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Abstract

In this paper, we bridge the gap between the state-of-the-art theoretical results
for matrix completion with the nuclear norm and their equivalent in inductive
matrix completion: (1) In the distribution-free setting, we prove sample complexity
bounds improving the previously best rate of rd2 to d

3{2?
r logpdq, where d is

the dimension of the side information and r is the rank. (2) We introduce the
(smoothed) adjusted trace-norm minimization strategy, an inductive analogue of
the weighted trace norm, for which we show guarantees of the order Opdr logpdqq
under arbitrary sampling. In the inductive case, a similar rate was previously
achieved only under uniform sampling and for exact recovery. Both our results
align with the state of the art in the particular case of standard (non-inductive)
matrix completion, where they are known to be tight up to log terms. Experiments
further confirm that our strategy outperforms standard inductive matrix completion
on various synthetic datasets and real problems, justifying its place as an important
tool in the arsenal of methods for matrix completion using side information.

1 Introduction

Matrix completion (MC) is the machine learning problem of recovering the missing entries of a
partially observed matrix. It is the go-to approach in various application domains such as recommender
systems [1, 2] and social network analysis [3, 4, 5]. The SoftImpute algorithm [6, 7] is among the
most popular MC methods. It solves the following convex problem encouraging low-rank solutions:

min
ZPRmˆn

1

2
}P⌦pZ ´ Gq}2Fr ` �}Z}˚, (1)

where P⌦ denotes the projection on the set ⌦ of observed entries, G is the ground truth matrix, and
} .}˚ denotes the nuclear norm (i.e., the sum of the matrix’s singular values).

Besides the incomplete matrix, additional information may be available in applications such as movie
recommendation or drug interaction prediction [8, 9, 10, 11]. For instance in movie recommendation,
one may have access to the movies’ genres, their synopsis, the gender and occupation of the users, or
a friendship network between the users. Inductive matrix completion (IMC) [11, 12, 13, 14] exploits
such side information. It assumes that the side information is summarized in matrices X P Rmˆd1

and Y P Rnˆd2 , with the row vectors representing the users and items, respectively. IMC then
optimizes the following objective function

min
MPRd1ˆd2

1

2
}P⌦pXMY

J ´ Gq}2Fr ` �}M}˚. (2)

This model has been used in many domains also beyond movie recommendation [8, 10, 15].

In this paper, we contribute to a better theoretical understanding of IMC and related methods in the
approximate recovery case. In this setting we obtain guarantees in terms of a bound on the expected
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loss which decreases with the number of samples. Our best results concern the distribution-free case,
meaning that our bounds are valid for any sampling distribution. This is in sharp contrast to the vast
areas of literature where one assumes the distribution is uniform [16, 17, 18]. Our analysis leads
to substantial gains compared to the state of the art results [19, 20, 21], as we obtain near optimal
bounds in situations where the state of the art bounds are vacuous, as is explained below.

Although for uniform sampling, near-tight exact recovery bounds of Oprd logpdq logpnqq exist1 for
IMC [16, 17], the approximate recovery case (especially in a distribution-free setting) is far less
understood. The state-of-the-art distribution-free results for IMC were proved in [19, 20] (and in [21]
for a kernel formulation of IMC) and, expressed in terms of generalisation error bounds, scale as

O

´
xyM

a
1{N

¯
, (3)

where x :“ }XJ}2,8 “ maxu }X . ,u}2 is the maximum norm of a left side information vector (row
of X), N is the number of available samples, and y :“ }Y J}2,8 “ maxv }Y . ,v}2 is the maximum
norm of a right side information vector (row of Y ). This implies that reaching a given loss threshold ✏

requires Opx2y2M2{✏2q entries, where M is a bound on the nuclear norm of M . In this case, we say
that the ’sample complexity’ is Opx2y2M2q. To understand how those bounds scale with the matrix
dimensions, consider the simple case where X and Y are made up of blocks of identity matrices. In
that case, we have x “ y “ 1, yielding a sample complexity of OpM2q. Since }M}2˚ „ d

2
r, this

yields a bound of order rd2.

