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Abstract

Recently there are a considerable amount of work
devoted to the study of the algorithmic stability
and generalization for stochastic gradient descent
(SGD). However, the existing stability analysis
requires to impose restrictive assumptions on the
boundedness of gradients, smoothness and con-
vexity of loss functions. In this paper, we provide
a fine-grained analysis of stability and general-
ization for SGD by substantially relaxing these
assumptions. Firstly, we establish stability and
generalization for SGD by removing the existing
bounded gradient assumptions. The key idea is
the introduction of a new stability measure called
on-average model stability, for which we develop
novel bounds controlled by the risks of SGD iter-
ates. This yields generalization bounds depend-
ing on the behavior of the best model, and leads
to the first-ever-known fast bounds in the low-
noise setting using stability approach. Secondly,
the smoothness assumption is relaxed by con-
sidering loss functions with Holder continuous
(sub)gradients for which we show that optimal
bounds are still achieved by balancing computa-
tion and stability. To our best knowledge, this
gives the first-ever-known stability and generaliza-
tion bounds for SGD with non-smooth loss func-
tions (e.g., hinge loss). Finally, we study learning
problems with (strongly) convex objectives but
non-convex loss functions.

1. Introduction

Stochastic gradient descent (SGD) has become the
workhorse behind many machine learning problems. As
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an iterative algorithm, SGD updates the model sequentially
upon receiving a new datum with a cheap per-iteration cost,
making it amenable for big data analysis. There is a plethora
of theoretical work on its convergence analysis as an opti-
mization algorithm (e.g. Duchi et al., 2011; Lacoste-Julien
et al., 2012; Nemirovski et al., 2009; Rakhlin et al., 2012;
Shamir & Zhang, 2013; Zhang, 2004).

Concurrently, there are a considerable amount of work with
focus on its generalization analysis (Dieuleveut & Bach,
2016; Hardt et al., 2016; Lin et al., 2016; Rosasco & Villa,
2015; Ying & Zhou, 2016). For instance, using the tool of
integral operator the work (Dieuleveut & Bach, 2016; Lin &
Rosasco, 2017; Rosasco & Villa, 2015; Ying & Pontil, 2008)
studied the excess generalization error of SGD with the least
squares loss, i.e. the difference between the true risk of SGD
iterates and the best possible risk. An advantage of this
approach is its ability to capture the regularity of regression
functions and the capacity of hypothesis spaces. The results
were further extended in Lei & Tang (2018); Lin et al. (2016)
based on tools of empirical processes which are able to deal
with general convex functions even without a smoothness
assumption. The idea is to bound the complexity of SGD
iterates in a controllable manner, and apply concentration
inequalities in empirical processes to control the uniform
deviation between population risks and empirical risks over
a ball to which the SGD iterates belong.

Recently, in the seminal work (Hardt et al., 2016) the authors
studied the generalization bounds of SGD via algorithmic
stability (Bousquet & Elisseeff, 2002; Elisseeff et al., 2005)
for convex, strongly convex and non-convex problems. This
motivates several appealing work on some weaker stability
measures of SGD that still suffice for guaranteeing gener-
alization (Charles & Papailiopoulos, 2018; Kuzborskij &
Lampert, 2018; Zhou et al., 2018). An advantage of this sta-
bility approach is that it considers only the particular model
produced by the algorithm, and can imply generalization
bounds independent of the dimensionality.

However, the existing stability analysis of SGD is estab-
lished under the strong assumptions on the loss function
such as the boundedness of the gradient and strong smooth-
ness. Such assumptions are very restrictive which are not sat-
isfied in many standard contexts. For example, the bounded
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gradient assumption does not hold for the simple least-
squares regression, where the model parameter belongs to
an unbounded domain. The strong smoothness assumption
does not hold for the popular support vector machine. Fur-
thermore, the analysis in the strongly convex case requires
strong convexity of each loss function which is not true
for many problems such as the important problem of least
squares regression.

In this paper, we provide a fine-grained analysis of stability
and generalization for SGD. Our new results remove the
bounded gradient assumption for differentiable loss func-
tions and remove the strong smoothness assumption for
Lipschitz continuous loss functions, and therefore broaden
the impact of the algorithmic stability approach for general-
ization analysis of SGD. In summary, our main contributions
are listed as follows.

o Firstly, we study stability and generalization for SGD by
removing the existing bounded gradient assumptions. The
key is an introduction of a novel stability measure called on-
average model stability, whose connection to generalization
is established by using the smoothness of loss functions
able to capture the low risks of output models for better
generalization. An advantage of on-average model stability
is that the corresponding bounds involve a weighted sum
of empirical risks instead of the uniform Lipschitz constant.
The weighted sum of empirical risks can be bounded via
tools in analyzing optimization errors, which implies a key
message that optimization is beneficial to generalization.
Furthermore, our stability analysis allows us to develop
generalization bounds depending on the risk of the best
model. In particular, we have established fast generalization
bounds O(1/n) for the setting of low noises, where n is
the sample size. To our best knowledge, this is the first fast
generalization bound of SGD based on stability approach in
a low-noise setting.

e Secondly, we consider loss functions with their
(sub)gradients satisfying the Holder continuity which is
a much weaker condition than the strong smoothness in
the literature. Although stability decreases by weakening
the smoothness assumption, optimal generalization bounds
can be surprisingly achieved by balancing computation and
stability. In particular, we show that optimal generalization
bounds can be achieved for the hinge loss by running SGD
with O(n?) iterations. Fast learning rates are further derived
in the low-noise case.

e Thirdly, we study learning problems with (strongly) con-
vex objectives but non-convex individual loss functions.
The nonconvexity of loss functions makes the correspond-
ing gradient update no longer non-expansive, and therefore
the arguments in Hardt et al. (2016) do not apply. We bypass
this obstacle by developing a novel quadratic inequality of
the stability using only the convexity of the objective, which

shows that this relaxation affects neither generalization nor
computation.

The paper is structured as follows. We discuss the related
work in Section 2 and formulate the problem in Section 3.
The stability and generalization for learning with convex
loss functions is presented in Section 4. In Sections 5 and 6,
we consider problems with relaxed convexity and relaxed
strong convexity, respectively. We conclude the paper in
Section 7.

2. Related Work

In this section, we discuss related work on algorithmic sta-
bility, stability of stochastic optimization algorithms and
generalization error of SGD.

Algorithmic Stability. The study of stability can be dated
back to Rogers & Wagner (1978). A modern framework
of quantifying generalization via stability was established
in the paper (Bousquet & Elisseeff, 2002), where a con-
cept of uniform stability was introduced and studied for
empirical risk minimization (ERM) in the strongly convex
setting. This framework was then extended to study ran-
domized learning algorithms (Elisseeff et al., 2005), trans-
fer learning (Kuzborskij & Lampert, 2018) and privacy-
preserving learning (Dwork & Feldman, 2018), etc. The
interplay between various notions of stability, learnability
and consistency was further studied (Rakhlin et al., 2005;
Shalev-Shwartz et al., 2010). The power of stability anal-
ysis is especially reflected by its ability in deriving opti-
mal generalization bounds in expectation (Shalev-Shwartz
et al., 2010). Very recently, almost optimal high-probability
generalization bounds were established via the stability ap-
proach (Bousquet et al., 2019; Feldman & Vondrak, 2018;
2019). In addition to the notion of uniform stability men-
tioned above, various other notions of stability were recently
introduced, including uniform argument stability (Liu et al.,
2017) and hypothesis set stability (Foster et al., 2019).

Stability of Stochastic Optimization Algorithms. In the
seminal paper (Hardt et al., 2016), the co-coercivity of gra-
dients was used to study the uniform stability of SGD in
convex, strongly convex and non-convex problems. The uni-
form stability was relaxed to a weaker notion of on-average
stability (Shalev-Shwartz et al., 2010), for which the corre-
sponding bounds of SGD can capture the impact of the risk
at the initial point (Kuzborskij & Lampert, 2018) and the
variance of stochastic gradients (Zhou et al., 2018). For non-
convex learning problems satisfying either a gradient domi-
nance or a quadratic growth condition, pointwise-hypothesis
stabilities were studied for a class of learning algorithms that
converge to global optima (Charles & Papailiopoulos, 2018),
which relaxes and extends the uniform stability of ERM un-
der strongly convex objectives (Bousquet & Elisseeff, 2002).
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A fundamental stability and convergence trade-off of itera-
tive optimization algorithms was recently established, where
it was shown that a faster converging algorithm can not be
too stable, and vice versa (Chen et al., 2018). This together
with some uniform stability bounds for several first-order
algorithms established there, immediately implies new con-
vergence lower bounds for the corresponding algorithms.
Algorithmic stability was also established for stochastic gra-
dient Langevin dynamics with non-convex objectives (Li
et al., 2020; Mou et al., 2018) and SGD implemented in a
stagewise manner (Yuan et al., 2019).

Generalization Analysis of SGD. A framework to study
the generalization performance of large-scale stochastic op-
timization algorithms was established in Bousquet & Bottou
(2008), where three factors influencing generalization be-
havior were identified as optimization errors, estimation
errors and approximation errors. Uniform stability was used
to establish generalization bounds O(1/4/n) in expectation
for SGD for convex and strongly smooth cases (Hardt et al.,
2016). For convex and nonsmooth learning problems, gen-
eralization bounds O(n~3) were established based on the
uniform convergence principle (Lin et al., 2016). An inter-
esting observation is that an implicit regularization can be
achieved without an explicit regularizer by tuning either the
number of passes or the step sizes (Lin et al., 2016; Rosasco
& Villa, 2015). For the specific least squares loss, optimal
excess generalization error bounds (up to a logarithmic fac-
tor) were established for SGD based on the integral operator
approach (Lin & Rosasco, 2017; Pillaud-Vivien et al., 2018).
The above mentioned generalization results are in the form
of expectation. High-probability bounds were established
based on either an uniform-convergence approach (Lei &
Tang, 2018) or an algorithmic stability approach (Feldman
& Vondrak, 2019). A novel combination of PAC-Bayes and
algorithmic stability was used to study the generalization
behavior of SGD, a promising property of which is its appli-
cations to all posterior distributions of algorithms’ random
hyperparameters (London, 2017).

3. Problem Formulation

Let S = {z1,...,2,} be a set of training examples inde-
pendently drawn from a probability measure p defined over
a sample space Z = X x ), where X C R? is an input
space and ) C R is an output space. Our aim is to learn
a prediction function parameterized by w € Q C R to
approximate the relationship between an input variable x
and an output variable y. We quantify the loss of a model w
on an example z = (z,y) by f(w;z). The corresponding
empirical and population risks are respectively given by

n

Fs(w)=%2f(w;zi) and F(w) = E.[f(w;2)].

i=1

Here we use E,[-] to denote the expectation with respect
to (w.r.t.) z. In this paper, we consider stochastic learning
algorithms A, and denote by A(S) the model produced by
running A over the training examples S.

We are interested in studying the excess generalization error
F(A(S)) — F(w*), where w* € arg minyeq F(w) is the
one with the best prediction performance over 2. It can be
decomposed as

Es a[F(A(S))-F(w")] =Es a[F(A(S))—Fs(A(S))]
+Es a[Fs(A(S)) — Fs(w*)]. (3.1)

The first term is called the estimation error due to the ap-
proximation of the unknown probability measure p based
on sampling. The second term is called the optimization
error induced by running an optimization algorithm to min-
imize the empirical objective, which can be addressed by
tools in optimization theory. A popular approach to control
estimation errors is to consider the stability of the algorithm,
for which a widely used stability measure is the uniform
stability (Elisseeff et al., 2005; Hardt et al., 2016).

