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Abstract—Multiple kernel clustering (MKC) algorithms optimally com-
bine a group of pre-specified base kernel matrices to improve cluster-
ing performance. However, existing MKC algorithms cannot efficiently
address the situation where some rows and columns of base kernel
matrices are absent. This paper proposes two simple yet effective
algorithms to address this issue. Different from existing approaches
where incomplete kernel matrices are firstly imputed and a standard
MKC algorithm is applied to the imputed kernel matrices, our first
algorithm integrates imputation and clustering into a unified learning
procedure. Specifically, we perform multiple kernel clustering directly
with the presence of incomplete kernel matrices, which are treated
as auxiliary variables to be jointly optimized. Our algorithm does not
require that there be at least one complete base kernel matrix over all
the samples. Also, it adaptively imputes incomplete kernel matrices and
combines them to best serve clustering. Moreover, we further improve
this algorithm by encouraging these incomplete kernel matrices to mutu-
ally complete each other. The three-step iterative algorithm is designed
to solve the resultant optimization problems. After that, we theoretically
study the generalization bound of the proposed algorithms. Extensive
experiments are conducted on 13 benchmark data sets to compare
the proposed algorithms with existing imputation-based methods. Our
algorithms consistently achieve superior performance and the improve-
ment becomes more significant with increasing missing ratio, verifying
the effectiveness and advantages of the proposed joint imputation and
clustering.

Index Terms—multiple kernel clustering, multiple view learning, incom-
plete kernel learning
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1 INTRODUCTION

THe recent years have seen many effort devoted
to designing effective and efficient multiple kernel

clustering (MKC) algorithms [1]–[5]. They aim to opti-
mally combine a group of pre-specified base kernels to
perform data clustering. For example, the work in [1]
proposes to find the maximum margin hyperplane, the
best cluster labeling, and the optimal kernel simulta-
neously. A novel optimized kernel k-means algorithm
is presented in [2] to combine multiple data sources
for clustering analysis. In [3], the kernel combination
weights are allowed to adaptively change to capture
the characteristics of individual samples. Replacing the
squared error in k-means with an `2,1-norm based one,
the work in [4] develops a robust multiple kernel k-
means (MKKM) algorithm that simultaneously finds the
best clustering labels and the optimal combination of k-
ernels. Observing that existing MKKM algorithms do not
sufficiently consider the correlation among base kernels,
the work in [5] designs a matrix-induced regularization
to reduce the redundancy and enhance the diversity
of the selected kernels. These MKC algorithms have
been applied to various applications and demonstrated
attractive clustering performance [6]–[8].

One underlying assumption commonly adopted by
the above-mentioned MKC algorithms is that all of the
base kernels are complete, i.e., none of the rows or
columns of any base kernel shall be absent. In some prac-
tical applications such as Alzheimer’s disease prediction
[9] and cardiac disease discrimination [10], however, it
is not uncommon to see that some views of a sample
are missing, and this causes the corresponding rows and
columns of related base kernels unfilled. The presence of
incomplete base kernels makes it difficult to utilize the
information of all views for clustering. A straightforward
remedy may firstly impute incomplete kernels with a
filling algorithm and then perform a standard MKC
algorithm with the imputed kernels. Some widely used
filling algorithms include zero-filling, mean value filling,
k-nearest-neighbor filling and expectation-maximization
(EM) filling [11]. Recently, more advanced imputation
algorithms have been developed [12]–[15]. The work in
[12] constructs a full kernel matrix for an incomplete
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view with the help of the other complete view (or
equally, base kernel). By exploiting the connections of
multiple views, the work in [13] proposes an algorith-
m to accomplish multi-view learning with incomplete
views, where different views are assumed to be generat-
ed from a shared subspace. In [15], a multi-incomplete-
view clustering algorithm is proposed. It learns laten-
t feature matrices for all the views and generates a
consensus matrix so that the difference between each
view and the consensus is minimized. In addition, by
modelling both within-view and between-view relation-
ships among kernel values, an approach is proposed
in [14] to predict missing rows and columns of a base
kernel. Though demonstrating promising clustering per-
formance in various applications, the above “two-stage”
algorithms share a drawback that they disconnect the
processes of imputation and clustering, and this prevents
the two learning processes from negotiating with each
other to achieve the optimal clustering. Can we design a
clustering-oriented imputation algorithm to enhance a kernel
for clustering?

To address this issue, we propose an absent multiple
kernel k-means algorithm that integrates imputation and
clustering into a single optimization procedure. In our
algorithm, the clustering result at the last iteration guides
the imputation of absent kernel elements, and the latter
is in turn used to conduct the subsequent clustering.
These two procedures are alternatively performed until
convergence. By this way, the imputation and clustering
processes are seamlessly connected, with the aim to
achieve better clustering performance. Though being
theoretically elegant, we also observe that this algorithm
does not sufficiently consider that the imputation of each
kernel could benefit from the other kernel matrices, even
though they may be incomplete. As a result, we further
improve the proposed multiple kernel k-means with in-
complete kernels by explicitly allowing these incomplete
kernel matrices to mutually impute each other. Both
optimization objectives of the proposed absent multiple
kernel clustering algorithms are carefully designed and
two three-step alternative algorithms are developed to
solve the resultant optimization problems, respective-
ly. Extensive experimental study is carried out on 13
multiple kernel learning (MKL) benchmark data sets
to evaluate the clustering performance of the proposed
algorithm. As indicated, the proposed multiple kernel
k-means algorithm with incomplete kernels (MKKM-IK)
significantly outperforms existing two-stage imputation
methods, and the improvement is particularly significant
at high missing ratios, which is desirable. Meanwhile, we
observe that the other proposed variant, i.e., MKKM-
IK with mutual kernel completion (MKKM-IK-MKC),
further improves the clustering performance of MKKM-
IK. It is expected that the simplicity and effectiveness
of these clustering algorithms will make them a good
option to be considered for practical applications where
incomplete views or kernel matrices are encountered.

This work is a substantially extended version of our

original conference paper [16]. Its significant improve-
ment over the previous one can be summarized as
follows: (1) We design a new algorithm, termed MKKM-
IK-MKC, by incorporating the kernel reconstruction into
existing MKKM-IK, and develop an iterative algorithm
to efficiently solve the resultant optimization problem.
Moreover, the newly proposed MKKM-IK-MKC signifi-
cantly outperforms MKKM-IK proposed in the previous
paper [16]. (2) We provide a theoretical explanation on
why utilizing the same kernel coefficients in the kernel
reconstruction and the combined kernel for clustering
by revealing its connection with kernel alignment max-
imization. (3) We theoretically study the generalization
bound of the proposed MKKM-IK and MKKM-IK-MKC
on test data. (4) We design a toy data experiment to
explore the sensitivity of the proposed MKKM-IK-MKC
in the presence of noisy or uncorrelated kernels. (5)
We conduct comprehensive experiments to validate the
effectiveness of the proposed algorithms.