Such bounds have a remarkable property: they do not depend on the size n of the matrix and instead
depend only on the size d of the side information. This means that they capture the fact that valuable
information can be extracted even for users and items for which no ratings are observed. On the other
hand, these bounds have a strong dependence on the size d of the side information. As an illustration,
consider that they are vacuous when X “ I and Y “ I , since the required number of entries
Oprd2q “ Oprn2q then grows faster than the total number of entries n2. This is despite the fact that
in that situation, distribution-free bounds for standard matrix completion yield a sample complexity
of Opn3{2?

rq for the standard regulariser [22] and Opnr logpnqq for a modified regulariser (the
smoothed weighted trace norm from [23]). Thus, these existing distribution-free IMC bounds are very
far from tight. In fact, they are only meaningful when the size of the side information is negligible
compared to the general scale of the problem, which is a significant limitation in terms of the elegance
of the theory (mismatch with MC bounds, separate proof techniques for separate regimes) and in
practice (real-life side information could be very high-dimensional, especially if it is extracted from a
neural network [24] or from a wide variety of different sources). To reinforce that point, note that any
side information with a strong cluster structure2 would exhibit similar failings to the above mentioned
identity side information case.

In this work, we bridge the gap between the state-of-the art in matrix completion and inductive matrix
completion with the trace norm by providing distribution-free bounds for IMC which combine both of
the following advantages: (1) a lack of dependence in the size of the original matrices, and (2) a more
refined dependence on the size of the side information: the dependence on d in our bounds is almost
the same as the dependence on n (the size of the matrix) for the state-of-the-art MC results. More
precisely, our first contribution is to provide a bound of order Opd3{2?

r logpdqq for the standard
regulariser (2). The proof builds on techniques from [22, 25], but is substantially more involved due to
the complicated dependence structure generated by the side information. As our second contribution,
we construct analogues of the ideas of [23, 26] for the IMC setting: we begin by showing a bound
of order Oprd logpdqq for a class of distributions with certain uniformity assumptions (our "uniform
inductive marginals"), and then design a new "adjusted trace norm regulariser" for the problem (2)
with similar properties to the weighted trace norm [26, 23] in MC. Instead of simply renormalising
rows and columns of M as in previous work, our method requires rescaling the core matrix M along
data-dependent orientations that capture interplay between the sampling distribution and the side
information matrices X,Y .

Our contributions are summarised as follows.

1with some orthogonality assumptions on the side information
2where the users and items are approximately split into ’communities’, see also Appendix A
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1. We provide distribution-free generalisation bounds for the inductive matrix completion model (2)
(assuming a fixed upper bound on the nuclear norm) which scale like Opd3{2?

r logpdqq where r

is a soft relaxation of the rank.

2. In the case of uniform or approximately uniform sampling, we provide a bound of order
Oprd logpdqq for approximate recovery.

3. We introduce a modified version of the IMC objective (2), which we refer to as adjusted trace
norm regularsation (ATR). An empirical version E-ATR is also introduced and both achieve
bounds of order Oprd logpdqq in the distribution-free setting.

4. We experimentally demonstrate on synthetic data that our adjusted regulariser outperforms the
standard IMC objective (2) in many situations.

5. We incorporate our method into a model involving a non-inductive term and evaluate it on real-life
datasets, demonstrating substantially improved performance.

This paper is organized as follows. In Section 2 we review some related work. In Section 3 we
introduce our main results. Finally, in Section 4 we present our experimental results.

2 Related work

In both MC and IMC, the existing literature consists of several main branches differing in their main
assumptions: exact recovery versus approximate recovery and uniform sampling versus distribution-
free bounds. In exact recovery, the matrix is assumed deterministic, and we want to recover its
missing entries exactly [17, 16, 27, 28]. In approximate recovery, the matrix is assumed noisy,
and we want to recover its missing entries only approximately, within some interval around their
expectation [19, 20, 21, 18, 29]. Approximate recovery theory is typically expressed in terms of
uniform generalisation bounds over a function class using a matrix-norm constraint. Assuming that
the entries are sampled from a specific distribution (e.g., uniform), one typically can achieve much
faster rates than distribution-free theory regardless of the distribution. The typical sample complexity
of standard MC under uniform sampling is Opnr log2pnqq for exact recovery (proved in the series of
breakthrough papers [27, 28, 30]) and Opnr logpnqq for approximate recovery [23]. In [31, 32], an
improved rate of nr logpnq logprq (for exact recovery) was shown.