Definition 1 (Uniform Stability). A stochastic algorithm A
is e-uniformly stable if for all training datasets S, S € Z"
that differ by at most one example, we have

supEa[f(A(S);2) - FAS);2)] <e. (32

The celebrated relationship between generalization and uni-
form stability is established in the following lemma (Hardt
et al., 2016; Shalev-Shwartz et al., 2010).

Lemma 1 (Generalization via uniform stability). Let A be
e-uniformly stable. Then

|Esa[Fs(A(S)) — F(A(9))]| < e

Throughout the paper, we restrict our interest to a specific
algorithm called projected stochastic gradient descent. It
is worth mentioning that our main results in Section 4 hold
also when Q) = R, i.e., no projections.

Definition 2 (Projected Stochastic Gradient Descent). Let
Q C R4 and TI, denote the projection on 2. Let wy =0 €
R? be an initial point and {1, }; be a sequence of positive
step sizes. Projected SGD updates models by

w1 = o (we — n0f (wi; 2,)), (3.3)

where O f (wy, z;,) denotes a subgradient of f w.r.t. the first
argument and i, is independently drawn from the uniform
distribution over {1,...,n}.

Note if f is differentiable, then 0 f denotes the gradient of
f w.rt. the first argument. We say a function g : R? — R is
o-strongly convex if

9(w) > g(W) + (w — W,09(W)) + Z||w — W[} (3.4)
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for all w,w € RY, where (,-) denotes the inner product
and ||w||2 denotes the lo norm of w = (wy, ..., wy), 1

w2 = (20, w? )2 If (3.4) holds with o = 0, then we

say g is convex. We denote B = B if there are absolute
constants ¢; and ¢ such that ¢c; B < B < ¢ B.

4. Stability with Convexity

An essential assumption to establish the uniform stability of
SGD is the uniform Lipschitz continuity (boundedness of
gradients) of loss functions as follows (Bousquet & Elisseeff,
2002; Charles & Papailiopoulos, 2018; Hardt et al., 2016;
Kuzborskij & Lampert, 2018; Zhou et al., 2018).

Assumption 1. We assume ||0f(w;2)||2 < G forall w €
Qand z € Z.

Unfortunately, the Lipschitz constant GG can be very large
or even infinite for some learning problems. Consider
the simple least squares loss f(w;z) = L((w,z) —
y)? with the gradient df(w;2) = ((w,2) — y)z. In
this case the G-Lipschitzness of f requires to set G =
SUDwcq SUP, ¢z ||((W, ) — y)x||2, which is infinite if € is
unbounded. As another example, the Lipschitz constant of
deep neural networks can be prohibitively large. In this case,
existing stability bounds fail to yield meaningful general-
ization bounds. Furthermore, another critical assumption in
the literature is the L-smoothness on f, i.e. for any z and
w,w € R?

HBf(W,Z)—@f(\?V,Z)HZ < L|lw — w||s. 4.1)
In this section, we will remove the boundedness assumption
on the gradients for differentiable loss functions, and estab-
lish stability and generalization only under the assumption
where loss functions have Holder continuous (sub)gradients—
a condition much weaker than the strong smoothness (Lei
et al., 2018; Nesterov, 2015; Ying & Zhou, 2017). Note that
the loss functions can be non-differentiable if o = 0.
Definition 3. Let L > 0, « € [0,1]. We say 9f is («, L)-
Holder continuous if for all w, w € R% and z € Z,

[0 (w,2) = 0f (%, 2)||, < Lllw = W[3.  (4.2)
If (4.2) holds with o = 1, then f is smooth as defined by
(4.1). If (4.2) holds with o = 0, then this amounts to saying
that f is Lipschitz continuous as considered in Assumption
1. Examples of loss functions satisfying Definition 3 include
the g-norm hinge loss f(w;z) = (max(0,1—y(w,z)))"
for classification and the ¢-th power absolute distance loss
f(w; z) = |ly—(w, z)|? for regression (Steinwart & Christ-
mann, 2008), whose (sub)gradients are (¢— 1, C')-Holder
continuous for some C' > 0if ¢ € [1,2]. If ¢ = 1, we get
the hinge loss and absolute distance loss with wide applica-
tions in machine learning and statistics.

4.1. On-average model stability

The key to remove the bounded gradient assumption and the
strong smoothness assumption is the introduction of a novel
stability measure which we refer to as the on-average model
stability. We use the term “on-average model stability” to
differentiate it from on-average stability in Kearns & Ron
(1999); Shalev-Shwartz et al. (2010) as we measure stability
on model parameters w instead of function values. Intu-
itively, on-average model stability measures the on-average
sensitivity of models by traversing the perturbation of each
single coordinate.

Definition 4 (On-average Model Stability). Let S =
{#1,...,2zn} and S = {Z,...,%,} be drawn indepen-
dently from p. For any i = 1,...,n, define S® =
{z1,.-+42i—1, Zi, Zi+1,- - -, Zn } as the set formed from S
by replacing the i-th element with z;. We say a randomized
algorithm A is ¢; on-average model e-stable if

MA[ENA

and /5 on-average model e-stable if

WA[XNA (S <

ASD2] < e

In the following theorem, we build the connection between
generalization in expectation and the on-average model sta-
bilities to be proved in Appendix B. Although the gen-
eralization by ¢; on-average model stability requires As-
sumption 1, it is removed for {5 on-average model stabil-
ity. We introduce a free parameter 7y to tune according
to the property of problems. Note we require a convex-
ity assumption in Part (c) by considering non-smooth loss
functions. Let co1 = (1 + 1/a)ﬁLﬁ if & > 0 and
Ca = sup, ||0f(0;2)||l2 + Lifa=0.

Theore_m 2 (Generalization via Model Stability). Let S, S
and S be constructed as Definition 4. Let ~ > 0.

(a) Let A be {1 on-average model e-stable and Assumption
1 hold. Then

[Es,a [Fs(A(S)) — F(A(S))]| < Ge.

(b) If for any z, the function w — f(w; z) is nonnegative
and L-smooth, then

%AWM@»Jumaﬂsgmﬂwamaﬂ

—A(S)II3]-
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(c) If for any z, the function w — f(w; z) is nonnegative,
convex and w — Of(w; z) is («, L)-Hélder continu-
ous with « € [0, 1], then

Es.a [F(A(S)) - Fs(A(S))] < %ES,A [P (A9)]

ng Eg5,4[14(5) = A(S)I].

Remark 1. We explain here the benefit of /5 on-average
model stability. If A is 5 on-average model e-stable, then

we take v = 1 /2LE[Fs(A(S))] /€ in Part (b) and derive

E[F(A(S))—Fs(A(S))] < Le?/2+4/2LE[Fs(A(S))]e.

In particular, if the output model has a small empirical
risk in the sense of E[F5(A(S))] = O(1/n), we derive
E[F(A(S)) — Fs(A(S))] = O(e* + ¢/y/n). That is, our
relationship between the generalization and ¢, on-average
stability allows us to exploit small risk of output model to get
a generalization bound with an improved dependency on the
stability measure €. As a comparison, the discussions based
on uniform stability (Lemma 1) and the #; on-average model
stability (Part (a)) only show E[F(A(S)) — Fs(A(S))] =
O(e), which fail to exploit the low-noise condition. We can
also take v = ca,1 (E[F(A(S))]) e /€ in part (c) to derive

B[P(A()) ~ Fs(A())] = O(c(BIF(A(S))]) 7).

The above equation can be written as an inequality of
E[F(A(S)) — Fs(A(S))] (using the sub-additivity of ¢ —
tTHa ), from which we derive

E[F(A(S))—Fs(A(S))] zO(elJf%f(E[FS(A(S))])ﬁ)_

If E[Fs(A(S))] is small, this also implies an improved de-
pendency of the generalization bound on e.

4.2. Strongly smooth case

To justify the effectiveness of the on-average model stability,
we first consider its application to learning with smooth loss
functions. We first study stability and then generalization.

Stability bounds. The following theorem to be proved
in Appendix C.1 establishes on-average model stability
bounds in the smooth setting. A key difference from the
existing stability bounds is that the uniform Lipschitz con-
stant G is replaced by empirical risks. Since we are min-
imizing empirical risks by SGD, it is expected that these
risks would be significantly smaller than the uniform Lips-
chitz constant. Actually we will control the weighted sum
of empirical risks by tools in analyzing optimization er-
rors. In the optimistic case with F(w*) = 0, we expect

Eg 5 4[Fs(wi)] = O(1/t), and in this case the discussion
based on on-average model stability would imply signifi-
cantly better generalization bounds. The idea of introducing
a parameter p in (4.4) is to make (1 + p/n)* < e by setting
p = n/t, where e is the base of the nature logarithm.

Theorem 3 (Stability bounds). Assume for all z € Z, the
map w — f(w; z) is nonnegative, convex and L-smooth.
Let S, 5 and S be constructed as Definition 4. Let {w}
and {wgl)} be produced by (3.3) with n, < 2/L based on
S and S, respectively. Then for any p > 0 we have

SSA[ Z”WHl Wt+1H}

£ njESA[ Fs(wj)}. 4.3)

Jj=1

and

SSA[ Z”Wﬂrl Wt+1H:|

,1 t
1+p LZ 1+p/n t J -EsﬁA[Fs(Wj)].
j=1

(4.4)

Remark 2. Kuzborskij & Lampert (2018) developed an
interesting on-average stability bound O(Z Z;Zl 7;) un-
der the bounded variance assumption Eg . [[|0f(wy; 2) —
OF (wy; z)||3] < &* for all t. Although this bound success-
fully replaces the uniform Lipschitz constant by the milder
uniform variance constant &, the corresponding generaliza-
tion analysis still requires a bounded gradient assumption. A
nice property of the stability bound in Kuzborskij & Lampert
(2018) is that it depends on the quality of the initialization,
i.e., the stability increases if we start with a good model.
Our stability bound also enjoys this property. As we can
see from Theorem 3, the stability increases if we find good
models with small optimization errors in the optimization
process. This illustrates a key message that optimization is
beneficial to improve the generalization.

Remark 3. The stability bounds in Theorem 3 can be ex-
tended to the non-convex case. Specifically, let assumptions
of Theorem 3, except the convexity of w — f(w; z), hold.
Then for any p > 0 one gets (see Proposition C.3)

SSA[ Z”Wtﬂ Wt+1H:|
SSA[ ZHWt th)H}

8(1+p 1L
( Z)ntE&

(1 +p/n)(1 +n:L

+ A[FS(Wt)].
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This result improves the recurrence relationship in Hardt
et al. (2016) for uniform stability by replacing the uniform
Lipschitz constant with empirical risks.

Generalization bounds. We now establish generalization
bounds based on {5 on-average model stability. This ap-
proach not only removes a bounded gradient assumption,
but also allows us to fully exploit the smoothness of loss
functions to derive bounds depending on the behavior of the
best model w*. As we will see in Corollary 5, Theorem 4
interpolates between O(1/+/n) bound in the “pessimistic”
case (F(w*) > 0) and the O(1/n) bound in the “low-noise”
case (F(w*) = 0) (Reeve & Kabdn, 2020; Srebro et al.,
2010), which is becoming more and more interesting in
the deep learning era with possibly more parameters than
training examples. To our best knowledge, this is the first
optimistic bound for SGD based on a stability approach. Eq.
(4.6) still holds if F'(w*) = O(1/n). The proofs are given
in Appendix C.2.

