(ψN ) is asymptotically η-close to R′∗; hence we get

Pr(R(ψN )−R′∗ ≤ ε+ δ + η)→ 1

for any ε > 0, and therefore

Pr(Rn,m(ψN )−R′∗ ≤ ε+ δ + η)→ 1

5. Divergence of test statistics Define MN =
1−Rn,m(ψN ), then

Pr(MN ≥ ε∗ − δ − η − ε)→ 1

for any ε > 0. Since δ + η < ε∗, we then have for any
r > 0 :

Pr

(√
nN

m
MN > r

)
= Pr

(
MN >

√
m

nN
r

)
→ 1,

i.e. MN
p→ +∞, since

√
m
nN → 0.

Next, define

Ŝn,m =
nm

n+m

(
1

n

n∑
i=1

ψN (Xi)−
1

m

m∑
i=1

ψN (Yi)

)
,

i.e. the version of Sn,m where the last layer is still
selected on the training data instead of the test data.
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Then it holds that∣∣∣∣√ m

n(m+ n)
Ŝn,m −MN

∣∣∣∣
=

∣∣∣∣∣ 1

m+ n

(
m

n

n∑
i=1

ψN (Xi)−
m∑
i=1

ψN (Yi)

)

− 1

m+ n

m+n∑
i=1

tiψN (Zi)

∣∣∣∣∣
=

∣∣∣∣∣ 1

m+ n

n∑
i=1

ψN (Xi)

∣∣∣∣∣ ∣∣∣mn − 1
∣∣∣

≤
∣∣∣m
n
− 1
∣∣∣→ 0,

since all |ψN (Xi)| ≤ 1 and m
n → 1.

Hence, we also get

Pr(Ŝn,m > r)→ 1

for any r > 0. But

Sn,m =
nm

n+m

∣∣∣∣∣∣φN (Xn)− φN (Ym)
∣∣∣∣∣∣2

=
nm

n+m
sup
||w||≤1

w>
(
φN (Xn)− φN (Ym)

)
≥ Ŝn,m

For the DFDA test statistic, we have

Tn,m =
nm

n+m
D>n,mΣ̂−1n,mDn,m

≥ nm

n+m
||Dn,m||2λmin(Σ̂−1n,m)

= Sn,mλmax(Σ̂n,m)−1.

λmax(Σ̂n,m) is always positive (due to the ρn,m > 0
summand), and also bounded from above by some
C > 0 (due to the boundedness of all individual entries),
therefore Tn,m ≥ C−1Sn,m.

Hence we also have Sn,m, Tn,m
p→ +∞.

B DISTRIBUTIONS WITH
UNBOUNDED SUPPORT

Considering the case where p′ and q′ have unbounded
support, but requirements (ii), (iii) and a variant of
(i) in Theorem 3.2 are still satisfied, we can still prove
a similar consistency result.

In particular, we can make p′ and q′ vary with N by re-
placing them with truncated, bounded-support versions
that converge towards the true densities slowly enough.
First, select p′N and q′N with support on [−BN , BN ]d

for some sequence Bn ↑ +∞, and ||p′N − p′||L1(µ) → 0

and ||q′N − q′||L1(µ) → 0. Then there exists a N0 > 0
such that for all N ≥ N0, requirements (i), (ii) and
(iii) are satisfied for p′N and q′N . In practice these
truncated variables can be achieved for example by
rejection sampling from p′ and q′.

The only part in the proof of Theorem 3.2 where we
need the boundedness assumption on p′ and q′ is when
bounding the Rademacher complexity of the class GN
in equation 3. The modified Rademacher bound now is

R̂N (GN ) ≤
BN (d+ 1)

(√
2 log(2)(DN − 1) + 1

)
βN

√
N

≤ C
√
DNBNβN√

N
.

The requirement for the exponent in equation (2) to
diverge then is

B2
Nβ

2
NDN

N
→ 0 instead of

β2
NDN

N
→ 0.