The most closely related papers to ours are [22] and [23], which both work only on standard
matrix completion without side information. In [22], a bound of order Opn3{2?

rq was obtained
in the distribution-free setting for matrix completion with the trace norm, whilst in [23], rates of
Oprn logpnqq are shown for sampling with uniform marginals and for a smoothed version of the
weighted trace norm regulariser in the distribution-free case. We almost perfectly extend most of the
results from both papers to the inductive case, which requires many technical modifications.

Within the IMC framework the closest works are those which also deal with approximate recovery
in the non uniform sampling case: [21, 33, 19, 20]. Their bounds, presented in many different
contexts, translate to sample complexities of type Oprd2q. Other celebrated works in the theoretical
study of IMC include: [16] and [17], which showed rates of order d2r3 logpdq and rd logpdq logpnq
respectively for exact recovery with uniform sampling, together with other important contributions
(see appendix). In the case of exact recovery, the rate of rd logpdq logpnq was obtained only under
the assumption that the side information matrices have orthonormal columns. Some bounds use a
completely different regulariser (such as the max norm) to achieve better rates [34, 35] etc. These
works also do not involve side information.

In Figures 1 and 2, we summarize state-of-the-art (s.o.t.a.) results in both MC and IMC. Note the
problem of exact recovery in the distribution-free case is ill-defined (hence the N/As in our table). In
approximate recovery bounds, we omit a factor of 1{✏2, where ✏ is the tolerance threshold in terms
of expected loss), as this factor is present in all approximate recovery bounds 3. In exact recovery
bounds, the rate is the order of magnitude of the threshold past which exact recovery occurs with
high probability.

3To our best knowledge, all results show a decline in population expected loss of the order of
a
1{N where

N is the sample size
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Table 1: Matrix completion results (trace norm-based only)
MC Unif.Sampling Distr.-free Weighted version

Exact nr log2pnq ([27, 28, 30]) N/A N/A
nr logpnq logprq ([31, 32])

Approx. nr logpnq ([23, 22]) n
3{2?

r ([22]) rn logpnq ([23])

Table 2: Inductive matrix completion results (trace norm-based only)
IMC Unif.Sampling Distr.-free Weighted version

Exact rd logpdq logpnq ([17, 18]) N/A N/A
d
2
r
3 logpdq ([16])

Approx. (s.o.t.a.) rd
2 ([21, 33, 19]) rd

2 ([21, 33, 19]) None
Approx. (ours) rd logpdq (Ours) d

3{2?
r logpdq (Ours) rd logpdq (Ours)

Other related works include (IMCNF) [19, 20], which proposed the following model:

min
1

2

ÿ

pi,jqP⌦
|Gi,j ´ pXMY

J ` Zqi,j |2 ` �1}M}˚ ` �2}Z}˚, (4)

where �1,�2 are regularisation parameters, Gi,j denotes the observed entries and the predictors take
the form pXMY

J ` Zq. This model relies on the cross-validated hyperparameters �1,�2 to balance
the importance of the side information. The authors also showed results based on a combination of a
bound for the inductive term XMY

J and a bound for the non inductive term Z. The non inductive
terms in the bounds are similar to [22], whilst the bounds for the inductive term are proved from
scratch and have also later appeared in a different form in [21, 33] together with a kernel formulation
of IMC. In Subsection 4.2 we combine our framework with this strategy to reach competitive results.

In [36], the authors introduce a model consisting of a sum of mutually orthogonal IMC terms together
with an explicit optimization strategy in the specific case where the available side information consists
in partitions of the users and items into communities. In [37], the authors further extend the model
to learn the community membership functions together with the ground truth matrix, based only on
the sampled entries. The case of a single IMC term where the side information is in the form of a
community partition is useful to develop intuition into the equivalent roles of d1, d2 in our bounds
versus m,n in MC bounds. Whilst generalization bounds were proved in [36] with a similar scaling
as our bound from Thm 3.1 (and in particular are better than the state-of-the-art IMC bounds if
applied to this situation), they only apply to the specific case of community side information. In
this work (Theorem 3.1) we achieve the first IMC bounds which cover the whole range of possible
side information matrices X,Y , whilst providing the correct scaling (up to log terms) in the case of
identity or community side information. Community side information has also been studied in other
discrete contexts where individual behaviour is assumed to be a noisy realisation of community side
information [38, 39].