Theorem 4 (Generalization bounds). Assume forall z € Z,
the function w — f(w; z) is nonnegative, convex and L-
smooth. Let {w} be produced by (3.3) with nonincreasing
step sizes satisfying n; < 1/(2L). If v > 1, then

Zt 177t
v Zt 17

( ZtT=1 WtWt)/ Zthl M-

Corollary 5. Assume for all z € Z, the function w +—
f(w; 2) is nonnegative, convex and L-smooth.

Es alF(wi))] ~ F(w*) = O( (1 + =) p(w)

where Wg} ) —

(a) Let {w} be produced by (3.3) with n, = c/NT <
1/(2L) for a constant ¢ > 0. If T < n, then

F(w*)+1
\/ﬁ

(b) Let {w} be produced by (3.3) withn, =n; < 1/(2L).
IfF(w*) =0and T < n, then

EsalF(wy))] — F(w*)

Es.alF(wi)] = F(w") = O ). @3

=0(1/n).
Remark 4. Based on the stability bound in Hardt et al.
(2016), we can show Eg 4 [F(wg))] — F(w*) decays as

T T
2G%Y, > niF(w*) 1)
n Z?:l Tt

from which one can derive the O(1/+/n) bound at best even
if F'(w*) = 0. The improvement of our bounds over (4.7)
is due to the consideration of on-average model stability

(4.6)

%))

+o(

bounds involving empirical risks (we use the same optimiza-
tion error bounds in these two approaches). Based on the
on-average stability bound in Kuzborskij & Lampert (2018),
one can derive a generalization bound similar to (4.7) with
G? replaced by G& (7 is the uniform variance constant in
Remark 2), which also could not yield a fast bound O(1/n)
if F(w*) =0.

Remark 5. We compare here our results with some fast
bounds for SGD. Some fast convergence rates of SGD were
recently derived for SGD under low noise conditions (Bass-
ily et al., 2018; Ma et al., 2018; Srebro et al., 2010) or
growth conditions relating stochastic gradients to full gra-
dients (Vaswani et al., 2019). The discussions there mainly
focused on optimization errors, which are measured w.r.t.
the iteration number ¢. As a comparison, our fast rates mea-
sured by n are developed for generalization errors of SGD
(Part (b) of Corollary 5), for which we need to trade-off
optimization errors and estimation errors by stopping at an
appropriate iteration number. Fast generalization bounds
are also established for the specific least squares based on
an integral operator approach (Dieuleveut et al., 2017; Lin
& Rosasco, 2017; Miicke et al., 2019; Pillaud-Vivien et al.,
2018). However, these discussions heavily depend on the
structure of the square loss and require capacity assumptions
in terms of the decay rate of eigenvalues for the associated
integral operator. As a comparison, we consider general loss
functions and do not impose a capacity assumption.

4.3. Non-smooth case

As a further application, we apply our on-average model
stability to learning with non-smooth loss functions, which
have not been studied in the literature.

Stability bounds. The following theorem to be proved in
Appendix D.1 establishes stability bounds. As compared
to (4.4), the stability bound below involves an additional

_2

term O(3" 4=17; "), which is the cost we pay by relax-
ing the smoothness condition to a Holder continuity of
(sub)gradients. It is worth mentioning that our stability
bounds apply to non-differentiable loss functions including
the popular hinge loss.

Theorem 6 (Stability bounds). Assume for all z € Z, the
map w — f(w; z) is nonnegative, convex and 0 f(w; 2)
is (v, L)-Hélder continuous with o € [0,1). Let S, S and
S be constructed in Definition 4. Let {w} and {ng)} be
produced by (3.3) based on S and S, respectively. Then

SSA[ Z||Wt+1 WtﬂH (ZT} O‘)
o(n~X( 1+t/n§i: ESA[ = wy)]).
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Generalization bounds. We now present generalization
bounds for learning by loss functions with Holder contin-
uous (sub)gradients, which are specific instantiations of a
general result (Proposition D.4) stated and proved in Ap-
pendix D.2.

Theorem 7 (Generalization bounds). Assume forall z € Z,
the function w +— f(w;z) is nonnegative, convex, and
Of (w; z) is (e, L)-Holder continuous with o € [0, 1). Let
{w}; be given by (3.3) withn; = cT'=%,0 € [0,1],¢ > 0.

(a) If « > 1/2, we can take 6 = 1/2 and T < n to derive
Es,alF(wi))] = F(w*) = O(n3).

3—3a

(b) If a < 1/2, we can take T = nite and § = 50y

derive ES’A[F(Wg}))] — F(w*) =0(n"2).

to

(c) If F(w*) = 0, we take T < nTe and 6 = @
to derive IES’A[F(W(TU)] — F(w*) = O(n~"%%).

Remark 6. Although relaxing smoothness affects stability

by introducing O(Z;Z1 n;fa ) in the stability bound, we
achieve a generalization bound similar to the smooth case
with a similar computation cost if & > 1/2. Fora < 1/2, a
minimax optimal generalization bound O(n*%) (Agarwal
et al., 2012) can be also achieved with more computation
costas T = ni¥a . In particular, if « = 0 we develop the op-
timal generalization bounds O(n~2) for SGD with T' =< n?
iterations. To our best knowledge, this gives the first gener-
alization bounds for SGD with non-smooth loss functions
(e.g., hinge loss) based on stability analysis. Analogous
to the smooth case, we can derive generalization bounds
better than O(n~ %) in the case with low noises. To our best
knowledge, this is the first optimistic generalization bound
for SGD with non-smooth loss functions.

Remark 7. We can extend our discussion to ERM. If Fl is
o-strongly convex and 0 f(w; z) is («, L)-Holder continu-
ous, we can apply the on-average model stability to show
(see Proposition D.6)

Es[F(A(S))—Fs(A(S))] = O(Es[F ¥ (A(S))] /(no)),

where A(S) = argmingcre Fs(w). This extends the
error bounds developed for ERM with strongly-smooth
loss functions (Shalev-Shwartz & Ben-David, 2014; Sre-
bro et al., 2010) to the non-smooth case, and removes the
G-admissibility assumption in Bousquet & Elisseeff (2002).
In a low-noise case with a small Eg [F(A(S))], the discus-
sion based on an on-average stability can imply optimistic
generalization bounds for ERM.

5. Stability with Relaxed Convexity

We now turn to stability and generalization of SGD for learn-
ing problems where the empirical objective Fig is convex

but each loss function f(w; z) may be non-convex. For sim-
plicity, we impose Assumption 1 here and use the arguments
based on the uniform stability. The proofs of Theorem 8
and Theorem 9 are given in Appendix E.1.

Theorem 8. Let Assumption 1 hold. Assume for all
z € Z, the function w — f(w;z) is L-smooth. Let
S =A{z,...,2,} and S = {Z1,...,2Zn} be two sets of
training examples that differ by a single example. Let {wy };
and {W}+ be produced by (3.3) based on S and S, respec-
tively. If for all S, Fs is convex, then

1 t t 2 1

= 21\ 2 nj Nz

(]EA [[[Wer1—Wisa HQ]) <4GCy z; *Fn QG(Ot Z; ;) ,
j= j=

where we introduce Cy = H%:l (1 + L2n§>.

Remark 8. The derivation of uniform stability bounds in
Hardt et al. (2016) is based on the non-expansiveness of the
operator w — w — 0 f(w; z), which requires the convexity
of w — f(w;z) for all z. Theorem 8 relaxes this con-
vexity condition to a milder convexity condition on Fig. If
Z;il 77]2- < 00, the stability bounds in Theorem 8 become

O(n~! 22:1 n; + n_%) since C; < oo0.

By the proof, Theorem 8 holds if the convexity condition
is replaced by E4 [(w; — Wy, 0Fs(w,) — OFs(Wy))| >
—CnEa[||lwi — W¢||3] for some C and all ¢ € N.

As shown below, minimax optimal generalization bounds
can be achieved for step sizes 7, = nt~¢ for all § €
(1/2,1) as well as the step sizes 1, < 1/+/T with T < n.

Theorem 9. Let Assumption 1 hold. Assume for all z € Z,
the function w — f(w;z) is L-smooth. Let {w}; be
produced by (3.3). Suppose for all S, Fg is convex.

(a) Ifny = mit=%,0 € (1/2,1), then

Es a[F(Wi)-F(w*) = 0 (n—1T1—9+n—% +T9—1).

1

IfT=n7%, then Eg 4[F(wi)|—F(w*) = O(n"3).

(b) If ny = c/\/Tfor some ¢ > 0 and T =< n, then
Es.alF(wy))] = F(w*) = O(n™%).

Example: AUC Maximization. We now consider a spe-
cific example of AUC (Area under ROC curve) maximiza-
tion where the objective function is convex but each loss
function may be non-convex. As a widely used method in
imbalanced classification () = {41, —1}), AUC maximiza-
tion was often formulated as a pairwise learning problem
where the corresponding loss function involves a pair of
training examples (Gao et al., 2013; Zhao et al., 2011). Re-
cently, AUC maximization algorithms updating models with
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a single example per iteration were developed (Liu et al.,
2018; Natole et al., 2018; Ying et al., 2016). Specifically,
AUC maximization with the square loss can be formulated
as the minimization of the following objective function

min F(w) := p(lfp)IE:[(1*""T($*i))2

min ly=1.5=—1]

(5.1)
where p = Pr{Y = 1} is the probability of a example being
positive. Let x; = E[X|Y = 1] and 2_ = E[X|Y = —1]
be the conditional expectation of X givenY = landY =
—1, respectively. It was shown that E;, [ f(w; z;,)] = F(w)
for all w € R4 (Natole et al., 2018, Theorem 1), where

fw;2)=(1—p)(w " (z—2)) Tjyer) +p(1-p)

—|—2(1—i—w—r (x— —x+))wa(pH[y:_1] —(1=p)Iy=1))

(W (@—22)) Ty 1 —p(1 - p) (W (2——24))".
(5.2)

An interesting property is that (5.2) involves only a single
example z. This observation allows Natole et al. (2018) to
develop a stochastic algorithm as (3.3) to solve (5.1). How-
ever, for each z, the function z — f(w; 2) is non-convex
since the associated Hessian matrix may not be positively
definite. It is clear that its expectation F' is convex.

6. Stability with Relaxed Strong Convexity
6.1. Stability and generalization errors

Finally, we consider learning problems with strongly convex
empirical objectives but possibly non-convex loss functions.
Theorem 10 provides stability bounds, while the minimax
optimal generalization bounds O(1/(on)) are presented in
Theorem 11. The proofs are given in Appendix F.

Theorem 10. Let Assumptions in Theorem 8 hold. Suppose
forall S C Z, Fg is og-strongly convex. Then, there exists
a constant to such that for SGD with n, = 2/((t + to)os)
we have

i) < £ )

Remark 9. Under the assumption w +— f(w,z) is
o-strongly convex and smooth for all z, it was shown
that Eg[||lwir1 — Wiqall2] = O(1/(no)) for n, =
O(1/(ot)) (Hardt et al., 2016). Indeed, this strong con-
vexity condition is used to show that the operator w —
w — Of (w3 z) is contractive. We relax the strong convex-
ity of f(w; z) to the strong convexity of Fg. Our stability
bound holds even if w — f(w; z) is non-convex. If ¢ < n,
then our stability bound coincides with the one in Hardt
et al. (2016) up to a constant factor.