The rest of the proof is as before. We can summarize
this as follows:
Theorem B.1. Let p 6= q, n = n′,m = m′ with n

m →
1, N = n + m, R′∗ = 1 − ε′ the Bayes error for the
transfer task with ε′ > 0. Furthermore, let ||p′N −
p′||L1(µ) → 0 and ||q′N − q′||L1(µ) → 0 for sequences of
µ-densities (p′N )N and (q′N )N ,

Assume that the following holds:

(i) B2
Nβ

2
NDN

N → 0, BN →∞, βN →∞ and DN →∞
for N →∞,

(ii) ||p− p′||L1(µ) + ||q − q′||L1(µ) < 2δ,

(iii) 0 ≤ δ + η < ε′, where η ≥ 0 is the leniency
parameter in training the network, and

(iv) for each N , p′N and q′N have support on
[−BN , BN ]d.

Then, as N →∞ both test test statistics S(φN ,Xn,Ym)
and T (φN ,Xn,Ym) diverge in probability towards infin-
ity, i.e. for any r > 0

Pr (S(φN ,Xn,Ym) > r)→ 1 and
Pr (T (φN ,Xn,Ym) > r)→ 1.

C DIMENSIONALITY
REDUCTION

In practice, we oftentimes first apply a PCA transfor-
mation on the data before computing the DFDA test
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statistic. Since we fit the PCA on the test data itself,
however, the observations are not independent anymore
and Theorem 3.1 is not directly applicable anymore.
As an unsupervised linear transformation, however, we
can show via a Slutsky-type argument that the normal
approximation is still valid.

Theorem C.1. Let (ξi)i and (ξ′i)i be all jointly inde-
pendent and identically distributed on Rd with bounded
support and assume that n

n+m → r ∈ (0, 1) as n,m→
∞.

Let AN ∈ Rs×d be a PCA transform, fitted on
ξ1, . . . , ξn, ξ

′
1, . . . , ξ

′
m (N = m + n), for some s ∈

{1, . . . , d}. Let Σ = Cov(ξ1) with eigenvalues
λ1, . . . , λd sorted in descending order, and assume that
λs 6= λs+1 (if s < d).

Then√
nm

n+m

(
1

n

n∑
i=1

ANξi −
1

m

m∑
i=1

ANξ
′
i

)
d→ N (0,Σ′)

as n,m→∞, where Σ′ = diag(λ1, . . . , λs).

Note that the λs 6= λs+1 assumption is only necessary
for uniqueness of the limiting distribution – in practice
one can ignore this requirement.

Proof of Theorem C.1. Since AN is a PCA transforma-
tion, AN is the matrix with the normalized eigenvectors
corresponding to the s largest eigenvalues of the empir-
ical covariance matrix Σ̃n,m. But, due to a weak law
of large numbers, Σ̃n,m

p→ Σ and accordingly AN
p→ A

with the population PCA A being the normalized eigen-
vectors corresponding to the s largest eigenvalues of Σ
(without loss of generality we can assume the row-wise
signs to be determined by some deterministic proce-
dure, and hence for large enough N , AN and A unique
e.g. by requiring that the first non-zero entry in the
vector be positive).

Due to the same argument as in the proof of Theo-
rem 3.1 (i),√

nm

n+m

(
1

n

n∑
i=1

ξi −
1

m

m∑
i=1

ξ′i

)
d→ N (0,Σ).

Due to a multivariate Slutsky theorem, then√
nm

n+m

(
1

n

n∑
i=1

ANξi −
1

m

m∑
i=1

ANξ
′
i

)

= AN

√
nm

n+m

(
1

n

n∑
i=1

ξi −
1

m

m∑
i=1

ξ′i

)
d→ N (0, AΣA>).

But as A consists of the orthogonal eigenvectors of Σ
in descending order of eigenvalues, AΣA> = Σ′.