2 RELATED WORK

2.1 Kernel k-means clustering (KKM)

Let {xi}ni=1 ⊆ X be a collection of n samples, and
φ(·) : x ∈ X 7→ H be a feature mapping that maps
x onto a reproducing kernel Hilbert space H. The ob-
jective of kernel k-means clustering is to minimize the
sum-of-squares loss over the cluster assignment matrix
Z ∈ {0, 1}n×k, which can be formulated as the following
optimization problem,

minZ∈{0,1}n×k

∑n,k

i=1,c=1
Zic‖φ(xi)− µc‖22

s.t.
∑k

c=1
Zic = 1,

(1)

where nc =
∑n
i=1 Zic and µc =

1
nc

∑n
i=1 Zicφ(xi) are the

size and centroid of the c-th cluster.
The optimization problem in Eq. (1) can be rewritten

as the following matrix-vector form,

minZ∈{0,1}n×k Tr(K)− Tr(L
1
2 Z>KZL

1
2 ) s.t. Z1k = 1n,

(2)
where K is a kernel matrix with Kij = φ(xi)

>φ(xj), L =
diag([n−11 , n−12 , · · · , n−1k ]) and 1` ∈ R` is a column vector
with all elements being 1.

The variable Z in Eq. (2) is discrete, and this makes
the optimization problem difficult to solve. A common
approach is to relax Z to take real values. Specifically,
by defining H = ZL

1
2 and letting H take real values, a

relaxed version of the above problem can be obtained as

minH Tr
(
K(In −HH>)

)
s.t. H ∈ Rn×k, H>H = Ik,

(3)
where Ik is an identity matrix with size k×k. The optimal
H for Eq. (3) can be obtained by taking the eigenvectors
corresponding to the top k largest eigenvalues of K [17].
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2.2 Multiple kernel k-means clustering (MKKM)
In a multiple kernel setting, each sample x
has multiple feature representations defined
by {x(p)}mp=1. Each sample is represented as
φβ(x) = [β1φ1(x

(1))>, · · · , βmφm(x(m))>]>, where
{φp(·)}mp=1 is a group of feature mappings and
β = [β1, · · · , βm]> consists of the coefficients of
the m base kernels. These coefficients will be optimized
during learning. Based on the definition of φβ(x), a
kernel function can be expressed as

κβ(xi,xj) = φβ(xi)
>φβ(xj) =

∑m

p=1
β2
pκp(x

(p)
i ,x

(p)
j ).

(4)
By replacing the kernel matrix K in Eq. (3) with Kβ

computed via Eq. (4), the objective of MKKM can be
written as

min H,β Tr
(
Kβ(In −HH>)

)
s.t. H ∈ Rn×k, H>H = Ik, β

>1m = 1, βp ≥ 0, ∀p.
(5)

This problem can be solved by alternatively updating
H and β: i) Optimizing H given β. With the kernel
coefficients β fixed, H can be obtained by solving a
kernel k-means clustering optimization problem shown
in Eq. (3); ii) Optimizing β given H. With H fixed, β
can be optimized via solving the following quadratic
programming with linear constraints,

minβ
∑m

p=1
β2
pTr

(
Kp(In −HH>)

)
s.t. β>1m = 1, βp ≥ 0, ∀p.

(6)

As noted in [2], [3], using a convex combination of
kernels

∑m
p=1 βpKp to replace Kβ in Eq. (5) is not a

viable option, because this could make only one single
kernel be activated and all the others assigned with zero
weights. Other recent work using `2-norm combination
can be found in [18], [19].

3 THE PROPOSED ALGORITHMS

3.1 Formulation of Multiple Kernel k-means with In-
complete Kernels
Let sp (1 ≤ p ≤ m) denote the sample indices for which
the p-th view is present and K

(cc)
p be used to denote the

kernel sub-matrix computed with these samples. Note
that this setting is consistent with the literature, and it
is even more general since it does not require that there
be at least one complete view across all the samples, as
assumed in [12].

The absence of rows and columns from base ker-
nels makes clustering challenging. Existing two-stage
approaches first impute these base kernels and then
apply a conventional clustering algorithm to them. We
have the following two arguments. Firstly, although such
imputation is sound from the perspective of “general-
purpose”, it may not be an optimal option when it has
been known that the imputed kernels are used for a clus-
tering task. This is because for most, if not all, practical

tasks a belief holds that these employed base kernels or
views (when in their complete form) shall, more or less,
be able to serve the clustering task. However, such a
belief was not exploited by these two-stage approaches
as prior knowledge to guide the imputation process.
Secondly, from the perspective that the ultimate goal
is to appropriately cluster data, we shall try to directly
pursue the clustering result, by treating the absent kernel
entries as auxiliary unknowns during this course. In
other words, imputed kernels could be merely viewed
as the by-products of clustering.

These two arguments motivate us to seek a more
natural and reasonable manner to deal with the absence
in multiple kernel clustering. That is to perform imputa-
tion and clustering in a joint way: 1) impute the absent
kernels under the guidance of clustering; and 2) update
the clustering with the imputed kernels. By this way, the
above two learning processes can be seamlessly coupled and
they are allowed to negotiate with each other to achieve better
clustering. In specific, we propose the multiple kernel k-
means algorithm with incomplete kernels as follows,

minH, β, {Kp}mp=1
Tr
(
Kβ(In −HH>)

)
s.t. H ∈ Rn×k, H>H = Ik, β

>1m = 1, βp ≥ 0,

Kp(sp, sp) = K(cc)
p , Kp � 0, ∀p,

Kβ =
∑m

p=1
β2
pKp.

(7)
The only difference between the objective function in
Eq. (7) and that of traditional MKKM in Eq. (5) lies
at the incorporation of optimizing {Kp}mp=1. Note that
the constraint Kp(sp, sp) = K

(cc)
p is imposed to ensure

that Kp maintains the known entries during the course.
Though the model in Eq. (7) is simple, it admits the
following advantages: 1) Our objective function is more
direct and well targets the ultimate goal, i.e., clustering,
by integrating kernel completion and clustering into one
unified learning framework, where the kernel imputa-
tion is treated as a by-product; 2) Our algorithm works in
a MKL scenario [20], which is able to naturally deal with
a large number of base kernels and adaptively combine
them for clustering; 3) Our algorithm does not require
any base kernel to be completely observed, which is
however necessary for some of the existing imputa-
tion algorithms such as [12]. Besides, our algorithm is
parameter-free once the number of clusters to form is
specified. In [16], a three-step iterative algorithm with
proved convergence is designed to solve the optimiza-
tion problem in Eq. (7). Interested readers can refer to
[16] for the detail.

3.2 Incomplete MKKM with mutual kernel comple-
tion (MKKM-IK-MKC)
3.2.1 Formulation of Incomplete MKKM with mutual ker-
nel completion
The proposed MKKM-IK in subsection 3.1 which joint-
ly performs kernel completion and clustering is effec-
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tive, and achieves promising clustering performance as
shown in the experimental part. However, this algorithm
imputes each incomplete kernel by only utilizing the
clustering result H, while not sufficiently considering
that the available information from other kernels could
also contribute to its completion. Meanwhile, the opti-
mization of β in Eq. (7) is inherited from existing MKKM
framework, which could result in selecting mutually
redundant kernels and affect the diversity of information
sources utilized for clustering [5]. Both factors could
adversely affect the clustering performance.