Theorem 11. Let Assumption 1 hold. Assume for all z € Z,
the function w — f(w; z) is L-smooth. Suppose for all

S C Z, Fg is og-strongly convex. Then, there exists some
to such that for SGD withn, = 2/((t + to)os) and T < n
we have

EslF(wi))] — F(w*) = O(Es[1/(nos))),
where wS? = (S0, (t+to — 1)wy) / Sry (£ + o — 1).

6.2. Application: least squares regression

We now consider an application to learning with the least

squares loss, where f(w;2) = 1 ((w,z) — y)z. Let Q =

{w € R%: ||w|l2 < R}. In this case, (3.3) becomes
wirr = o (we — ne((We, @) — y1) 2e), (6.1)
where IIo(w) = min{R/||w||2, 1}w. Note that each indi-
vidual loss function f(wy; z;) is non-strongly convex. How-
ever, as we will show below, the empirical objective satisfies
a strong convexity on a subspace containing the iterates
{w¢}. Forany S = {z1,...,2,} let Cs = L 30 wyaf
be the empirical covariance matrix and o’ be the minimal
positive eigenvalue of Cs. Then it is clear from (6.1) that
{w} belongs to the range of C's. ! Let S C Z™ differ from
S by a single example. For simplicity, we assume S and S
differ by the first example and denote S = {21, 20, ..., 2, }.
We construct a set S = {0, z2,...,2,}. Let {w;}, {W;}
and {W;} be the sequence by (6.1) based on S, S and S,
respectively. Then our previous discussion implies that
w; — w; € Range(Cs),w; — w; € Range(Cg) for
all ¢ € N (Range(Cg) € Range(Cs),Range(Cg) C
Range(C73)), where we denote by Range(C) the range of a
matrix C. It follows that w, — w; and w; — W, are orthog-
onal to the kernel of Cg and C'z, respectively. Therefore,

(Wi — Wy, Cs(wy — Wy)) > o|lwe — w3,
(Wi — Wy, Cg(Wy — W) > 0| Wy — W[5

As we will see in the proof, Theorem 10 holds if only the
following local strong convexity holds, i.e.,

(Wi—Wy, OF (W) —0Fs(W,)) > og||lwi—W||3, Vt € N.

Therefore, we can apply Theorem 10 with S = S and
og = o to derive (note IFg(w) = Cow — = 3" | yix;)

E “| _ I ]<4G< 1 +1)
Wit] — W — |+ ).
A t+1 t+1ll2] < o Gt

A similar inequality also holds for E 4 [“‘X’t+1 — Wi ||2] ,
which together with the subadditivity of || - || immediately
gives the following stability bound on E 4[| W41 — Wit1]|2]-

'The range of C's is the linear span of 1, ..
given in Proposition F.1 in Appendix F.

., Tp. Details are
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Corollary 12. Let f(w;z) = 3 ((w,z) — y)2 and Q) =
{w € R?: |w||2 < R} for some R > 0. There exists an to
such that for (6.1) withn; = 2/(c's(j + to)) we have

Eallw = wil2] = O(

1 1
1y
Vn(t+to)oy nog

7. Conclusions

In this paper, we study stability and generalization of SGD
by removing the bounded gradient assumptions, and relax-
ing the smoothness assumption and the convexity require-
ment of each loss function in the existing analysis. We
introduce a novel on-average model stability able to capture
the risks of SGD iterates, which implies fast generaliza-
tion bounds in the low-noise case and stability bounds for
learning with even non-smooth loss functions. For all con-
sidered problems, we show that our stability bounds can
imply minimax optimal generalization bounds by balancing
optimization and estimation errors. We apply our results
to practical learning problems to justify the superiority of
our approach over the existing stability analysis. Our results
can be extended to stochastic proximal gradient descent,
high-probability bounds and SGD without replacement (de-
tails are given in Appendix G). In the future, it would be
interesting to study stability bounds for other stochastic op-
timization algorithms, e.g., Nesterov’s accelerated variants
of SGD (Nesterov, 2013).
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Appendix for “Fine-Grained Analysis of Stability and Generalization for
Stochastic Gradient Descent”

Yunwen Lei'? Yiming Ying3

A. Optimization Error Bounds

For a full picture of generalization errors, we need to address the optimization errors. This is achieved by the following
lemma. Parts (a) and (b) consider the convex and strongly convex empirical objectives, respectively (we make no assumptions
on the convexity of each f(-, z)). Note in Parts (c) and (d), we do not make a bounded gradient assumption. As an alternative,

we require convexity of f(-; z) for all z. An appealing property of Parts (c) and (d) is that it involves O(Z;Zl nszS(w))

instead of O(Z;zl 77?-), which is a requirement for developing fast rates in the case with low noises.

Our discussion on optimization errors requires to use a self-bounding property for functions with Holder continuous
(sub)gradients, which means that gradients can be controlled by function values. The case o = 1 was established in Srebro
etal. (2010). The case a € (0, 1) was established in Ying & Zhou (2017). The case o = 0 follows directly from Definition
3. Define

(A1)

Ja+1ja)TELEE ifa>0
ot sup, [|0f(0;z)||2 + L, ifa=0.

Lemma A.1. Assume forall z € Z, the map w > f(w; 2) is nonnegative, and w — 0 f (w; z) is («, L)-Hdlder continuous
with o € [0, 1]. Then for c, 1 defined as (A.1) we have

10f(w,2)||2 < canfTe (w,2), YweR: ze Z.
Lemma A.2. (a) Let {w;}; be produced by (3.3) and Assumption 1 hold. If Fg is convex, then for allt € N and w € ()

G2 Yy + ||wl3
EalFs(wi")] - Fg(w) < —=I=12 z

> 7
22]’:1 nj

)

1
where wé ) = (22:1 anj)/Z;ﬂ nj-

(b) Let Fg be og-strongly convex and Assumption 1 hold. Let to > 0 and {w:}; be produced by (3.3) with n; =
2/(os(t +to)). Then forallt € Nand w € Q

E4[Fs(w”)] — Fs(w) = O(1/(tos) + [|wl]|3/t?),

where w(® = (X! _1(j +to — 1)wy) /(G + to — 1),

(c) Assume for all z € Z, the function w — f(w; z) is nonnegative, convex and L-smooth. Let {w}; be produced by (3.3)
withn, < 1/(2L). If the step size is nonincreasing, then for all t € N and w € ) independent of the SGD algorithm A

t t
2 2
S 0 EalFs(w;) — Fs(w)] < (1/2+ L) [wil3 + 20 3" 12 Fs (w).
Jj=1 Jj=1
"Department of Computer Science, University of Kaiserslautern, Germany “School of Computer Science, University of Birmingham,
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Ying <yying@albany.edu>.
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(d) Assume for all z € Z, the function w — f(w; z) is nonnegative, convex, and 0 f(w; z) is (c, L)-Holder continuous
with a € [0,1). Let {w}; be produced by (3.3) with nonincreasing step sizes. Then for allt € N and w € Q
independent of the SGD algorithm A we have

1—a

t L sme
2>y BalFsto) — Fo()] < Il + i (002) 7 (mlwl 42 3 2 Fsow) + 00 Y0 ),
j=1

j=1 =1 =
where
2+2c¥
Cao = 1+a (2&/(1 + a)) = C 1 , fa>0 (A2)
Ci,la ifa=0.

Proof. Parts (a) and (b) can be found in the literature (Lacoste-Julien et al., 2012; Nemirovski et al., 2009). We only prove
Parts (c) and (d). We first prove Part (c). The projection operator Il is non-expansive, i.e.,

Mo (w) — o (W)||, < [[w — W]l (A3)
By the SGD update (3.3), (A.3), convexity and Lemma A.1, we know
Wi = w3 < [lwe = 00 f (wis 2i,) — wlf3
= [lwi — w3 + 210 f (wes i )II5 + 20e(w — wi, Of (We; 23,)
< lwe = wli3 + 207 Lf (We; 2i,) + 200 (f (w3 2i,) = f(wi; 23,)) (A4)
< wi — w3 + 200 f (w3 25,) — 1 f (Wi 23,),

where the last inequality is due to 1, < 1/(2L). It then follows that
nef (We; 2,) < Wi = w3 = [Wer — W3 + 20, f (W5 23,).
Multiplying both sides by 7; and using the assumption 7,41 < 1¢, we know
M f(We; zi,) < el we — W3 = el wesr — wlf3 + 207 f(w; 23,)
< nellwe = w3 = nera [Wepr — w3 + 207 f(w; 23,).
Taking a summation of the above inequality gives (w; = 0)

t t
S onifwyizi) <mlwiE+2> 03 f(wiz,).

j=1 j=1
Taking an expectation w.r.t. A gives (note w; is independent of ;)
t
Z NEA[Fs(w;)] Z MEA[f (Wi 2i,)] <mlwll3 +2) n?EalFs(w)). (A.5)
Jj=1 j=1
On the other hand, taking an expectation w.r.t. i; over both sides of (A.4) shows
20 [Fs(wi) = Fs(w)] < Wi = w3 = i, [[wesr = W3] + 207 LEs(we).
Taking an expectation on both sides followed with a summation, we get
t t
2> mEa[Fs(w;) — Fs(w)] < w3 +2L Y n?EalFs(w;)]
j=1 j=1

t
< (1+ 2Lm)||wf3 + 4L Y 1PEa[Fo(w)],
=1
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where the last step is due to (A.5). The proof is complete since w is independent of A.

We now prove Part (d). Analogous to (A.4), one can show for loss functions with Holder continuous (sub)gradients (Lemma
A.l)

2o
[Werr = w3 < lwe = wl3 + 2 1m7 f 755 (Wi 2i,) + 200 (f (W3 22,) = f(wes 2i,))- (A.6)

By the Young’s inequality
ab<ptalP + ¢ b9, a,beR,p,qg>0withp ' +¢ 1 =1, (A7)

we know (notice the following inequality holds trivially if o = 0)

2a 2a

20 1+« Tfa / 20 \ Tfa
77t¢i,1f1+"‘ (Wi;24,) = ( f(WﬁZit)) ( ) Ci,ﬂ]t

2a 1+«
20 1+« e 1« 200\ T o s
< . .
—1+a( 20 f<wt’z“)) +1+oé((1+a> al”t)
lta
= f(We2i,) + Capny *
Combining the above two inequalities together, we get
2
e f (Wes zi,) < [we = w3 = [Wer — w3+ 200 f(w; 23,) + Caon ™"
Multiplying both sides by n; and using 7,11 < 1y, we derive
3—a
i f(wis zi,) < mellwe — w3 = s [wesr — w3 + 207 f(w; 23,) + caom "
Taking a summation of the above inequality gives
3—
Zn] Wj,z%)<171||w||2+2277] (W; 2, —|—ca2277 =3 (A.8)
Jj=1 Jj=1 Jj=1
According to the Jensen’s inequality and the concavity of = —> e , we know
t . 2a
Wi Zi )\ 2%
S ) ()
j=1 Z] 1 77]
t 1—o 2a
+ O
=(2w) (mllw\|2+2zm i) a0 )

j=1

where in the last step we have used (A.8). Taking an expectation on both sides of (A.6), we know

2Ea[Fs(wi) — Fs(w)] < Ealllwe — wl3] = Ea[llwir1 — wli3] 4+ 2 177 Ea [fl%(wt; zi,)].