D ADDITIONAL EMPIRICAL
ANALYSIS

D.1 Parameters for SCF and ME tests

For the SCF and ME test, hyperparameters have to be
chosen, namely the number of locations/frequencies at
which to test, the kernel-selection strategy and whether
to optimize over the frequencies/locations or to use
a simple heuristic. We found that if the number of
locations/frequencies J is chosen too large, the tests
oftentimes strongly violate the significance level. Hence,
we grow J with the number of samples according to
what still gives reasonable type-1 error rates.

AM Audio Data Here we use the ‘full‘ version of
the parameter selection from (Jitkrittum et al., 2016)
for both tests. Number of frequencies/locations were
set to J = 1 when m ∈ [10, 50], J = 3 for m ∈ [75, 150]
and J = 10 for m ∈ [200, 1000].

Aircraft, Dogs and Birds Data For SCF we found
the random location initialization without kernel opti-
mization (and hence without data split) to work best.
For ME, due to the high dimensionality, we selected the
‘grid‘ version of the parameter optimization; the ‘full‘
version did not seem to give considerable improvements
above this. For the Aircraft and Dogs data, we selected
J = 1 frequencies/locations for m ∈ [10, 50] and J = 3
for m ∈ [50, 200]. For the Birds data we always use
J = 1 (m ∈ [10, 60]).

Facial Expression Data Again we use random lo-
cations for SCF and grid-search kernel width for ME.
For SCF, we fix J = 1 for all m ∈ [10, 200]. For ME, we
choose J = 1 for m ∈ [10, 50], J = 3 for m ∈ [75, 100]
and J = 10 for m ∈ [150, 200].

D.2 Image Preprocessing

For the deep learning-based methods (DFDA, DMMD
& C2ST), before evaluation, all image data is rescaled
to (224, 224) and normalized according to the require-
ments of the neural network.

For kernel-based tests we found different strategies
to work differently well on each data set. Hence, for
the Aircraft, Stanford Dogs and Birds data set, data
is rescaled to (48, 48) dimensions and converted to
grayscale. For the facial expression data, images were
first cropped to the center (resulting in (462, 462)
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dimensions) and then rescaled to (96, 96) dimensions;
no conversion to grayscale was performed. We found
no increase in power for higher resolution (e.g. (224,
224)).

D.3 Sensitivity to Significance Level

Special care has to be taken if several hypotheses are
tested at the same time, leading to a multiple testing
problem. One simple approach to control the so-called
familywise error rate (FWER, (Lehmann and Romano,
2006)), i.e., the probability of at least one wrong rejec-
tion of a null hypothesis, is the Bonferroni correction
(Lehmann and Romano, 2006). The Bonferroni cor-
rection divides the original significance level α by the
number of tests to be performed. Therefore, in many
practical settings the significance level for each test
will be considerably lower than the “standard“ values
of 0.05 or 0.01. This represents a problem in practice,
since approximating the distribution in the tails usu-
ally is more challenging. Here we only give results for
the asymptotic DFDA distribution, since permutation-
based methods do not scale well to very low significance
levels. Figure 3a shows that our method controls type-1
error rate at significance levels 5 ·10−u for u = 2, 3, 4, 5;
Figure 3b shows that even at small significance levels,
the DFDA can still maintain relatively high power.

D.4 Control of Type-1 Error Rate

Figure 4 shows that both DMMD and DFDA properly
control the type-1 error rate even at low sample sizes.

D.5 Birds Experiments

Here we report results on another fine-grained classi-
fication data set, the Caltech-UCSD Birds-200-2011,
Caltech-UCSD Birds-200-2011 (Wah et al., 2011). We
selected two visually very similar species of birds,
namely the “Blue-winged Warbler“ and the “Hooded
Warbler“ for differentiation. Results are shown in Fig-
ure 5.

D.6 AM Audio Experiments

Data preprocessing consists of sampling the original
audio signal at 8kHz, the resulting AM signal is sampled
at 120kHz, and snippets of length 1000 are used for
identification. Gaussian noise with standard deviation
1 is added to the samples after processing.