To address the above issues, we aim to further im-
prove the proposed MKKM-IK by encouraging the in-
complete kernel matrices to mutually complete each
other. Besides utilizing the clustering result H to fill
each incomplete kernel matrix, the improved algorithm
proposes to impute each incomplete kernel matrix by
utilizing other incomplete kernel matrices. To this end,
we assume that each kernel Kp resides in the neigh-
borhood of a linear combination of other kernels, i.e.∑m
q=1,q 6=p βqKq , and minimize ‖Kp−

∑m
q=1,q 6=p βqKq‖F to

guide the completion of each kernel. It is worth pointing
out that the kernel coefficients in this reconstruction term
and in the combined kernel for clustering are the same.
By doing so, the reconstruction term naturally induces
a regularization on β which takes the correlation of
base kernels into consideration. Specifically, with given
{Kp}mp=1, the optimization w.r.t β is equivalent to

min
β

1

2
β>Aβ − f>β, s.t. β>1m = 1, βp ≥ 0,∀p, (8)

where M ∈ Rm×m with elements Mpq = Tr(KpKq) to
measure the correlation between each pair of kernel ma-
trices Kp and Kq , A = C�M and f = M1−diag(M), C
is a matrix with all elements m−2 and diagonal elements
m − 1, 1 ∈ Rm is column vector with all elements one,
and diag(M) denotes the diagonal elements of M.

Eq. (8) can be treated as a regularization on the kernel
combination weights for clustering:

• Its first term, i.e., β>Aβ is helpful to reduce the
redundancy and enforce the diversity of the selected
kernels. A larger Mpq means high correlation be-
tween Kp and Kq , and a smaller one implies that
their correlation is low. By minimizing this term,
the risk of simultaneously assigning βp and βq with
large weights can be greatly reduced if Kp and Kq

are highly correlated. Meanwhile, this regularization
increases the probability of jointly assigning βp and
βq with larger weights as long as Kp and Kq are
less correlated. As a consequence, this criterion is
beneficial to promoting the diversity of selected
kernels, and makes the pre-specified kernels more
effectively utilized, leading to improved clustering
performance. In fact, the theoretical implication of
incorporating this regularization can be well justi-
fied from the perspective of the following commonly

used kernel alignment criterion [5]

max
β,H

Tr
(
Kβ

(
HH>

))
‖HH>‖F ‖Kβ‖F

s.t. H>H = Ik, β>1m = 1, (9)

where Kβ =
∑m
p=1 β

2
pKp and ‖X‖F =

√
Tr (X>X).

Eq. (9) is equivalent to

max
β,H

Tr
(
Kβ

(
HH>

))√
β̂
>
Mβ̂

s.t. H>H = Ik, β>1m = 1, (10)

where β̂ = [β2
1 , · · · , β2

m]>.
The optimization in Eq. (10) is readily understood.
By looking into the numerator and denominator
of Eq. (10) in depth, we observe that: i) The neg-
ative of the numerator of kernel alignment, i.e.,
−Tr(KβHH>), is conceptually equivalent to the
objective of MKKM, i.e., Tr

(
Kβ(In −HH>)

)
; and

ii) The denominator, i.e., β̂
>

Mβ̂, is a regularization
on the kernel coefficients to prevent βp and βq from
being jointly assigned to a large weight if Mpq is
relatively high. From the perspective of regular-
ization, the effect of β>Mβ and β̂

>
Mβ̂ could be

treated as the same. Therefore, by using the same
kernel coefficients in the regularization term and in
the combined kernel for clustering, it is helpful to
reduce the redundancy and enforce the diversity of
the selected kernels for clustering.

• Its second term, i.e., −f>β, is helpful to reduce
the kernel weights of noisy or irrelevant kernels if
there are any such kernels. Note that our objective
is to maximize f>β with f = M1 − diag(M). If
Kp is a noisy or irrelavant kernel, its correlation
with other kernels will be low, leading to a small
fp with f = [f1, · · · , fm]>. In this case, maximizing
f>β with `1-norm constraint would lead to small
βp, as shown in Figure 7. Consequently, by using
the same kernel coefficients in the regularization
term and in the combined kernel for clustering, it is
helpful to reduce the weights of irrelevant kernels
for clustering.

According to the aforementioned analysis, we con-
clude that the kernel construction term of the proposed
MKKM-IK-MKC naturally induces a regularization term
on kernel coefficients for clustering, which is helpful to
better utilize the pre-specified kernel matrices, leading
to significantly improved clustering performance.

By integrating the above mutual kernel completion
term into the objective of MKKM-IK in Eq. (7), we
obtain the objective function of the proposed algorithm
as follows:

min
H,β,{Kp}mp=1

Tr
(
Kβ(In −HH>)

)
+
λ

2

m∑
p=1

∥∥∥Kp −
m∑

q=1
q 6=p

βqKq

∥∥∥2
F

s.t. H ∈ Rn×k, H>H = Ik, β
>1m = 1, βp ≥ 0,∀p

Kp(sp, sp) = K(cc)
p , Kp � 0, ∀p,

Kβ =
∑m

p=1
β2
pKp,

(11)
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where λ is a regularization parameter to trade-off the
MKKM clustering and mutual kernel completion.

Incorporating the regularization term makes the op-
timization problem more challenging. In the following,
we design a three-step alternative algorithm to solve the
optimization problem in Eq. (11).

3.2.2 Alternative optimization of MKKM-IK-MKC

We design a three-step alternative optimization algorith-
m to solve the problem in Eq. (11):

i) Optimizing H with fixed β and {Kp}mp=1. Given
β and {Kp}mp=1, the optimization in Eq. (11) w.r.t. H re-
duces to a conventional kernel k-means problem, which
can be efficiently solved by existing packages.

ii) Optimizing {Kp}mp=1 with fixed β and H. We
adopt a coordinate descend manner to optimize each
Kp. Specifically, all kernel matrices {Kq}mq=1,q 6=p are kept
as constant during optimizing Kp. Given β and H, the
optimization in Eq. (11) w.r.t. each Kp is equivalent to
the following optimization problem,

minKp

1

2
‖Kp −T‖2F s.t. Kp(sp, sp) = K(cc)

p , Kp � 0,

(12)
where T =

∑m
q=1
q 6=p

βp+βq−(m−2)βpβq

1+(m−1)β2
p

Kq −
β2
p(In−HH>)

λ(1+(m−1)β2
p)

. As
seen, the completion of each Kp is now dependent on
both the clustering result H and combination of the other
kernels. See the appendix for the detailed derivation.