Taking a summation of the above inequality gives

t t
2a
2> nEalFs(w;) — Fs(wW)] < |[wl3 +c2, Y n?Ea [ (wy zi,)]
j=1 j=1
-

°‘1+a
<||w\|2+ca1(znj) (muw|\2+2zn§EAFs +cagz )

Jj=1 Jj=1

where we have used (A.9) and the concavity of z 27¥% in the last step. The proof is complete by noting the independence
between w and A. O
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B. Proofs on Generalization by On-average Model Stability
To prove Theorem 2, we introduce an useful inequality for L-smooth functions w — f(w; z) (Nesterov, 2013)

Lijw — w]|3

f(wiz) < f(W;2) +(w — W, 0f(w; 2)) + 5 (B.1)
Proof of Theorem 2. Due to the symmetry, we know
Es4[F(A(S)) — Fs(A(S))] = Bg 5 [ (F(A(SD)) ~ Fs(A(S)))]
i=1
=By [ D0 (A2 - 7(AS); )], ®2)

=1

where the last identity holds since A(S(*)) is independent of z;. Under Assumption 1, it is then clear that

[EsA[F(A(S) ~ Fs(AS)]| < Egs [© Z 1A(S) = AGSD)a] .

This proves Part (a).
We now prove Part (b). According to (B.1) due to the L-smoothness of f and (B.2), we know

Es4[F(A(S)) — Fs(A D Eisa[(4(50) — 451,074 20) + G 1ASY) - AS)IE]

3\'—‘

According to the Schwartz’s inequality we know
(A(SY) — A(S), 0f (A(S): 2)) < | A(SY) — A(S)II2|0f (A(S); 20) 12

v i 1 .
FIAGD) = AS)I + 5-107(A(S): 2013
FIASD) — AS)I -+~ F(A(S): ).

IN

IN

IN

where the last inequality is due to the self-bounding property of smooth functions (Lemma A.1). Combining the above two
inequalities together, we derive

Es.a[F(A(S)) - Fs(A(S

o 2B s allASY) ~ AS)E] + 123 Es Al (A(S): )

The stated inequality in Part (b) then follows directly by noting - "% | f(A(S); z;) = Fs(A(S)).
Finally, we consider Part (c). By (B.2) and the convexity of f, we know

B [F(A(S)) — Fs(A(S))] < = D By s, [(A(5) — A(S), 07 (A(5); )]
i=1

By the Schwartz’s inequality and Lemma A.1 we know

(A(S®) = A(S).05(A(S): ) < TIAS®) = A(S)I3 + - 10F (A5 20)13

Sy (A(SD); z,).

7 (@ 2
s 2H (5%) Sz + 2

Combining the above two inequalities together, we get

Esa[PAS) ~ Fs(A5)] < 513 B alIASY) - AG)E] + > B g a [P (A0,



Stability and Generalization of Stochastic Gradient Descent

. 72'1 . . . 7
Since  + T+« is concave and z; is independent of A(S(*)), we know

2a

Egg.a[/ 5 (ASD); )] < Egg | (Ba[£(A(SD);20)]) T} —Eg54F"

A combination of the above two inequalities then gives the stated bound in Part (c). The proof is complete. O

H(A(SD)] = Bga [FT¥E(A(S))]

C. Proof on Learning without Bounded Gradients: Strongly Smooth Case
C.1. Stability bounds
A key property on establishing the stability of SGD is the non-expansiveness of the gradient-update operator established in
the following lemma.
Lemma C.1 (Hardt et al. 2016). Assume for all z € Z, the function w — f(w; z) is convex and L-smooth. Then for
n < 2/L we know
[w —nof(w;z) =W +n0f(W;z)]]2 < [|w — W]
Based on Lemma C.1, we establish stability bounds of models for SGD applied to two sets differing by a single example.

Lemma C.2. Assume for all z € Z, the function w — f(w; z) is nonnegative, convex and L-smooth. Let S, S and SO be
constructed as Definition 4. Let {w} and {wgl)} be produced by (3.3) with 1; < 2/L based on S and S, respectively.

Then for any p > 0 we have
[\ f(wys )] (C.1)

Es,§7,4[||wt+1 Wf+1||

and

8(1+ l/p )L <
Es,g,A[HWHl leH 5] < Z 1+p/n)"~ JWQ]ESA[f(Wj?Zi)]- (C2)
Jj=1

Proof. If iy # i, we know the updates of w,; and WEQI are based on stochastic gradients calculated with the same example
z;,. By Lemma C.1 we then get

[Wesr — Wil llo < ||we = mdf(weszi,) — Wi +0df (Wi, 2|, < Iwe — Wi o (C3)
If 3 = i, we know
[Wisr =W llo < ||we — m0f (wes zi) — wi” +n0f (wi”, 2],
< [ = w2 + 0| 0f (Wi ) — OF (W Z) |2 (C.4)
< [ = w2 + 0|0 (Wes z0) |2 + ne|0F (Wi 2012

< fwe —wi |l + \ﬁnt(\/ (We; 2i) + m) (C.5)

where the second inequality follows from the sub-additivity of || - ||2 and the last inequality is due to Lemma A.1 on the
self-bounding property of smooth functions.

We first prove Eq. (C.1). Since i, is drawn from the uniform distribution over {1,...,n}, we can combine Egs. (C.3) and
(C.5) to derive

Ea[llwes = Wi lle] < Ea[lwe = wi ] + S [ Vw0 +\/ £ (w5 2).

Since z; and z; follow from the same distribution, we know

Esgal Fowi 2] = Esa[Vf(wi21). (C.6)
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It then follows that

2V Ly

Eg 5 allwies —widill2] < Egz 4 [llwe — wi|l] + == Esa[VF (Wi z)].

Taking a summation of the above inequality and using w, = wgi) then give (C.1).
We now turn to (C.2). For the case i; = 4, it follows from (C.4) and the standard inequality (a+b)? < (1+p)a®+(1+1/p)b?
that
||w 1 (i)2 1 12119 ) — B (). z\2
t+1 — Wt+1||2 (L +p)lwe —w, [z + (L+p~ )ng[|0f (Wi 21) fw”5 2|15
< (L4 p)llwe = wi |3+ 201+ p " Zl10f (wes 23 + 21+ p~ ) 97 (wis 213
< (L p)lwe = wi |3+ 400+ p~ ) Inf f(wis 20) + 40 +p VL f(wis2), (@)

where the last inequality is due to Lemma A.1. Combining (C.3), the above inequality together and noticing the distribution
of 74, we derive

i 4(1+p ') Ly}
wil||3] + S

allwesr = wii[5] < (14 p/mEaIw - " g s ) + 5],

Analogous to (C.6), we have
Eg g a[f(wW52)] = Esalf(wez)] (C.8)
and get

i i 8(1+p~ ") L}
Eg 5. llweer = wii3] < (1 p/mEg g a[lwe = wi? 3] + == Es.a [f(w; 20)].

Multiplying both sides by (1 4 p/n)~(*+1 yields that

(1+p/n)"HVEg 5 [Iwers — Wiy 3] < A+ p/n) " Eg 5 4 [Iwe — wi” 3]

8(1 + 71L1+ —(t+1),,2
(G ) (np/n) Mg

f(we; Zi)] .

Taking a summation of the above inequality and using wy, = w%i), we get

Zt: 8(1+p " )L(1+p/n)~ U y?

(L4 p/n)” VEg 5 4 [Iween — w2y ] < - LEs.a[f(wji20)]-

j=1

The stated bound then follows. O

Proof of Theorem 3. We first prove (4.3). According to Lemma C.2 (Eq. (C.1)), we know

SSA[ ZHWt-H Wt }_ ZZUJESA f(wjiz)].

=1 j=1

It then follows from the concavity of the square-root function and the Jensen’s inequality that

IN

SSA{ Z”Wtﬂ Wt ||} # njESA|: n_lzf(wj;zi)]
i=1

=1
2\{? IES’A[ Fs(wj)]

This proves (4.3).
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We now turn to (4.4). It follows from Lemma C.2 (Eq. (C.2)) that

n

SSA[ Z”Wtﬂ Wt—i—lH } < uzz L+p/n)"~ JWQESA[f(Wj;Zi)]

<
=1 j=1
8(1+p YL ¢ 4= 2
= f;(l +p/n) 0 Es 4 [Fs(w;)].
The proof is complete. O

Proposition C.3 (Stability bounds for non-convex learning). Let Assumptions of Theorem 3 hold except that we do not
require the convexity of w — f(w; z). Then for any p > 0 we have

SSA[ Z||Wt+1 Wf ||} (1+p/n)(1+mnL)* SSA[ Z”Wt } WES,A[FS(WO]-

Proof. If i; # i, then by the L-smoothness of f we know

[Wisr — Wil llo < lwe = Wi2llo + 1|0 (Wi 25,) — 0f (w23, < (1 4+ neL) [we — Wil (C.9)

If ¢, = 1, then analogous to (C.7), one can get

[Werr — Wi 3 < (14 p)we — w3+ 41+ p~ ) In? f(wis i) + 4(1+ p~ )L f(w(; Z,).

By the uniform distribution of i; € {1,2,...,n} we can combine the above inequality and (C.9) to derive

wiizi) + (w5 5)].

i 41+ p Y Ln?
Baflwies — wii 3] < (1 p/m)(1+mL)Baflw, - wi[3] + 2 g

This together with (C.8) implies

8(1+p~1)Ln?

i i )L77
Eg g alllweer — Wi |3] < (1+p/n)(1+ 0. L)*Eg 5 4 [Iwe —wi”|3] + LB alf(wii )]

n

It then follows that

SSA{ Z”WtJrl Wt H
n

1 ; 8(1+p ) Lnf &
<1 +p/n)(1+ 77tL)2E57§,A [ﬁ Z Wi — Wg )||§} + Tt Z]ES,A [f(wy; 2i)]

i=1 i=1

= (L p/n)(1 + mL)Ea [ an wiig] + S ).

The proof is complete. O

C.2. Generalization bounds

We now prove generalization bounds for SGD.

Proof of Theorem 4. According to Part (c) of Lemma A.2 with w = w*, we know the following inequality

T T
> B a[Fs(wi) — Fs(w*)] < (1/2+ L) [w*|[3 + 2L > n7 Fs(w"). (C.10)

t=1 t=1
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Let A(S) be the (¢ + 1)-th iterate of SGD applied to the dataset S. We plug (4.4) into Part (b) of Theorem 2, and derive

41+ p )L +7L+p/n) Zt:anSA[

" Fs(Wj)].

Esa[F(wis1)] < (1 + Ly )Eg a[Fs(weg)] +

We can plug (A.5) with w = w™ into the above inequality, and derive

A1+ p )L+ )L +p/n)

(mlw*3+2 ) niEs a[Fs(w™)]).

j=1

Es.a[F(wii1)] < (14+Ly ") Es,a [Fs(Wer1)]+

We choose p = n/T, then (1 + p/n)T=1 = (1 +1/T)T=! < e and therefore the following inequality holds for all
t=1,...,T (note Es 4[Fs(w*)] = F(w*))

B a[F(we)] < (14 Ly B alFo(w)] + TR () porei g 53 (o).