Another work is [18] which introduces a joint model that imposes a nuclear norm-based constraint
on both M and XMY

J through a modification of the objective. The authors prove bounds for their
method which match the state of the art in IMC [17, 19] and MC [22] when the side information
is perfect and useless respectively. The dependence on the side information is better in our case.
Further discussion of that paper is included in the appendix. Of course, there are also many other
works which propose modified optimization problems for the Recommender Systems task through
other rank-sparsity inducing regularisers [35, 34, 40] and even exploiting other ground truth structure
besides the low-rank property [41, 42].

3 Main results

Notation: We observe N entries of a ground truth matrix G P Rmˆn which are sampled i.i.d
(with replacement) through an arbitrary distribution p: we draw pi, jq P t1, ..,mu ˆ t1, ..., nu
with probability pi,j where

∞
i,j pi,j “ 1. The sampled entries ⇠

1
, ⇠

2
, . . . , ⇠

N P t1, 2, . . . ,mu ˆ
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t1, 2, . . . , nu form a multiset ⌦: our setting allows for the observations to be noisy with a different
noise distribution for each entry, but purely for notation convenience we often treat the issue as
if there is no noise when no ambiguity is possible. When written explicitly, the noise is denoted
by ⇣. For a function f : R Ñ R we will write

∞
pi,jqP⌦ fpGi,jq for the sum of the images of the

observations, counted as many times as necessary 4. We assume we are given side information
matrices X P Rmˆd1 and Y P Rnˆd2 . The maximum L

2 norm of a row of X (resp. Y ) is denoted
by x (resp. y). The minimums are denoted by x and y respectively. The row vectors of X (resp.
Y ) are also written xi for i § m (resp. yj for j § n ). For any matrices A,B, A § B means that
B ´ A is positive semi-definite, }A} denotes the spectral norm of A and }A}˚ denotes the nuclear
norm of A. We have one fixed loss function l used throughout the paper which is both Lipschitz with
constant ` and bounded by b. For convenience we also frequently write d instead of maxpd1, d2q.
In the appendix, we provide a complete table of notations (Table K.1) that includes all notations
introduced throughout the paper.

We now present our results, starting with the distribution-free bound for the standard regulariser, then
moving on to the improved bounds under uniform sampling, and finally to our adjusted trace norm
regulariser and the theoretical improvements it provides.

3.1 Distribution-free guarantees for the standard IMC objective

For a constant M P R, we define the function class: FM “
 
XMY

J : }M}˚ § M
(

, which
contains all predictors XMY

J where M has its spectral norm bounded by S. Our first main
result is a uniform generalisation bound for the loss minimiser within this function class. Below
we use the shorthand lpAq (resp. l̂SpAq or even lSpAq) for Epi,jq„pplpAi,j , Gi,j ` ⇣i,jqq (resp.∞

pi,jqP⌦ lpAi,j , Gi,j ` ⇣i,jq{N ), the overall expected (resp. empirical) loss associated to matrix
A P Rmˆn. In particular, in the noiseless setting, infZPFM lpZq “ 0 as long as }G}˚ § M.

Theorem 3.1. Fix any target matrix G and distribution p. Define ẐS “ argminpl̂SpZq : Z P FMq.
For any � P p0, 1q, with probability (w.p.) • 1 ´ � over the draw of the training set ⌦ we have

lpẐq § inf
ZPFM

lpZq ` C

»

–

d
`bxyM

?
d

N
 ` b?

N
` xy`M ` `

N
logp2dq

fi

fl ` 4b

c
logp2{�q

2N
, (5)

where C is a universal constant, b is a bound on the loss, ` is the Lipschitz constant of the loss l, and

 “
„a

logp2dq `
b
logpNp20M2`

?
drx2y2s{b ` 1q

⇢
is a logarithmic quantity. Furthermore, in

expectation over the training set we have:

lpẐq § inf
ZPFM

lpZq ` C

»

–

d
`bxyM

?
d

N
 ` b?