The model has four one-dimensional convolutional lay-
ers, each followed by Batch normalization, a ReLU
activation and max-pooling. The last layer is fully con-
nected, but only used for training the network, i.e., the
feature extraction is fully convolutional. In contrast to

the M5 network, we use an input layer with kernel size
of 20 instead of 80 and the final global average pooling
layer can be removed, to accommodate the significantly
smaller input dimension of the audio snippets. We
train the network to classify noisy AM snippets from
the remaining songs on the album, with a multi-class
cross-entropy loss and a L2-regularization of 10−4 on
all weights; we use the Adam optimizer for this task
Kingma and Ba (2014).

D.7 Stanford Dogs Experiments

Table 2 shows the convolutional autoencoder architec-
ture used in the experiments on the Stanford Dogs data
set. The autoencoder was trained to optimize multi-
scale structural similarity between input and output
images.

The supervised training was performed with a network
with the same encoder as in Table 2 and a fully con-
nected layer on top, to classify the remaining 118 dog
breeds. Again, we use the multi-class cross-entropy
loss.

For both the supervised and the unsupervised task we
use the Adam optimizer and L2 regularization of size
10−4.

D.8 KDEF Experiments

Note that Jitkrittum et al. (2016) and Lopez-Paz and
Oquab (2016) only compared tests that use train/test
splits. Hence, results therein are reported for nte, which
is the size of the test set of each sample, i.e. nte = 1

2m
in our case (nte = 201 corresponds to m = 402).

D.9 Imagenet Training

For the aircraft, facial expression, and birds data set we
use a ResNet-152, trained on the whole ILSVRC 2012
data set. Instead of training this network ourselves, we
use the parameters and implementation provided in
the PyTorch deep learning library Paszke et al. (2017).

D.10 MRI Scan Preprocessing and
Experiments

The T1 MRI scans acquired through the MP-RAGE
protocol were selected from GSP and ADNI. The scans
were standardized to (256, 256, 256) and cropped to
(96, 96, 96) dimensions with isotropic voxels of 1mm.
Model architecture is shown in table 3. The model was
trained for 400 epochs on 1413 MRI scans from GSP.
The loss function was set to the mean squared error
and the batch size was set to one. No MRI scans from
ADNI was used for training.
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(a) Type-1 error rate at low significance levels, m = 50.
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(b) Type-2 error rate at low significance levels, m = 50.

Figure 3: Results on the AM audio data for m = 50 with small significance levels α. We show average values over
106 tests, where we fixed the sample size m per population to be equal to 50. (a) Empirical type-1 error rates for
small α values consistently lie below the expected type-1 error rate (dotted line). (b) Empirical type-2 error rates.

In our experiments, the APOE gene was used since it
is known to be a risk factor for Alzheimer’s disease;
in practice, when one does not know which locus to
test, a multistep-approach such as the one developed
by Mieth et al. (2016) can be used to create a selection
of candidate loci.

E CODE AND DATA

We provide an implementation of our meth-
ods at https://github.com/mkirchler/
deep-2-sample-test.

All 2D imaging and audio data can be downloaded
from the following sources:

• Audio data: http://dl.lowtempmusic.com/
Gramatik-TAOR.zip

• Aircraft data: http://www.robots.ox.ac.
uk/~vgg/data/fgvc-aircraft/archives/
fgvc-aircraft-2013b.tar.gz

• Facial Expression data: http://kdef.se/index.
html

• Stanford Dogs data: http://vision.stanford.
edu/aditya86/ImageNetDogs/images.tar

• Birds data: http://www.vision.caltech.edu/
visipedia-data/CUB-200-2011/CUB_200_2011.
tgz

For MRI imaging data access to data has to be granted
by the releasing institutions, see