Multiplying both sides by 7, followed with a summation gives

S mEsalP(w)] < (14 1/7) Y mEs alFs(wy)] + 2T TOEEDEE S (o2 423 ().
t=1 t=1 t=1 j=1

Putting (C.10) into the above inequality then gives

T T T
> mEs.alF(wn)] < (14 L/7) (X0 mEs.alFs(w)] 4+ (1/2 4+ L) |w* |3+ 2L Y 7 Es.a[Fs(w*)])

t=1 t=1

T t—1
41 +T/n)(L+~v)Le N N
g ML EEE S (w2 423 2P w)).
t=1 j=1

Since Eg[Fs(w*)] = F(w™), it follows that

S B AlF(we) = P £ =S meF(w) + (14 /) (/2 ) w3 +20 Y 0 F(w)])

t=1
T t—1
y AETOEEDEE S w3 423 2 F ().
t=1 j=1
The stated inequality then follows from Jensen’s inequality. The proof is complete. O
Proof of Corollary 5. We first prove Part (a). For the chosen step size, we know
- 2 _ 2 1 2 -
;nt:c ;T:c and ;ntzcﬁ. (C.1D

The stated bound (4.5) then follows from Theorem 4, v = y/n and (C.11).

We now prove Part (b). The stated bound (4.6) then follows from Theorem 4, F'(w*) = 0 and v = 1. The proof is
complete. O
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D. Proof on Learning without Bounded Gradients: Non-smooth Case
D.1. Stability bounds

Theorem 6 is a direct application of the following general stability bounds with p = n/t. Therefore, it suffices to prove
Theorem D.1.

Theorem D.1. Assume for all z € Z, the function w — f(w; z) is nonnegative, convex and 0f (w; z) is (o, L)-Hélder
continuous with a € [0,1). Let S, S and S be constructed as Definition 4 and co, 3 = YA=2(2"“L)T ™,

e Let w; and
@

W ) be the t-th iterate produced by (3.3) based on S and S, respectively. Then for any p > 0 we have

t

2
Essals antﬂ wilillg] < a4/

2a

t t—7,.2

_ (1+p/n)~In; 20

+A(l+p 2> TJES,A[FS1+Q(wj)}. (D.1)
j=1

We require several lemmas to prove Theorem D.1. The following lemma establishes the co-coercivity of gradients for convex
functions with Holder continuous (sub)gradients. The case o = 1 can be found in Nesterov (2013). The case « € (0, 1) can
be found in Ying & Zhou (2017). The case a = 0 follows directly from the convexity of f.

Lemma D.2. Assume for all z € Z, the map w — f(w; z) is convex, and w — O f(w; z) is («, L)-Holder continuous

with « € [0, 1]. Then for all w, W we have

2L = a
1+a

(w—W0,0f(w;2) — 0f (W;2)) > l0f(w:2) — 0f(#:2)[," . (D2)

The following lemma controls the expansive behavior of the operator w — w — ndf(w; z) for convex f with Holder
continuous (sub)gradients.

Lemma D.3. Assume for all z € Z, the map w — f(w; z) is convex, and w — O f(w; z) is (o, L)-Holder continuous
with a € [0,1). Then for all w € R% and 1 > 0 there holds

W =00 (w:2) =W + 00 (W; 2)|I3 < [[w —W]}3 + & gn ™.
Proof. The following equality holds
[w—ndf(w;z)—W+ndf(%;2)|3 = [w—Wl3+n?|0f (w; 2) =0 f (W; 2) |3 - 20(w—W, Of (W; 2) —Of (W; 2)). (D.3)
We first consider the case o« = 0. In this case, it follows from Definition 3 and Lemma D.2 with o = 0 that
[w —ndf (w3 2) =W + 00 f(W; 2) |13 < lw — Wll3 + L.

We now consider the case o > 0. According to Lemma D.2, we know

0f(w;z) — 0f (W; 2)||3 < (M<w W, 0f (w: ) — Of (; z)>) £

20
1+« 5 _ 2% aa s e
:( ” <W—W,3f(W,Z)—8f(w,z)>> (77 Fa [ THa 2 +a>
20 2 W o anNEE 1o e o s EE
= 1+a(((1+O‘)/(’70‘))“°‘<W—W70f(W;z)—8f(W;z>> +a) +1+a(771+aL1+a2 1+a)

:277*1<w—w,8f(w;2)—af(W;Z)> o 771 a( faL)ﬁv

where we have used Young’s inequality (A.7). Plugging the above inequality back into (D.3), we derive

~ ~ - 1-— (0% 2 —a 2
o = n0f (wiz) = %o + 0 (3 2)[ < [[w = |3 + 1ot P 270 L)

Combining the above two cases together, we get the stated bound with the definition of ¢, 3 given in Theorem D.1. The
proof is complete. O
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Proof of Theorem D.1. For the case i; # i, it follows from Lemma D.3 that

. , 2
Iwir = Wil I3 < lIwe = mdf (wis zi,) = wi” - m0f (wi z0,)[13 < llwe = wi” |3+ gnl
If i; = i, by (C.4) and the standard inequality (a + b)? < (1 + p)a® + (1 + 1/p)b?, we get

Wit — Wi I3 < (14 p)[we — Wi |3+ 200+ p~ )2 (10f (wes 20) |2 + |0 (w75 20)112).

Combining the above two inequalities together, using the self-bounding property (Lemma A.1) and noticing the distribution
of iy, we derive

2(1+ Pil)ciﬂ?g
n

i i % 2a 2a 1) ~
allwei=wi1 18] < (tp/n) (Ballwi—wi” 3]+ ani " )+ Ea £ 75 (wis 20)+ £ 75 (wi?; ).

Analogous to (C.6), we know
2

[f“” (wi35)] = Es,a [f75 (Wi 2)]

and therefore

A1+ p~ g amf
n

e (Wy; zi)]

Esa|

, , 2
Eg g4 llwir1—wiL 1] < (1+p/n) (Bg 54 [Iwe—wi 18] +c2 0~ ) +
Multiplying both sides by (1 + p/n)~*+1 gives

. . 2
(14 p/n) VB gy [Iwess = wih 3] < (14 p/m) " (Eg g [lwe = wiPI3] + e an = )+

A1+ p~h)e2 (1 +p/n)~ 2
n

Es, 4 [fl% (w; 21)].

Taking a summation of the above inequality and using w; = ng) , we derive

¢ 2
(1+p/n)~UHVE s.5.allWer1 — th 3] <¢ Z L+p/n)~n;~*

41—|—plc i
P AL ey

2a
(1 +p/n) U2 Eg 4 [f7F (W 2:)].
Jj=1

We can take an average over ¢ and get

n

t

1

EZEs,§,A[Hwt+1 Wt+1|| | <e E (1 +p/n)t1- jnjl -
i=1 P

4 —1),.2 n t 2ar
+MZZ(1 +p/n)t" JUZESA[J’”T"“(Wj?Zi)]-

i=1j=1

n2

It then follows from the concavity of the function z — 27+« and the Jensen’s inequality that

- t
1
n ZES,S”,A[HWtH Wt+1|| Z (14 p/n)t+i- jn; "
i=1 i
: t=ip? n 2a
4(1+p 1)63,12%ES,A[(%Zf(W%ZQ) }
=1 i=1

The stated inequality then follows from the definition of F's. The proof is complete. O
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D.2. Generalization errors

Theorem 7 can be considered as an instantiation of the following proposition on generalization error bounds with specific
choices of v, T and 6. In this subsection, we first give the proof of Theorem 7 based on Proposition D.4, and then turn to the
proof of Proposition D.4.

Proposition D.4. Assume for all z € Z, the function w — f(w; z) is nonnegative, convex, and 0 f (w; z) is (o, L)-Holder
continuous with o € [0,1). Let {w;}; be produced by (3.3) with step sizes n; = cT % 60 € [0, 1] satisfying 0 > (1 — ) /2.
Then for all T satisfying n = O(T) and any v > 0 we have

EsA[F(wi))] — F(w*) = 0(7%) +0(7) (Tl’% e P e e (w*))

)+ O(T~F s (w*)).

+0(1/) (T 4+ P (wh)) + 0177 + O(T"

Proof of Theorem 7. Tt can be checked that € considered in Parts (a)-(c) satisfy 6 > (1 — «)/2. Therefore Proposition D.4
holds. If v = 1/n, then by Proposition D.4 we know

Esa[F(w)] = F(w*) = O(n*T" " 7% ) + O(n 3 T> %) + O(n~3) + O(T?"1) + O(T ™ T="") + O(T~?). (D.4)
We first prove Part (a). Since « > 1/2,0 = 1/2 and T < n, it follows from (D.4) that

Es.alF(wi)] = F(w') = O(n=#) + O(n¥~¥%) - O(n” *507) = O(n~%),

where we have used £ — ﬁ —% due to o > 1/2. This shows Part (a).
We now prove Part (b). Since o < 1/2, T < nite and § = 2%2_ E’Z) > 1/2 in (D.4), the following inequalities hold
le—ﬁ — \fT Tae—ay = /nn~ 8*2%2123 = n_%
—3p2-20 o Rt o i ee =
01 < PP R < T30 e = =}
_0 2—a 3a-3 3a—3 1
T = nite 22-a) =< n20+a) = O(TL 2),
where we have used (3o — 3)/( + o) < —1due to a < 1/2. Furthermore, since § > 1/2 and o < 1/2 we know
ab0-2a < —Land T = niFs > n. Therefore T“ T = = O(T~2) = O(n~2). Plugging the above inequalities into

D. 4) gives the stated bound in Part (b).

We now turn to Part (c). Since F/(w*) = 0, Proposition D.4 reduces to

2a(1-0) 672

IES,A[F(W(TI))]—F(W*):O(’y%)+O(7)(T17%+n_2T%)+0(7_1 -2 )+0<T9 Yyo(r*

With v = nT%!, we further get

(A+ta) ae e 2a

Es[F(wi)] - F(w*) = O((n‘lTl_e)%) + 0T~ ) + 0T

(6— 1)(& 1)

)+O(T" Y +0(T )

(D.5)
: -2 3—a’—2a 2
— = = 3= —2a —0 =
For the choice T' = nT+= and 6 1 we know 1 — 6 = (1 + «)?/4 and therefore

1t+a 5 lto
T—a 2 (d+o) T—o 1+

(n_lTl_g) = (n_lnHa & ) =n 7

(140)0 20 2a+a?-3 a1 1o
nl~ 1-a = nlfl—u B n1+ 2(l-a) —=n2-2a =7n 2
(0=1)(a=1) A-a)ate)? (-—a)(1+a) 14

niT T =n 1T a0Fa - =< p7lT 1 =n 7

2 (1+a)? _1+a

T l=p ™ 1 =p T,
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Furthermore,
0-1)(1+a)—(ab—0-2a)=20+a—-1=2""'3-0"—-20+20—2) >0

and therefore
af—0—2a

T@*l ZT Tra

Plugging the above inequalities into (D.5) gives the stated bound in Part (c). The proof is complete. O

To prove Proposition D.4, we first introduce an useful lemma to address some involved series.
Lemma D.5. Assume for all z € Z, the function w — f(w; z) is nonnegative, convex, and 0f(w; z) is («, L)-Holder
continuous with o € [0,1). Let {w}; be produced by (3.3) with step sizes 1, = ¢TI, 0 € [0,1] satisfying 6 > 15%. Then

T

(Zﬁ) (771||W*||2 +2 anF ) + Caso Zn Q) T oS £ o P (wh), (D)

T
> 52 (EsalFs(we)]) ™7 = O(T 557 + O(T' -2 F s (w")), D.7)
t=1
d 2o (1=a)(1-6)
S (EsalFs(w)]) ™ =0T e )+ O(T* P F7¥s (w*)). (D.8)

H
I
-

Proof. We first prove (D.6). For the step size sequence 7, = ¢ %, we have

T T 3\ 29
* T—a | 1o
(30) ™ (i Hz+22n%F ) eaadon )
:O(T(l 20)0- a))(T s 20F( )+T1 @= a)e)%
O(Tl 1‘15”) +O(TT 2 s (wh)) + O(T o)

= O(T"557) + O(T' 2 F s (w")),

where we have used the subadditivity of x — x1+<, the identity

(1-20)(1-«) 20 1-a—-30+af 1—a-—20
14+ 1+« 1-a  1l-a

in the second step and § > (1 — «)/2 in the third step (the third term is dominated by the first term). This shows (D.6).
We now consider (D.7). Taking an expectation over both sides of (A.8) with w = w*, we get

T T
> miEsalFs(wy)] <mi|w*[3+2)  nfEs[Fs(w*)] + ca2 Zm

t=1 t=1

—a

According to the Jensen’s inequality and the concavity of z +— x 7+, we know

| /\

T
ZUE IESA[FS Wt
t=1

T T
> =1 M Es a[Fs(w)]\ 7=
g ( 1 Zif‘ n?s )

1—a T T 4 4 22

TFfa % T—a 14+
( i) " (mlw 15423 nf () cuay i )
t= t=1

1— a 29
= (

where we have used (D.6) in the last step. This shows (D.7).