Note that the optimization in Eq. (12) itself is a
semi-definite programming (SDP), which can be readily
solved by existing convex optimization toolbox such as
CVX [21]. However, the high time complexity of SDP
problems prevents it from being applied to medium or
large scale applications. To relieve the intensive compu-
tational burden, we propose to approximately optimize
Kp as follows,

minKp
‖Kp −T‖2F s.t. Kp(sp, sp) = K(cc)

p . (13)

The optimal solution in Eq. (13), denoted as K̂p, can
be readily obtained by filling the missing elements of
Kp with the corresponding ones of T. After obtaining
the solution of Eq. (13), we project it into the space
of positive semi-defined (PSD) matrices by performing
an eigen-decomposition to make Kp satisfy Kp � 0.
Specifically, let us denote K̂p = UΛU> as the eigen-
decomposition of K̂p. Then, the optimal PSD approx-
imation of K̂p is UΛ+U>, where Λ+ is obtained by
setting the negative diagonal elements of Λ+ as zero.
This technique is widely applied in optimization with
PSD constraints and usually produces excellent results.
The detailed derivation of optimizing {Kp}mp=1 can be
found in the appendix.

iii) Optimizing β with fixed H and {Kp}mp=1. Given
H and {Kp}mp=1, the optimization in Eq. (11) w.r.t. β is
the following quadratic programming with linear con-

straints,

min
β

1

2
β>
(
(A�M) +

2

λ
diag(d)

)
β − f>β

s.t. β>1m = 1, βp ≥ 0,∀p,
(14)

where d = [d1, · · · , dm]> is a column vector with
dp = Tr

(
Kp(In −HH>)

)
, A ∈ Rm×m with all entries

m − 2 and diagonal ones m − 1, M ∈ Rm×m mea-
sures the mutual correlation of each pairwise kernel via
Mpq = Tr (KpKq), f = M1m − diag (M) and 1m is a
m-dimension column vector with all elements one. As
seen from Eq. (14), the correlation among base kernels
has been incorporated via M, which is helpful to reduce
the redundancy and enhance the diversity of selected
kernels [5], leading to improved clustering performance.
The detailed derivation of optimizing β can be found in
the appendix.

Algorithm 1 The Proposed MKKM-IK-MKC

1: Input: {K(cc)
p }mp=1, {sp}mp=1, λ and ε0.

2: Output: H, β and {Kp}mp=1.
3: Initialize β(0) = 1m/m, {K(0)

p }mp=1 and t = 1.
4: repeat

5: K
(t)
β =

∑m
p=1

(
β
(t−1)
p

)2
K

(t−1)
p .

6: Update H(t) by solving kernel k-means with given K
(t)
β .

7: Update each K
(t)
p with H(t) and {K(t−1)

q }mq=1,q 6=p by Eq.
(12).

8: Update β(t) by solving Eq. (14) with given H(t) and
{K(t)

p }mp=1.
9: t = t+ 1.

10: until max{|β(t−1)
1 − β(t)

1 |, · · · , |β
(t−1)
m − β(t)

m |} ≤ ε0

In sum, our algorithm for solving Eq. (11) is outlined
in Algorithm 1. The computational complexity for the
proposed MKKM-IK-MKC is O(n3 + mn3 + m3) per
iteration, where n and m are the total number of whole
samples and base kernels, respectively. It is worth point-
ing out that Kp can be calculated in parallel since each of
them are independent. By this way, our algorithm shall
scale well to the number of kernels.

4 GENERALIZATION ANALYSIS OF THE PRO-
POSED ALGORITHMS

Generalization error for k-means clustering has been
studied by fixing the centroids obtained in the training
process and generalizing them for testing; see, e.g., [22],
[23]. In this section, we study how the centroids obtained
by the proposed MKKM-IK and MKKM-IK-MKC gener-
alize onto test data by deriving generalization bounds
via exploiting the reconstruction error.

Before defining the reconstruction error of k-means,
we need to model the absence of views. Specifically, let
the indicator function t(x(p)) denote the absence of the
p-th view of the observation x, i.e., if the p-th view is
observed, then t(x(p)) = 1; otherwise its value needs
to be optimized. Note that t(x(p)) is a random variable
depending on x, whose distribution is unknown.
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Let Ĉ = [Ĉ1, . . . , Ĉk] be the learned matrix composed
of the k centroids and β̂ the learned kernel weights by
the proposed MKKM-IK and MKKM-IK-MKC. Effective
k-means clustering algorithms should have the following
reconstruction error small

E
[

min
y∈{e1,...,ek}

∥∥∥∑m

p=1
β̂pt(x

(p))φp(x
(p))− Ĉy

∥∥∥2
H

]
, (15)

where e1, . . . , ek form the orthogonal bases of Rk. We
show how the proposed algorithms achieve this goal.

Let us define a function class first:

F =
{
f : x 7→ min

y∈{e1,...,ek}

∥∥∥∑m

p=1
βpt(x

(p))φp(x
(p))−Cy

∥∥∥2
H

| β>1m = 1, βp ≥ 0;C ∈ Hk;
(
t(x

(p)
i )φp(x

(p)
i )
)> (

t(x
(q)
j )φq(x

(q)
j )
)

≤ b, ∀p, q ∈ {1, . . . ,m},xi,xj ∈ X
}
,

(16)
where H stands for the multiple kernel Hilbert space.

Theorem 1. For any δ > 0, with probability at least 1 − δ,
the following holds for all f ∈ F :

E[f(x)] ≤ 1

n

n∑
i=1

f(xi) +
4
√
πmbG1n(β, t)

n
+

4
√
πmbG2n(β, t)

n

+

√
8πbk2√
n

+ 2b

√
log 1/δ

2n
,

(17)
where

G1n(β, t) , Eγ

[
sup
β,t

n∑
i=1

m∑
p,q=1

γipq
〈
βpt(x

(p)
i ), βqt(x

(q)
i )
〉]

, (18)

G2n(β, t) = Eγ

[
sup
β,t

n∑
i=1

k∑
c=1

m∑
p=1

γicpβpt(x
(p)
i )

]
, (19)

and γipq, γicp, i ∈ {1, . . . , n}, p, q ∈ {1, . . . ,m}, c ∈
{1, . . . , k} are i.i.d. Gaussian random variables with zero
mean and unit standard deviation.

Note that if all the views are accessible, we have
G1n(β, t) ≤ m2

√
n and G2n(β, t) ≤ mk

√
n. This implies

that with an ideal access to all views, the proposed
algorithms will have generalization bounds of order
O(
√
1/n). However, when the number of absent views

are increasing, the values of G1n(β, t) and G2n(β, t) will
become lager, making it more difficult to learn and
more training examples are required to secure a given
clustering accuracy.

According to Theorem 1, for any learned β̂, Ĉ, to
achieve a small

E[f(x)] = E

 min
y∈{e1,...,ek}

∥∥∥∥∥
m∑
p=1

β̂pt(x
(p))φp(x

(p))− Ĉy

∥∥∥∥∥
2

H

 ,
the corresponding 1

n

∑n
i=1 f(xi) needs to be as small as

possible. Assume that β and C are obtained by minimiz-
ing 1

n

∑n
i=1 f(xi) and that H is constructed according to

Eq. (3), we have
1

n

∑n

i=1
f(xi) ≤ Tr(Kβ(In −HH>)) (20)

TABLE 2: Datasets used in our experiments.