• GSP: https://www.neuroinfo.org/gsp

• ADNI: http://adni.loni.usc.edu/
data-samples/access-data/

https://github.com/mkirchler/deep-2-sample-test
https://github.com/mkirchler/deep-2-sample-test
http://dl.lowtempmusic.com/Gramatik-TAOR.zip
http://dl.lowtempmusic.com/Gramatik-TAOR.zip
http://www.robots.ox.ac.uk/~vgg/data/fgvc-aircraft/archives/fgvc-aircraft-2013b.tar.gz
http://www.robots.ox.ac.uk/~vgg/data/fgvc-aircraft/archives/fgvc-aircraft-2013b.tar.gz
http://www.robots.ox.ac.uk/~vgg/data/fgvc-aircraft/archives/fgvc-aircraft-2013b.tar.gz
http://kdef.se/index.html
http://kdef.se/index.html
http://vision.stanford.edu/aditya86/ImageNetDogs/images.tar
http://vision.stanford.edu/aditya86/ImageNetDogs/images.tar
http://www.vision.caltech.edu/visipedia-data/CUB-200-2011/CUB_200_2011.tgz
http://www.vision.caltech.edu/visipedia-data/CUB-200-2011/CUB_200_2011.tgz
http://www.vision.caltech.edu/visipedia-data/CUB-200-2011/CUB_200_2011.tgz
https://www.neuroinfo.org/gsp
http://adni.loni.usc.edu/data-samples/access-data/
http://adni.loni.usc.edu/data-samples/access-data/
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(a) Type-1 error rate on Aircraft data set.
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(b) Type-1 error rate on facial expression data set.
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(c) Type-1 error rate on Birds data set.
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(d) Type-1 error rate on Stanford Dogs data set.

Figure 4: Empirical control of type-1 error rate on vision data sets.
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Figure 5: Type-2 error rate on Birds data set.
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Table 2: Architecture of the convolutional autoencoder
used for the Stanford Dogs experiments. For Conv and
ConvTranspose layers, [3× 3, f ] denotes f 3× 3 filters.
Activation functions are always ReLUs except for the
last convolutional layer (tanh) and the last ConvTrans-
pose layer (sigmoid). After each Conv and ConvTrans-
pose operation, a BatchNorm (Ioffe and Szegedy, 2015)
operation was used. The output of the encoder part
was used as feature map in our tests.

Input: (3, 224, 224) image

Encoder

Conv [3× 3, 40]
MaxPool [2× 2]
Conv [3× 3, 80]
MaxPool [2× 2]
Conv [3× 3, 160]
MaxPool [2× 2]
Conv [3× 3, 240]
MaxPool [2× 2]
Conv [3× 3, 360]
MaxPool [2× 2]
Conv [3× 3, 2048]
MaxPool [2× 2]

Decoder

ConvTranspose [3× 3, 360]
Upsample [2× 2]
ConvTranspose [3× 3, 240]
Upsample [2× 2]
ConvTranspose [3× 3, 160]
Upsample [2× 2]
ConvTranspose [3× 3, 80]
Upsample [2× 2]
ConvTranspose [3× 3, 40]
Upsample [2× 2]
ConvTranspose [3× 3, 3]

Table 3: Architecture of the 3D convolutional autoen-
coder for the MRI data. For Conv and ConvTranspose
layers, [3× 3× 3, s, f ] denotes f 3× 3× 3 filters with
strides of s. Activation functions are always ReLUs
except for the last convolutional layer (linear). All con-
volutional operations are done without padding. The
output of the encoder (1024 dimensions) is used as
feature map in our tests.

Input: (96, 96, 96) MRI scan

Encoder

Conv [3× 3× 3, 1, 8]
Conv [2× 2× 2, 2, 16]
Conv [3× 3× 3, 1, 32]
Conv [2× 2× 2, 2, 64]
Conv [2× 2× 2, 2, 128]
Conv [2× 2× 2, 2, 256]
Conv [2× 2× 2, 2, 256]
Dense

Decoder

Dense
Conv [3× 3× 3, 1, 256]
ConvTranspose [2× 2× 2, 2, 256]
ConvTranspose [2× 2× 2, 2, 128]
ConvTranspose [2× 2× 2, 2, 64]
ConvTranspose [2× 2× 2, 2, 32]
Conv [3× 3× 3, 1, 16]
ConvTranspose [2× 2× 2, 2, 8]
Conv [3× 3× 3, 1, 1]
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