N
` xy`M ` `

N
logp2dq

fi

fl ` 20b

c
1

N
. (6)

The proof is provided in Appendix A. Assuming that `, b are treated as constants, the above bound on
the generalisation gap lpẐq ´ infZPFM lpZq scales like

O

¨

˝xyM
N

logpdq `
d

xyM
?
d

N

”a
logpdq `

a
logpNq `

a
logpxyMq

ı
˛

‚. (7)

If we further think of the maximum entry of the core matrix M as bounded by a constant, M scales
like

?
d1d2r where r is the rank of M . Assuming the rescaling is also set so that x,y are constants,

the above yields a sample complexity of

O

˜?
d1d2

?
dr logpdq
✏2

¸
,

4More rigorously the observations are i.i.d of the form p⇠o, ⇠̄oq with ⇠o P t1, 2, . . . ,mu ˆ t1, 2, . . . , nu and
⇠̄o P R and write

∞N
o“1 fp⇠̄oq instead of

∞
pi,jqP⌦ fpGi,jq, and it should be assumed that the "ground truth"

values G (are defined so as to) minimize EplpG⇠, ⇠̄qq for our loss function l over the joint distribution of ⇠, ⇠̄
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where ✏ is the tolerance threshold. Indeed, the
a
logpNq term can be treated via the following simple

observation: If N • ⇥ logp⇥q and ⇥ is sufficiently large then

N

logpNq • ⇥ logp⇥q
logp⇥q ` logplogp⇥qq • ⇥ logp⇥q

2 logp⇥q • ⇥{2.

Remark on the proof technique: The proof of the result in [22] relies on a lemma of Latala
(lemma A.1) from [43] for random matrices with i.i.d. entries and an elegant decomposition of the
entries into two groups: (1) entries that have been sampled many times, and (2) entries that have
not been sampled too often. On group 1, the partial sums of the Rademacher variables concentrate
trivially, whilst on group 2, the entries are well spread out and Lemma A.1 limits the spectral norm
similarly to the uniform case. The proof is about carefully balancing those two contributions.

In our inductive situation, using the same split can only yield bounds of the type (3) which are well
known and vacuous when the side information is of comparable size to the matrix. Our key idea
to fix this issue is that instead of distinguishing frequently and less frequently sampled entries, we
split between high and low energy orientations corresponding to pairs pX . ,u, Y . ,vq of columns of
the side information matrices. To achieve this aim, we use the rotational invariance of the trace
operator and equivalently express the Rademacher averages in inductive space (Rd1ˆd2). However,
the entries of the resulting matrix are certainly not independent, which makes it impossible to apply
the concentration results from [43]. Instead, we must rely again on the matrix Bernstein inequality F.4.
Obtaining a covariance structure that is amenable to application of this result requires performing an
iterative procedure involving series of distribution dependent rotational transformations of the side
information and other estimates at each step.

3.2 Generalisation bounds for the trace norm regulariser under a uniformity assumption

We now move to our second main contribution, which is a broad generalisation of most of the results
of [23] to the inductive case. In this direction, we begin with a result for approximate recovery in
inductive matrix completion with the standard nuclear norm regulariser. Although this first result
(proved in Appendix B) is original to the best of our knowledge, it is not surprising since a similar
result is known in the exact recovery case. However, it is an excellent way to introduce notation
which will be necessary in the rest of the paper.
Proposition 3.1. Let us write FM for the function class corresponding to matrices of the form
XMY

J with }M}˚ § M. Let MS “ argmin}M}˚§M
∞

⇠P⌦ lppXMY
Jq⇠, G⇠ ` ⇣⇠q be the

trained matrix M and M˚ “ argmin}M}˚§M ElppXMY
Jq⇠, G⇠ ` ⇣⇠q be the optimal M when M

is restricted by }M}˚ § M. Write also ZS “ XMSY
J and Z˚ “ XM˚Y J.

Write K :“ max

„b
d1

}XJX}
m

}Y }2Fr
n ,

b
d2

}Y JY }
n

}X}2Fr
m

⇢
. Under uniform sampling, w.p. • 1 ´ �:

lpZSq ´ lpZ˚q § 8`K
?
rdp1 `

a
logp2dqq?