Dataset #Samples #Kernels #Classes

Cornell 195 2 5
Texas 187 2 5
Washington 230 2 5
Wisconsin 265 2 5

Flower17 1360 7 17
Flower102 8189 4 102

Caltech101-5 510 48 102
Caltech101-10 1020 48 102
Caltech101-15 1530 48 102
Caltech101-20 2040 48 102
Caltech101-25 2550 48 102
Caltech101-30 3060 48 102

CCV 6773 3 20

because the proposed algorithms pose a constraint
H>H = Ik which will make the corresponding cen-
troids non-optimal for minimizing 1

n

∑n
i=1 f(xi). This

means that the proposed objectives are upper bounds
of 1

n

∑n
i=1 f(xi). Thus, minimizing Tr(Kβ(In − HH>))

will ensure a small 1
n

∑n
i=1 f(xi) for good generalization,

which also verifies the good generalization ability of the
proposed algorithms. The detailed proof are provided in
the supplemental material due to space limit.

5 EXPERIMENTAL RESULT

5.1 Experimental settings
The proposed algorithm is experimentally evaluated
on 13 widely used MKL benchmark data sets shown
in Table 2. They are Cornell, Texas, Washington and
Wisconsin1, Oxford Flower17 and Flower1022, Columbia
Consumer Video (CCV)3 and Caltech1014. The original
features for the first four data sets are available. For
each of these datasets, we obtain two kernel matrices
by applying a linear kernel to the features of each view.
For CCV, we generate three base kernels by applying a
Gaussian kernel on its SIFT, STIP and MFCC features,
where the widths of the three Gaussian kernels are set
as the mean of all pairwise sample distances, respective-
ly. For Flower17, Flower102 and Caltech101 data sets,
all kernel matrices are pre-computed and can be pub-
licly downloaded from the above websites. Meanwhile,
Caltech101-5 means the number of samples belonging to
each cluster is 5, and so on.

We compare the proposed algorithms with several
commonly used imputation methods, including zero
filling (ZF), mean filling (MF), k-nearest-neighbor filling
(KNN) and the alignment-maximization filling (AF)
proposed in [12] and partial multi-view clustering
(PVC) [7]. The algorithms in [13], [15], [24] are not
incorporated into our experimental comparison since
they only consider the absence of input features while

1. http://lamda.nju.edu.cn/code_PVC.ashx
2. http://www.robots.ox.ac.uk/˜vgg/data/flowers/
3. http://www.ee.columbia.edu/ln/dvmm/CCV/
4. http://files.is.tue.mpg.de/pgehler/projects/iccv09/
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TABLE 1: Aggregated ACC and NMI comparison (mean±std) of different clustering algorithms on Cornell, Texas,
Washington and Wisconsin data sets.

Datasets MKKM+ZF MKKM+MF MKKM+KNN MKKM+AF PVC MKKM-IK (proposed)
[12] [7] ZF MF KNN MKC

ACC
Cornell 33.47± 1.03 33.05± 0.81 33.50± 1.11 35.84± 1.25 35.71± 1.21 36.66± 1.32 36.86± 1.24 36.33± 1.36 47.50± 1.21
Texas 35.84± 0.71 37.12± 1.11 34.67± 0.80 37.39± 0.99 38.69± 1.36 37.83± 0.88 38.55± 0.82 37.36± 0.85 43.48± 0.93

Washington 46.36± 1.08 43.66± 0.96 45.39± 1.13 47.12± 1.07 42.65± 0.94 46.71± 1.01 46.47± 1.06 46.37± 0.94 49.69± 0.81
Wisconsin 45.75± 1.06 43.93± 1.13 46.70± 0.93 45.75± 0.91 34.45± 0.86 44.89± 1.06 43.52± 1.03 44.47± 1.13 49.99± 0.88

NMI

Cornell 9.96± 0.57 9.34± 0.54 10.18± 0.83 12.57± 0.89 5.58± 0.66 13.25± 0.85 13.31± 0.93 12.92± 0.97 25.84± 1.19
Texas 9.87± 0.57 8.15± 0.62 9.22± 0.57 12.02± 0.78 3.42± 0.46 12.64± 0.81 12.38± 0.71 12.16± 0.63 20.81± 0.95

Washington 23.23± 1.03 22.49± 0.96 22.24± 1.17 23.36± 0.98 11.41± 0.60 22.62± 0.99 22.60± 0.79 22.42± 0.94 25.85± 0.81
Wisconsin 20.06± 0.79 20.12± 1.03 21.22± 0.75 19.88± 0.76 3.05± 0.30 19.21± 0.97 19.17± 0.93 19.05± 0.87 23.81± 0.82
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Fig. 1: ACC and NMI comparison with the variation of
missing ratios on Cornell dataset. For each given missing
ratio, the “incomplete patterns” are randomly generated
for 10 times and their averaged results are reported. The
results on other data sets are provided in the appendix
due to space limit.

not the rows/columns of base kernels. Compared with
[14], the imputation algorithm in [12] is much simpler
and more computationally efficient. Therefore, we
choose [12] as a representative algorithm to demonstrate
the advantages and effectiveness of joint optimization
on imputation and clustering. The widely used MKKM
[3] is applied with these imputed base kernels. These
two-stage methods are termed MKKM+ZF, MKKM+MF,
MKKM+KNN and MKKM+AF in this experiment,
respectively. We do not include the EM-based imputation
algorithm due to its high computational cost, even for
small-sized samples. The Matlab codes of kernel k-
means and MKKM are publicly downloaded from
https://github.com/mehmetgonen/lmkkmeans.
Additionally, we also provide the results of the proposed
MKKM-IK with three different initializations for
comprehensive comparison, including MKKM-IK+ZF,
MKKM-IK+MF and MKKM-IK+KNN. Meanwhile, the
proposed MKKM-IK with mutual kernel completion, is
termed MKKM-IK-MKC in comparison.

Following the literature [25], all base kernels are cen-
tered and scaled so that we have κp(xi,xi) = 1 for all
i and p. For all data sets, it is assumed that the true
number of clusters is known and it is set as the true
number of classes. To generate incomplete kernels, we
create the index vectors {sp}mp=1 as follows. We first
randomly select round(ε ∗ n) samples, where round(·)

denotes a rounding function. For each selected sample,
a random vector v = (v1, · · · , vm) ∈ [0, 1]m and a scalar
v0 (v0 ∈ [0, 1]) are then generated, respectively. The
p-th view will be present for this sample if vp ≥ v0
is satisfied. In case none of v1, · · · , vm can satisfy this
condition, we will generate a new v to ensure that at
least one view is available for a sample. Note that this
does not mean that we require a complete view across
all the samples. After the above step, we will be able to
obtain the index vector sp listing the samples whose p-th
view is present. The parameter ε, termed missing ratio
in this experiment, controls the percentage of samples
that have absent views, and it affects the performance of
the algorithms in comparison. Intuitively, the larger the
value of ε is, the poorer the clustering performance that
an algorithm can achieve. In order to show this point in
depth, we compare these algorithms with respect to ε.
Specifically, ε on all the data sets is set as [0.1 : 0.1 : 0.9].