IN

) +O(T'" ”F”a (W),
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Finally, we show (D.8). Since we consider step sizes 1, = c¢T—?, it follows from (D.7) that

T T
2a v —1 2a
Y o me(EsalFs(wo))) 7 = (¢77) 7Y 0 (Bs,alFs(we)]) ™
t=1 t=1
1—a=20_9 1—6 2%«
= O(T T+ )+ O(T " F1+a (w")).
This proves (D.8) and finishes the proof. O

Proof of Proposition D.4. Since Eg[Fs(w*)] = F(w*), we can decompose the excess generalization error into an estima-
tion error and an optimization error as follows

(im)l int(ES,Amwt)] SR = () S wBsalF () - Fs(wi)

t=1 =

+(Xn) S mEsalFs(w) - Es(wh)l. (©9)

Our idea is to address separately the above estimation error and optimization error.

We first address estimation errors. Plugging (D.1) back into Theorem 2 (Part (c)) with A(S) = w1, we derive

2

t
Ca 2o — —7 %
E&A [F(Wt—i-l) — FS(Wt-i-l)] < 2,;/1 ES,A |:F12+a (Wt+1):| +2 170273 Z(l +p/n)t+1 Jnj

j=1

~ (1+p/n)" I3 2
+27(1+p )k, TJES,A {Fs+ (Wj)]

)

t

Jj=1

2a
By the concavity and sub-additivity of z — xT+=, we know

2

Es.a [Fl%(wtﬂ)] < (Es,a[F(Wis1)] — Es a[Fs(Wig1)] + Es a[Fs(wis1)]) ™ <657 + (Es a[Fs(wegn)]) 7,

where we denote §; = max{Eg 4[F(w;)] —Eg a[Fg(w;)],0} for all j € N. It then follows from p = n/T that

2

Cont (s 2N o1 s e iE 204 T/ K, 2
141 < ﬂ(éyﬂ»l + (Es,a[Fs(Wii1)]) ) +27 yec;, 5 Zl’?j + - Zlnj (Es,alFs(w;)]) ™.
j= j=

Solving the above inequality of §;1 gives the following inequality for all t < T’

t 5 t 20
b1 = O(755 ) +0(7 7 EsalFs(wein)]) 7 ) +0 (3 Yo" ) +0 (30 +Tn2) > 0 (s alFs (wy)]) 7 )
=1 j=1
It then follows from the definition of d; that (note n = O(T'))
T T . N
(Z 77t) 1 > mi(EsalF(wi)] = Es a[Fs(wy)]) = O (th) + O(’Y > ?73”)
—1 —1 —1
t t . B . B t . B
+ 0(771 ( Z 77t) Z M (ES,A[FS(Wt)D e ) + O (’yT?’Li2 Z 77,52 (]ES,A[FS(Wt)]) m) .
t=1 =1 =1
By 1, = ¢I'~%, (D.7) and (D.8), we further get
T T - .
(20) " S m(Bs alF(w)] ~ EsalFs(wo)]) = 055 + 0(yr' %)
=1 =1

(1—a)(1—6)
14+«

+O(y (T + TR (w))) 4+ O(yTn (1 4 T F S (w))). (D.10)
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2a
We now consider optimization errors. By Lemma A.2 (Part (d) with w = w*) and the concavity of x — xT+=, we know

T T
(Zﬂt) ZﬁtES,A[FS(Wt) — Fs(w")]
t=1 t=1
T 1 T o, T 1a T T .. 20
< (227@ [w*||2 + Ci,l (22m) (ZU?) o (771HW*H§ + QZT)?F(W*) + Ca,2 Zntlj) o
t=1 t=1 t=1 t=1 t=1

= O(T" Y + O(T 7%=

20

Y FO(TT RS (w)),

where we have used (D.6) in the last step.

Plugging the above optimization error bound and the estimation error bound (D.10) back into the error decomposition (D.9),
we finally derive the following generalization error bounds

T T
() S mEsalFw) - Fw')) = 0(v#5) +0() (1"~ 40 2T 402122 p s (w) ) +
t=1 t=1

O(1/7) (T~ 55 + P (w")) + 0(17) + O(T

af—0—2a
1+

) + O(T P F7¥5 (w*)).
The stated inequality then follows from the convexity of F'. The proof is complete. O

D.3. Empirical Risk Minimization with Strongly Convex Objectives

In this section, we present an optimistic bound for ERM with strongly convex objectives based on the /5 on-average model
stability. We consider nonnegative and convex loss functions with Holder continuous (sub)gradients.

Proposition D.6. Assume for any z, the function w — f(w; z) is nonnegative, convex and w — 0 f (w; z) is (o, L)-Holder
continuous with « € [0, 1]. Let A be the ERM algorithm, i.e., A(S) = argminycra Fs(W). If for all S, Fg is o-strongly

convex, then
2

s [F(A(S) — Fs(A(S))] < 2B [F ¥ (4(9)]

no

Proof. Let S and S@ i = 1,...,n, be constructed as Definition 4. Due to the o-strong convexity of Fgiy and
OF g (A(S®)) = 0 (necessity condition for the optimality of A(S)), we know

Fs (A(S)) — Fs (A(SD)) = 2740 A(S) — A(SD) 5.
Taking a summation of the above inequality yields

% Z (Fsm (A(S)) = Fsw (A(S“)))) > % STACS) = ASD)]5. (D.11)

i=1

According to the definition of .S (@) we know

n

nY- Fso(A(8) = Y- (3 F(AWS): =) + fA(S): %))

i=1  j#i
= (n=1) ) FIAWS);2) + 3 J(A(S); 20) = (n = )nFs(A(S)) + nF5(A(S)).

Taking an expectation and dividing both sides by n? give (A(S) is independent of §)

n—1

g[S Foo (A(S)] = " Bs [Fs(A(S))] + LEs[F(A(S)]. (D.12)
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Furthermore, by symmetry we know
;Es,g[iFsm (A(SD))] = Es [Fs(A(S))].
Plugging the above identity and (D.12) back into (D.11) gives
2 S B lIASY) - AS)IB < SE S [PA($) - Ro(ars)) (D.13)
i=1
We can now apply Part (c) of Theorem 2 to show the following inequality for all v > 0 (notice A is a deterministic algorithm)

Es[F(A(S)) - Fs(A(S))] < S2Es [P (A(S))] + -LEs[F(A(S)) - Fs(A(S))].

2y
Taking v = no /2, we derive

2 1 20 1

Es [F(A(S)) - Fs(A(S))] < 225 [F™5 (A(S))] + 5Es[F(AS)) - Fs(A(S)),
from which we can derive the stated inequality. The proof is complete. O
E. Proofs on Stability with Relaxed Convexity
E.1. Stability and generalization errors
For any convex g, we have (Nesterov, 2013)
(w—w,0g(w) — dg(W)) >0, w,WweR%. (E.1)

Proof of Theorem 8. Without loss of generality, we can assume that S and S differ by the first example, i.e., z; # Z; and
z; = Z;,1 # 1. According to the update rule (3.3) and (A.3), we know

HWtH - V~Vt+1||g < ||Wt - ntaf(wt; Zit) - Wi+ ntﬁf(Wt; Zu)”g
= |[we — Well3 + 070 (Wes 2i,) — Of (W3 Z,) |15 + 20 (Wy — Wy, Of (Wi Zi,) — Of (W5 23,)). (E.2)

We first study the term ||0f (wy; z;,) — Of (Wy; Z;,)||2. The event i, # 1 happens with probability 1 — 1/n, and in this case
it follows from the smoothness of f that (z;, = Z;,)

10f (W zi,) = 0f (We; 2, ) |2 < Llwe — Wi
The event i; = 1 happens with probability 1/n, and in this case
10f (Wi 2i,) = Of (W Zi,)ll2 < [[0f (wes 23, )12 + 10f (W 23, )[|2 < 2G.
Therefore, we get

(n—1)L?

Ei, [10f (we; 2i,) = 0f (We; 2,)II3] < Iwe =Wl + —. (E.3)

It is clear
E,, [f(wt;zit)} = Fg(w;) and E [f(\?vt;iit)] = F5(Wy).
Therefore, by (E.1) we derive
Ei, [ (Wt — Wy, Of (We; Z4,) — 5'f(Wt;Zit)>] = (Wi — Wy, OFg(W¢) — OFs(wy))
= <Wt — \X/'t, 8F§(v~vt) — 8F5(\X/t)> + <Wt — \xlh 8FS(\X/'t) — 8F5(wt))
1
= H<Wt — Wy, 0f (W3 21) — Of (W3 21)) + (W — Wy, OFg(Wy) — OF5(wy))

2Gwr = Well2. (E.4)
n
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Plugging (E.3) and the above inequality back into (E.2), we derive

- - 4G77tHWt — V~Vt||2 (TL — 1)L2 - 4G2
By, (Wi = Wit 18] < llwy = w3 + =T o (S — w3 4 =)

and therefore

~ ~ EA Wi — W G 2
Ea[[lWesr — Wen|3] < (14 L257)Ea [[we — W3] +4G<nt . ;L L %) (E.5)
By the above recurrence relationship and w; = w1, we derive
t ot - 2
Ealllw; = W] | G
14 2 g) (773 J J J)
allweer = We|f3] ZH ( + L - +—
=1j=;
e i (1+L2 2) i (Uj max; <<, Eaf|lw; — w; 2] N Gn?).
- 4 n n
j=1 i=1
Since the above inequality holds for all ¢ € N and the right-hand side is an increasing function of ¢, we get
t ~ 2
max Wi — W3 Gn?
max ]EA[HW —w; ” Z(n] 1<j<t+1 Eall 3 3H2] n 77]).
1<j<t+1 o n n
1
It then follows that (note B [||ws — W;2] < (Ea[llw; — w53])*)
t i 1 top?
max Ea|[lw; —w; <4GC “L max (IE Wi — W5 )2 +4G?C L,
1<j<t+1 A[H I ] tz n 1<j<t+1 A[H I ] t; n
Solving the above quadratic function of max, ;- (IE A [||w3 — \7\/5”3])E then shows
1 t ;i t 2 1
max (Eal|[|w:, ; — W 2>2<4GC J+2G< 7])2
1§3§t+1< allwser = ¥5ala]) - < t; n z:: n
The proof is complete. O

To prove Theorem 9, we require a basic result on series.