N
` 12`

N
Mxyp1 ` logp2dqq ` b

c
logp2{�q

2N
, (8)

where
?
r “ M{?

d1d2 and b is a bound on the loss. Furthermore, the above result holds under
the following more general "uniform inductive marginals" condition (analogous to the "uniform
marginals"):

@i,
ÿ

i,j

pi,j}yj}2 “ }Y }2Fr
mn

and @j,
ÿ

i,j

pi,j}xi}2 “ }X}2Fr
mn

. (9)

Remarks: If }xi} and }yj} are constant over i and j, then the above conditions (9) reduce to a
requirement of uniform marginal probabilities. Note that

?
r “ pM{?

d1d2q acts as a soft relaxation
of the rank of M since if M P FM and the entries of M are bounded by 1 then rankpMq § r. If
X “ I and Y “ I , then conditions (9) reduce to the uniform marginals condition from [23].

In particular, we see that in the case of identity side information, we require Opdr logprqq samples to
reach a given accuracy. However, the result above is deeper when the side information is non trivial.
Indeed, the quantity maxp

a
}XJX}}Y }2Fr,

a
}Y JY }}X}2Frq, which equals d “ maxpd1, d2q in the
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case of identity (or equal-size community) side information, is sensitive to the relative orientation of
the columns of X and Y : if the side information X and Y are properly scaled and approximately of
rank ⇢, then this quantity will approach ⇢. We discuss this in more details in the appendix.

To prove the above result, we will show a slightly more general result below (Prop 3.2). In order
to capture the interaction between the side information and the data-distribution, we must define a
distribution-dependent inner product x ., .yl (resp. x ., .yr) on the column space of X (resp. Y ):

For two vectors u
1
, u

2 P Rm (resp. v
1
, v

2 P Rn) we define xu1
, u

2yl “ ∞m
i“1 u

1
iu

2
i qi (resp.

xv1, v2yr “ ∞n
j“1 v

1
j v

2
jj) where the qis and js are defined by

qi “
nÿ

j“1

pi,j}yj}2 @i § m j “
mÿ

i“1

pi,j}xi}2 @j § n. (10)

We now define the vector �1 P Rd1 (resp. �2 P Rd2 ) as the vector of singular values of the matrix X

(resp. Y ) with respect to (w.r.t) the inner product x ., .yl (resp. x ., .yr). In other words, the entries
of �1 P Rd1 (resp. �2 P Rd2) are the square roots of the eigenvalues of the symmetric matrix L :“
X

J diagpqqX P Rd1ˆd1 “ ∞
i,j pi,jxix

J
i }yj}2 (resp. R :“ Y

J diagpqY “ ∞
i,j pi,jyjy

J
j }xi}2 P

Rd2ˆd2 ). We also write �
1
˚ “ maxp�1q and �

2
˚ “ maxp�2q.

Proposition 3.2. With the same notation as in Proposition 3.1, w.p. • 1 ´ � over the draw of the
training set ⌦:

lpZSq ´ lpZ˚q § 8`?
N

Mmaxp�1
˚,�

2
˚qp1 `

a
logp2dqq ` 12`

N
Mxyp1 ` logp2dqq ` b

c
logp2{�q

2N
.

Remarks: Note that both �
1 and �

2 scale as the product of the scaling of X and Y . The above result
shows that if the distribution is only approximately uniform (sampling probabilities within a given
ratio), then the bound is only penalised proportionately to this ratio: for identity side information,
r�1

˚s2 is the maximum user (marginal) probability which scales like 1{d1 for approximately uniform
marginals. Similarly �

2
˚ „ 1{d2, yielding a sample complexity bound of order dr logpdq as expected.

3.3 Proposed adjusted regularisers and notation

In this section, we introduce our adjusted trace norm regulariser and its variants. We first recall that in
standard (non-inductive) matrix completion, the weighted trace norm [26, 23] of a matrix Z is defined
as

?
DZ

?
E where D P Rmˆm (resp. E P Rnˆn) are diagonal matrices whose diagonal entries

contain the marginal row (resp. column) sampling probabilities. Regularising the weighted trace
norm instead of the standard trace norm increases performance [26] and leads to better theoretical
guarantees. In this work we extend those advantages to the setting where side information is available.