The widely used clustering accuracy (ACC), normal-
ized mutual information (NMI) and purity are applied
to evaluate the clustering performance. For given xi (1 ≤
i ≤ n), let ci and yi be its predicted cluster label and
the provided ground-truth label, respectively. Let c =
[c1, · · · , cn]> and y = [y1, · · · , yn]> denote the predicted
cluster labels of a clustering algorithm and the provided
ground-truth labels of x1, x2, · · · , xn, respectively. The
clustering accuracy (ACC) is defined as follows,

ACC =

∑n
i=1 δ(yi,map(ci))

n
, (21)

where δ(u, v) is the delta function that equals one if
u = v and equals zero otherwise, and map(ci) is the
permutation mapping function that maps each cluster
label ci to the equivalent label from data. The best
mapping can be found by using the Kuhn-Munkres
algorithm [26]. The mutual information between y and
c, denoted as MI(y, c), is defined as follows:

MI(y, c) =
∑

yi∈y, c′j∈c
p(yi, c

′
j) log2

p(yi, c
′
j)

p(yi)p(c′j)
, (22)

where p(yi) and p(c′j) are the probabilities that a sample
arbitrarily selected from data belongs to the clusters yi
and c′j , respectively, and p(yi, c

′
j) is the joint probability

that the arbitrarily selected samples belongs to the clus-
ters yi and c′j at the same time. The normalized mutual
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Fig. 2: ACC and NMI comparison with the variation of missing ratios on Caltech101. For each given missing ratio,
the “incomplete patterns” are randomly generated for 10 times and their averaged results are reported.
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Fig. 3: ACC and NMI comparison with the variation of missing ratios on Flower17 and Flower102. For each given
missing ratio, the “incomplete patterns” are randomly generated for 10 times and their averaged results are reported.

TABLE 3: Aggregated ACC and NMI comparison (mean±std) of different clustering algorithms on Flower17 and
Flower102.

Datasets MKKM+ZF MKKM+MF MKKM+KNN MKKM+AF MKKM-IK (proposed)
[12] ZF KNN MF MKC

ACC
Flower17 37.33± 0.46 37.19± 0.43 38.11± 0.43 42.37± 0.46 43.84± 0.65 43.79± 0.57 43.90± 0.55 54.09± 0.49
Flower102 17.95± 0.12 17.90± 0.14 18.17± 0.16 18.37± 0.18 21.89± 0.16 21.90± 0.11 21.81± 0.14 28.07± 0.17

NMI

Flower17 37.63± 0.42 37.63± 0.40 38.46± 0.34 41.86± 0.30 42.98± 0.48 42.94± 0.52 42.98± 0.41 53.10± 0.19
Flower102 37.35± 0.09 37.37± 0.10 37.75± 0.12 37.64± 0.12 39.65± 0.10 39.67± 0.06 39.61± 0.16 45.29± 0.07

information (NMI) is then defined as follows:

NMI(y, c) =
MI(y, c)

max (H(y),H(c))
, (23)

where H(y) and H(c) are the entropies of y and c,
respectively.
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For all algorithms, we repeat each experiment for 50
times with random initialization to reduce the affect of
randomness caused by k-means, and report the best
result. Meanwhile, we randomly generate the “incom-
plete” patterns for 10 times in the above-mentioned
way and report the statistical results. The aggregated
ACC and NMI are used to evaluate the goodness of the
algorithms in comparison. Taking the aggregated ACC
for example, it is obtained by averaging the averaged
ACC achieved by an algorithm over different ε. All
experiments are conducted on a PC machine with an
Intel(R) Core(TM)-i7-5820, 3.3 GHz CPU and 16G RAM
in MATLAB environment.
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Fig. 4: ACC and NMI comparison with the variation of
missing ratios on CCV. For each given missing ratio,
the “incomplete patterns” are randomly generated for
10 times and their averaged results are reported.

5.2 Experimental results on WebKB datasets

We conduct experiments on four WebKB datasets, in-
cluding Cornell, Texas, Washington and Wisconsin, to
compare with PVC [7], which requires to access the
original features and is only able to handle two views
clustering tasks. Table 1 reports the aggregated ACC,
NMI and the standard deviation, where the one with
the highest performance is shown in bold. From Table
1, we observe that: i) The proposed MKKM-IK with
zero, mean and KNN initializations consistently achieve
comparable or better clustering performance among the
MKKM methods with absent kernels on Cornell, Texas
and Washington, and a little inferior to MKKM+KNN
on Wisconsin; ii) The proposed MKKM-IK-MKC further
significantly improves MKKM-IK and demonstrates the
best performance in all the data sets; and iii) The im-
provement of MKKM-IK-MKC over existing algorithms
is more significant. For example, it improves the second
best algorithm (PVC) by nearly five percentage points
on Texas in terms of aggregated clustering accuracy. We
also provide the ACC and NMI comparison of the above
algorithms with different missing ratios on Cornell, as
shown in Figure 1. These results are consistent with the
ones reported in Table 1. Meanwhile, we provide the
results on other three data sets in the appendix due to
space limit.

5.3 Experimental results on Caltech101

Caltech101 has been widely used as a benchmark dataset
to evaluate the performance of multiple kernel clustering
[5]. Here we also compare all the above-mentioned algo-
rithms on this data set where the number of samples for
each cluster varies in the range of 5, 10, · · · , 30. The PVC
algorithm is not included into comparison since it can
only handle two views clustering tasks and is required
to assess original features.

The clustering results of different algorithms with the
variation of missing ratio are reported in Figure 2. As can
be seen, compared with existing two-stage imputation
algorithms, three curves corresponding to our proposed
MKKM-IK with different initializations are on the top
when the missing ratio varies from 0.1 to 0.9 in terms of
ACC and NMI, indicating its superior clustering perfor-
mance. Meanwhile, the proposed MKKM-IK-MKC fur-
ther significantly improves the performance of MKKM-
IK. Taking the results in sub-figure (2c) for example.
The proposed MKKM-IK with different initializations
demonstrate the overall satisfying performance. How-
ever, MKKM-IK-MKC further significantly improves its
performance. Moreover, from the sub-figures (2a)-(2k),
we clearly see that the improvement of our algorithms
over the compared ones is more significant with the
increase of number of samples. The aggregated ACC
and NMI are also reported in Table 6. We again clearly
see the advantages of our algorithms over the other
ones in terms of ACC and NMI. These results have
well demonstrated the effectiveness and advantages of
incorporating kernel reconstruction in clustering.

5.4 Experimental results on Flower17 and Flow-
er102

We also compare the clustering performance of the
above-mentioned algorithms on flower17 and flower102
data sets, which have been widely used as benchmarks
in multiple kernel learning. The clustering results are
shown in Figure 3 and Table 3. Again, we observe
that the proposed MKKM-IK outperforms the traditional
imputation based algorithms, and MKKM-IK-MKC sig-
nificantly improves MKKM-IK. Taking the result in sub-
figure (3a) for example, the proposed MKKM-IK-MKC
exceeds the second best one by over ten percentage in
terms of clustering accuracy when the missing ratio is
0.1. This superiority is consistently kept with the varia-
tion of missing ratio. Similar results can also be found
from sub-figures (3c)-(3d). Meanwhile, the aggregated
ACC and NMI are also reported in Table 3, from which
we also identify the superiority of the proposed MKKM-
IK and MKKM-IK-MKC.