Lemma E.1. We have the following elementary inequalities.

(a) If0 € (0,1), then (=0 —1)/(1 —0) < Sp_ k=0 <t'=0/(1 - 0);

IN

(b) If0 > 1, then " _ k=0 < ;%5
We denote by egtan (A, n) the infimum over all € for which (3.2) holds, and omit the tuple (A, n) when it is clear from the
context.

Proof of Theorem 9. For the step sizes considered in both Part (a) and Part (b), one can check that ZtT: | m# can be upper
bounded by a constant independent of T'. Therefore, C; < C forallt = 1,...,T and a universal constant C'. We can apply
Lemma A.2 (Part (a)) on optimization errors to get

Ea[Fs(wi)] - Fs(w*) = O (Zt 12”* +7|7|W*|2) (E6)
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By the convexity of norm, we know

T
1

T T
]EA[HW(Tl) _"NV(T1)||2] < (Znt ZmEA [wi — Wel[2] (Z% 7% 277152 2>7
t=1 pat

where we have applied Theorem 8 (the upper bound in Theorem 8 is an increasing function of t). It then follows from
1
the Lipschitz continuity that eg.p, = O( EtT 14 n2 ( Ethl nf) 2 ) This together with the error decomposition (3.1),

Lemma 1 and the optimization error bound (E.6) shows

- ! S i + w3
EsalF(wi)] = Fw") =0( 3. % +n (3 n?)7) +0( “Z"t , ). E7)

o~
Il
_
o~
Il
_

T — *

)+O(Zt:1t 2+ ||lw II%)
T 46

t=1 Zt:lt

O(n_1T1_9 +n77 4 Te_l).

&
b
=
SE
n
=
2*
i
Q
/N
M
_|_
3,
M
~
T
m\._.

This proves the first part.

Part (b) follows by plugging (C.11) into (E.7). The proof is complete. O

F. Proofs on Stability with Relaxed Strong Convexity

Proof of Theorem 10. Due to the og-strong convexity of Fis, we can analyze analogously to (E.4) to derive

- - 2G||wy — w .
E, [(we — 0 (W) — 0ftwes 5] < 2l o2

Therefore, analogous to the derivation of (E.5) we can derive

it mEallw = Sl
n

allwipr = Wi 3] < (1+ L0 = 205m)Ea[[[w; — Wel[3] + 4G< "

4G277t2 + 8G*1
TLZO'S

3 -
<1+ LGf — §Osnt)EA[HWt - Wt”%] +

)

where we have used

4G N 8G2 o E W — W 2
7EAH|Wt Wt||2] < > + S AHI t t”g].
n n<og 2

We find tg > 4L?/0%. Thenn, < og/(2L?) and it follows that

4G2771:2 + 8G?n,

Allwerr = Wi 3] < (1= osne)Ea[llwe — well3] + "o

2 4G? 2,
(1 g el it 4+ 2.
( i JEallwe = will3] + = (7 +

Multiplying both sides by (¢ + t)(t + to — 1) yields

(t+to)(t+to — DEA[[Wepr — Wepall3] < (E+to — 1)(t + to — 2)Ea[[|we — Wel|3] + ne+—— ).

nog

802(t+to—1)( 2 )

nog
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Taking a summation of the above inequality and using w; = W then give
t

~ 8G2 (. 2
(t+t0)(t +to — DEa[lIwirs — Wil < =S +to— 1) (nj + —)

nogs =1 nos
8G2 4 2 U

= tto— D+ — S (+to—1 )
mS(Z(J+ o= Unj+ > (i+to—1)

Jj=1 Jj=1
2 _

. 8G <ﬁ+t(t+2to 1)>'

nosg \og nogs

It then follows

t+to T
The stated bound then follows from the elementary inequality v/a + b < v/a + v/b for a,b > 0. The proof is complete. [

16G? /1 1
Eallwen —wint]) = 2 ()
A[Hwt+1 Wt+1|\2} = no_%

Proof of Theorem 11. By the convexity of norm, we know

T
(Yt+to-1)""

[M]=

Eaf|wy — %] < (t+ to — DEA[|ws — We|s]
t=1 t=1
T T
4G —1 1 1
< —(D (t+to—1) (t+to— 1) ——=+—
Us(; ) ; ( n(t+to) n)

= O(o5 ' ((nT) "% +n7"),

where we have used Lemma E.1 in the last step. Since the above bound holds for all S| S differing by a single example,
it follows that ¢; on-average model stability is bounded by O(Eg[og"] ((nT)_% +n~1)). By Part (b) of Lemma A.2 we
know
2 * *
EalFs(wy)] = Fs(w*) = O(1/(Tos) + |[w"|3/T?).
It then follows from (3.1) and Part (a) of Theorem 2 that
Esa[F(w)] — F(w*) = O(Es[o5" (nT)"% +n~")]) + O(Es[1/(Tos)] +1/T?).

The stated bound holds since T' < n. The proof is complete. O

Proposition F.1. Let S = {z1,...,2,} and Cg = % S xiz). Then the range of Cs is the linear span of {x1,. .., }.

Proof. Tt suffices to show that the kernel of Cg is the orthogonal complement of V' = span{z1,...,z,} (we denote
span{x1, ..., 2, } the linear span of x1, . .., x,). Indeed, for any x in the kernel of Cg, we know Csz = 0 and therefore
2"Csx =LY (x]2)? =0, from which we know that 2 must be orthogonal to V. Furthermore, for any « orthogonal
to V, it is clear that Cgx = 0, i.e., x belongs to the kernel of C's. The proof is complete. O

G. Extensions

In this section, we present some extensions of our analyses. We consider three extensions: extension to stochastic proximal
gradient descent, extension to high probability analysis and extension to SGD without replacement.

G.1. Stochastic proximal gradient descent

Our discussions can be directly extended to study the performance of stochastic proximal gradient descent (SPGD). Let
r: RY — RT be a convex regularizer. SPGD updates the models by

Wil = PI‘OXmT(Wt — m@f(wt, Zit)),

where Prox,(w) = arg mingcga [g(W) + 3||w — W][3] is the proximal operator. SPGD has found wide applications in
solving optimization problems with a composite structure (Parikh & Boyd, 2014). It recovers the projected SGD as a specific
case by taking an appropriate r. Our stability bounds for SGD can be trivially extend to SPGD due to the non-expansiveness
of proximal operators: ||Prox,(w) — Proxy(w)||2 < ||w — W||2, YW, W if g is convex.
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G.2. Stability bounds with high probabilities

We can also extend our stability bounds stated in expectation to high-probability bounds, which would be helpful to
understand the fluctuation of SGD w.r.t. different realization of random indices.

Proposition G.1. Let Assumption 1 hold. Assume for all z € Z, the function w — f(w; z) is convex and w — O f (w; z)
is (., L)-Hélder continuous with o € [0,1). Let S = {zy,...,2z,} and S = {Z1, ..., 2.} be two sets of training examples
that differ by a single example. Let {w}; and {W}; be produced by (3.3) based on S and S, respectively, and § € (0, 1).
If we take step size n; = ct=0forj =1,...,tand c > 0, then with probability at least 1 — §

|[Wir1 —Wip1]l2=0 (tl_% R (1+ Vnt~1 log(l/é))).

High-probability generalization bounds can be derived by combining the above stability bounds and the recent result on
relating generalization and stability in a high-probability analysis (Bousquet et al., 2019; Feldman & Vondrak, 2019).

To prove Proposition G.1, we need to introduce a special concentration inequality called Chernoff’s bound for a summation
of independent Bernoulli random variables (Boucheron et al., 2013).

Lemma G.2 (Chernoff’s Bound). Let X1, ..., X; be independent random variables taking values in {0,1}. Let X =
ZJ X and p = E[X]. Then for any § € (O 1) with probability at least 1 — exp ( — u(52/3) we have X < (14 0)p.

Proof of Proposition G.1. Without loss of generality, we can assume that S and S differ by the first example, i.e., z; # 21
and z; = Z; for ¢ # 1. If i # 1, we can apply Lemma D.3 and (A.3) to derive

lWir1r — Wepalla < [[we — 00 f (W5 25,) — Wi + 00 f (Wi 23,) |2
_1
< |lwe — Will2 + casn @

If 7; = 1, we know

||Wt+1 - V~v1t+1||2 < ||Wt - ntaf(Wt; 21) - Wy + ﬂtaf(VNVt; 51)”2
< |lwy — Wyl|2 + 2 G.

Combining the above two cases together, we derive

W1 — Wiz < [[we — Will2 + ca, 377t * 2 Gl =y

Taking a summation of the above inequality then yields

t
[Wit1 = Wipa]l2 < Caszn +QGZ77J j=1]-
Jj=1
Applying Lemma G.2 with X; = I[;,—;) and z = t/n (note E [X;] = 1/n), with probability 1 — § there holds
t
Z]I[ =1 < = (1 + v/3nt—1log(1/4)).

j=1

Therefore, for the step size n; = ct=? j=1,...,t weknow

(lWit1 — Wiga]l2 < ca’gcﬁtlfﬁ +2Gen (14 v/3nt~1log(1/5)) .

The proof is complete. O
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G.3. SGD without replacement

Our stability bounds can be further extended to SGD without replacement. In this case, we run SGD in epochs. For the

k-th epoch, we start with a model w} € R<, and draw an index sequence (7%, . . ., i) from the uniform distribution over all
permutations of {1, ...,n}. Then we update the model by
Wt_H—Wt 8f(wt,zk) t=1,...,n, (G.1)

where {nF} is the step size sequence. We set warl =wk 11, 1.e., each epoch starts with the last iterate of the previous

epoch. The following proposition establishes stablllty bounds for SGD without replacement when applied to loss functions
with Holder continuous (sub)gradients.
Proposition G.3. Suppose assumptions of Proposition G.1 hold. Let {w}, and {W}; be produced by (G.1) based on S
and § respectively. Then
2 a XK. K n
Eallwi =Wl o] < S5 30 g e Y0 )

k=1t=1 k=1t=1

Proof. Without loss of generality, we can assume that .S and S differ by the first example, i.e., z; # Z; and z; = Z; for
1 # 1. Analogous to the proof of Proposition G.1, we derive the following inequality forall k € Nand ¢t =1,...,n

~ ~ _1
Iwie s — Wi ll2 < Wy — Wellz + cas(nf) ™= Ijikpa) + ZUfGH[if:l]-

Taking a summation of the above inequality from ¢ = 1 to n gives

Wi i1 — Wil < Wi — %72+ Cas Z ) =alle ) + ZGZ%HM 1]-
t=1 t=1

k+1

Let i* be the unique ¢ € {1,...,n} such that i} = 1. Since wi ™' = wF |, we derive

n
~ ~ k _1
Iwi =W lo < [WE = Wiz + cas Y ()7 + 26
t=1

Since we draw (i%, ..., i*) from the uniform distribution of all permutations, i* takes an equal probability to each 1, ..., n.
Therefore, we can take expectations over A to derive

. - - 1 2GY )k
Eallwh* = W ] < Ba[lwh — W] 4 cas Yy 4 25 2tm e

We can take a summation of the above inequality from & = 1 to K to derive the stated bound. The proof is complete. [
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