5.5 Experimental results on CCV

We finally evaluate the performance of the proposed
algorithms on CCV dataset, and report the results in
Figure 4 and Table 4. We once again observe that the
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TABLE 4: Aggregated ACC and NMI comparison (mean±std) of different clustering algorithms on CCV.

Datasets MKKM+ZF MKKM+MF MKKM+KNN MKKM+AF MKKM-IK (proposed)
[12] ZF KNN MF MKC

ACC
CCV 14.96± 0.17 14.99± 0.15 15.87± 0.19 16.13± 0.22 17.50± 0.26 17.69± 0.31 17.96± 0.21 18.96± 0.24

NMI

CCV 11.25± 0.12 11.34± 0.14 12.11± 0.17 12.25± 0.19 13.30± 0.18 13.54± 0.23 13.70± 0.15 15.75± 0.16
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Fig. 5: Kernel alignment between the original kernels and the imputed kernels by different algorithms under different
missing ratios. For each given missing ratio, the “incomplete patterns” are randomly generated for 10 times and
their averaged results are reported. The results on Caltech101-5, Caltech101-10 and Caltech101-15 are provided in
the appendix due to space limit.

TABLE 5: Aggregated alignment between the original kernels and the imputed kernels (mean±std) on all data sets.

Datasets MKKM+ZF MKKM+MF MKKM+KNN MKKM+AF MKKM-IK (proposed)
[12] ZF KNN MF MKC

Flower17 80.05± 0.09 80.03± 0.09 81.44± 0.06 86.49± 0.07 89.04± 0.07 89.04± 0.06 89.09± 0.06 81.42± 0.08
Flower102 75.55± 0.05 75.55± 0.05 73.34± 0.03 75.24± 0.05 77.75± 0.05 77.75± 0.05 78.07± 0.05 73.82± 0.18

Caltech101-5 74.02± 0.32 74.42± 0.27 75.50± 1.06 84.51± 0.16 82.46± 0.95 82.93± 0.92 84.36± 0.98 84.98± 0.10
Caltech101-10 76.16± 0.18 76.63± 0.15 77.67± 0.32 85.89± 0.18 88.08± 0.24 88.49± 0.24 89.93± 0.20 85.39± 0.05
Caltech101-15 74.99± 0.09 75.47± 0.11 77.38± 0.25 85.35± 0.13 88.85± 0.13 89.28± 0.15 90.61± 0.09 84.51± 0.05
Caltech101-20 75.73± 0.13 76.20± 0.12 78.68± 0.21 86.02± 0.10 89.95± 0.14 90.34± 0.14 91.59± 0.09 84.66± 0.02
Caltech101-25 75.12± 0.10 75.58± 0.11 78.46± 0.18 85.71± 0.12 89.91± 0.17 90.27± 0.18 91.47± 0.14 84.22± 0.04
Caltech101-30 75.59± 0.08 76.01± 0.07 79.09± 0.12 86.11± 0.08 90.47± 0.09 90.78± 0.07 91.91± 0.05 84.29± 0.03

CCV 83.34± 0.05 84.94± 0.05 80.85± 0.05 83.69± 0.05 84.86± 0.06 86.41± 0.06 87.25± 0.06 87.25± 0.06

proposed MKKM-IK and MKKM-IK-MKC significantly
outperforms the compared ones in terms of ACC and
NMI. Also, we observe that the proposed MKKM-IK-
MKC is a little inferior to MKKM-IK from sub-figure
(4a) when the missing ratio is over 0.6. This is because
there might be little useful information available for
mutual kernel completion when the missing ratio of
kernel matrices is relatively large.

In sum, we attribute the superiority of our algorithms
to: 1) the joint optimization on imputation and clus-
tering; and 2) the mutual kernel completion. On one
hand, the imputation is guided by the clustering results,
which makes the imputation more directly targeted at
the ultimate goal. On the other hand, this meaningful
imputation is beneficial to refine the clustering results.
These two learning processes negotiate with each other,
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TABLE 6: Aggregated ACC and NMI comparison (mean±std) of different clustering algorithms on Caltech101.

Datasets MKKM+ZF MKKM+MF MKKM+KNN MKKM+AF MKKM-IK (proposed)
[12] ZF KNN MF MKC

ACC
5 26.04± 0.34 25.60± 0.25 27.28± 0.30 29.02± 0.31 28.91± 0.20 28.91± 0.24 28.88± 0.38 35.81± 0.30
10 19.71± 0.19 19.67± 0.23 21.51± 0.20 22.53± 0.22 22.67± 0.18 22.83± 0.27 23.04± 0.18 31.65± 0.21
15 17.13± 0.24 17.09± 0.16 18.89± 0.13 20.34± 0.18 20.64± 0.15 20.59± 0.22 20.81± 0.18 30.49± 0.25
20 15.67± 0.12 15.65± 0.22 17.29± 0.16 18.89± 0.20 19.29± 0.11 19.37± 0.17 19.52± 0.12 30.11± 0.31
25 14.65± 0.18 14.58± 0.13 16.24± 0.13 17.71± 0.20 18.12± 0.15 18.16± 0.21 18.36± 0.21 29.38± 0.21
30 14.15± 0.12 14.05± 0.14 15.51± 0.16 17.13± 0.18 17.54± 0.28 17.60± 0.18 17.77± 0.12 28.40± 0.19

NMI

5 64.30± 0.16 63.93± 0.13 65.89± 0.21 66.53± 0.14 66.51± 0.12 66.50± 0.13 66.57± 0.21 70.10± 0.20
10 53.57± 0.11 53.63± 0.08 55.24± 0.11 55.70± 0.20 55.75± 0.15 55.80± 0.15 55.98± 0.14 61.52± 0.17
15 47.39± 0.13 47.38± 0.12 48.82± 0.11 49.70± 0.14 49.90± 0.10 49.93± 0.10 50.01± 0.15 57.11± 0.21
20 43.11± 0.10 43.08± 0.17 44.54± 0.12 45.58± 0.15 45.90± 0.14 45.94± 0.06 46.07± 0.11 54.29± 0.28
25 39.98± 0.10 39.88± 0.11 41.47± 0.09 42.45± 0.15 42.88± 0.15 42.88± 0.18 42.99± 0.12 51.96± 0.12
30 37.78± 0.08 37.66± 0.12 39.15± 0.13 40.29± 0.11 40.65± 0.14 40.74± 0.10 40.88± 0.11 49.81± 0.12

leading to improved clustering performance. In contrast,
MKKM+ZF, MKKM+MF, MKKM+KNN and MKKM+AF
algorithms do not fully take advantage of the connection
between the imputation and clustering procedures. This
could produce imputation that does not well serve the
subsequent clustering as originally expected, affecting
the clustering performance. Moreover, the proposed mu-
tual kernel completion well utilizes the available infor-
mation to complete kernels, which further boosts the
clustering performance.
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Fig. 6: Clustering accuracy and NMI comparison with
the variation of missing ratios on Flower17 with an
additional noisy kernel. For each given missing ratio,
the “incomplete patterns” are randomly generated for
10 times and their averaged results are reported.

5.6 The robustness of MKKM-IK-MKC to noisy or
irrelevant kernels

To explore the robustness of MKKM-IK-MKC to noisy
or irrelevant kernels, we design an additional toy data
experiment to explore what will happen if there are noisy
or irrelevant kernels in the kernel set. To do so, we
generate a random positive semi-definite (PSD) matrix
to simulate the kernel matrix obtained with an irrelevant
kernel function, and add it into the present kernel set
of Flower17 dataset as the last kernel matrix. After
that, we perform the aforementioned algorithms on this
dataset and report the results in Figure 6. As observed,

the proposed MKKM-IK-MKC significantly outperform-
s the compared ones when the missing ratio is less
than 0.5. When the missing ratio is greater than 0.6,
MKKM-IK-MKC demonstrates comparable or slightly
inferior performance when compared with the proposed
variants without kernel construction. This is because
the imputation from other kernel matrices may not be
accurate anymore when there are a significant number of
missing entries in these kernels, which in turn adversely
affects the resultant clustering. Meanwhile, according to
the aforementioned analysis, the kernel reconstruction
term is able to reduce the kernel weights of irrelevant
kernels, which is helpful to achieve robust clustering
performance in the presence of irrelevant kernels.

We report the kernel combination weights learned by
the aforementioned algorithms in Figure 7. As can be
seen from the sub-figure 7h, the kernel combination
weight corresponding to the noisy kernel (indexed by
8) learned by the proposed MKKM-IK-MKC is zero.
This clearly demonstrates the advantage of incorporating
kernel reconstruction into the objective. However, it is
not the case for the rest of algorithms in comparison.
The kernel weights corresponding to the last kernel
learned by these algorithms are considerably greater
than zero. This is because the kernel combination weight
βp is updated by Eq. (6) at each iteration, where ap =
Tr(Kp(I −HH>)) and ap is a limited positive number.
This makes its weight βp usually not zero. From this toy
data experiments, we observe that the proposed MKKM-
IK-MKC can automatically reduce the kernel weights
of noisy or irrelavent kernels and achieve promising
clustering performance.

5.7 Alignment Between the Original Kernels and the
Imputed Ones

Besides comparing the above-mentioned algorithms in
terms of clustering performance, we would like to gain
more insight on how close the imputed base kernels
(as a by-product of our algorithm) are to the ground-
truth, i.e., the original, complete base kernels. To do this,
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Fig. 7: Kernel coefficients learned by the aforementioned algorithms on Flower17 with an additional noisy kernel
(with missing ratio=0.1). The base kernel indexed by 8 is a noisy one. We also observe that the results with other
missing ratios are similar.

we calculate the alignment between the ground-truth
kernels and the imputed ones. The kernel alignment, a
widely used criterion to measure the similarity of two
kernel matrices, is used to serve this purpose [25]. We
compare the alignment resulted from our algorithm with
those from existing imputation algorithms. The results
under various missing ratios are shown in Figure 5. As
observed, the kernels imputed by the proposed MKKM-
IK align with the ground-truth kernels much better than
those obtained by the existing imputation algorithms.

In particular, MKKM-IK+KNN wins the MKKM+AF
by more than 9 percentage points on Caltech101 when
the missing ratio is 0.9, as shown in sub-figure (5a). The
aggregated alignment and the standard deviation are
reported in Table 5. We once again observe the significant
superiority of the proposed MKKM-IK to the compared
ones. These results indicate that our algorithm can not
only achieve better clustering performance, but is also
able to produce better imputation result by exploiting
the prior knowledge of “serve clustering”. It is worth
pointing out that the kernel matrices imputed by the
proposed MKKM-IK-MKC does not algin well with the
original ones on some datasets such as Flower17 and
Flower102, as shown in sub-figures (5d) and (5e). This
is because each incomplete kernel matrix is approxi-
mately optimized while the equality constraint in Eq.(12)
may not be strictly guaranteed to keep anymore. This
would reduce the alignment between the imputed kernel
matrices and the original ones. The alignment results
on Caltech101-5, Caltech101-10 and Caltech101-15 are
provided in the appendix due to space limit.

From the above experiments, we conclude that the
proposed algorithm: 1) effectively addresses the issue
of row/columns absence in multiple kernel clustering;
2) consistently achieves performance superior to the
comparable ones, especially in the presence of intensive
absence; and 3) can better recover the incomplete base
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Fig. 8: (a) The objective value of the proposed MKKM-IK at
each iteration. (b) The effect of λ on the proposed MKKM-IK-
MKC in terms of ACC on Flower17.

kernels by taking into account the goal of clustering. In
short, our algorithm well utilizes the connection between
imputation and clustering procedures and mutual kernel
completion, bringing forth significant improvements on
clustering performance.

5.8 Convergence and Parameter Sensitivity
The proposed MKKM-IK is theoretically guaranteed to
converge to a local minimum according to [27]. In our
experiments, we observe that the objective value of this
algorithm does monotonically decrease at each iteration
and that it usually converges in less than 20 iterations.
One examples of the evolution of the objective value on
Flower17 are demonstrated in sub-figure (8a).

Different from MKKM-IK which is parameter-free, the
newly proposed MKKM-IK-MKC introduces a param-
eter λ to balance the objective of incomplete MKKM
and kernel reconstruction. We conduct an additional
experiment to show the effect of this parameter on the
clustering performance. In sub-figure 8b, we plot the
ACC of MKKM-IK-MKC by varying λ from 2−15 to
215 respectively, where the results of MKKM-IK+ZF is
also incorporated as a baseline. From this figure, we
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observe that the newly proposed MKKM-IK-MKC sig-
nificantly outperforms MKKM-IK+ZF and shows stable
performance across a wide range of λ values.

We end up this section by discussing the conver-
gence of the proposed MKKM-IK-MKC. Though the
objective value of our algorithm cannot be theoretically
guaranteed to monotonically decrease at each iteration
due to the approximate optimization Kp in Eq.(12), we
experimentally observe that it usually takes less than 10
iterations to satisfy the stopping criterion and demon-
strates superior clustering performance.

6 CONCLUSION

While MKC algorithms have recently demonstrated
promising performance in various applications, they are
not able to effectively handle the scenario where base
kernels are incomplete. This paper proposes to jointly
optimize the kernel imputation and clustering to ad-
dress this issue. It makes these two learning procedures
seamlessly integrated to achieve better clustering. The
proposed algorithm effectively solves the resultant opti-
mization problem, and it demonstrates well improved
clustering performance via extensive experiments on
benchmark data sets, especially when the missing ratio
is high. In the future, we plan to further improve the
clustering performance by considering the correlations
of different base kernels [14]. Moreover, the proposed
algorithm is generic. We are going to extend it to other
MKC algorithms that work with kernel such as spectral
clustering [28]. Also, designing proper criteria for mutual
kernel completion to satisfy various requirements of
clustering tasks is interesting and worth exploring in
future.
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