Notation: Recall � “ ∞
i,j pi,j}xi}2}yj}2. Our method is based on a careful distribution-dependent

rescaling of the matrix M . The idea is that we must look at the principal directions (singular vectors)
of the side information matrices, but computed with respect to a distribution-sensitive inner product:
when computing inner products of vectors in the column space of x, components corresponding
to highly users which are more likely to be sampled must be weighted more. Accordingly, we
diagonalise the matrix L “ X

J diagpqqX (resp. L “ Y
J diagpqY ) from above to write it P´1

DP

(resp. Q´1
EQ). We also define empirical versions of those quantities: p� “ 1

N

∞
i,j hi,j}xi}2}yj}2

where hi,j is the number of times that entry pi, jq was sampled: hi,j “ ∞N
o“1 1⇠o“pi,jq “ #p⌦ X

tpi, jquq; q̂i “ ∞
j

hi,j

N }yj}2, ̂j “ ∞
i
hi,j

N }xi}2, pL “ X
J diagpq̂qX , pR “ Y

J diagp̂qY , and their
diagonalisations pP´1 pD pP and pQ´1 pE pQ. We can now write our predictors

XMY
J “ XP

´1
D

1
2 rD´ 1

2PMQ
´1

E
´ 1

2 sE 1
2QY

J “ X pP´1 pD 1
2 r pD´ 1

2M pE´ 1
2 s pE 1

2 pQY
J
. (11)

The simplest version of our proposed algorithm is to regularise rD´ 1
2PMQ

´1
E

´ 1
2 s instead of M .

However, some extra technical modifications may be necessary: If some users or items have extremely
small sampling probability, the corresponding entries of D´ 1

2 and E
´ 1

2 will be very large. To obtain
good bounds, we tackle this issue by forcing the entries of D, pD,E, pE to be bounded below, which

7



we achieve via smoothing: fixing a parameter ↵ P r0, 1s, we define rD “ ↵D ` p1 ´ ↵q�I{d1 and
rE “ ↵E ` p1 ´ ↵q�I{d2 where I is the identity matrix. Similarly, qD “ ↵ pD ` p1 ´ ↵qp�I{d1 and
qE “ ↵ pE ` p1 ´ ↵q�̂I{d2.

We also define accordingly M
1 “ D

1
2PMQ

´1
E

1
2 ; xM “ pD 1

2 pPM pQ´1 pE 1
2 ; ÄM “ rD 1

2PMQ
´1 rE 1

2 ;
and |M “ qD 1

2 pPM pQ´1 qE 1
2 ; as well as similarly rX “ XP

´1 rD´ 1
2 , X 1 “ XP

´1
D

´ 1
2 , pX “

X pP´1 pD´ 1
2 , qX “ X pP´1 qD´ 1

2 , rY “ Y P
´1 rE´ 1

2 , Y 1 “ Y P
´1

D
´ 1

2 , pY “ Y pQ´1 pD´ 1
2 , qY “

Y pQ´1 qD´ 1
2 . Thus XMY

J “ X
1
M

1rY 1sJ “ rXÄM rY J “ pX xM pY J “ qX |M qY J
.

Proposed models: We then propose a variety of adjusted regularisation strategies as follows by
replacing the regularisation of M by that of M 1, ÄM , xM or |M depending on whether the ground truth
distribution is known and whether smoothing is desired. For instance, in the smoothed, empirical
case, we will solve the following optimization problem:

min
M

1

N

ÿ

⇠P⌦
lppXMY

Jq⇠, G⇠ ` ⇣⇠q ` �} qD 1
2 pPM pQ´1 qE 1

2 }˚. (12)

Remark: Similarly to the matrix case the smoothing parameter ↵ is set to 1
2 in all theorem statements

5. In the experiments, we vary ↵ as indicated.

We will prove results for the empirical risk minimiser belonging to the following function classes:
rFr :“

!
XMY

J : }ÄM}˚ § ?
r�

)
qFr :“

!
XMY

J : }|M}˚ § ?
rp�

)
, (13)

corresponding to the smoothed and smoothed empirical versions of our algorithm. Note that the
factors of � are added purely for convenience in the final formula, so that we can understand the final
formulae in terms of a soft concept of "rank". Indeed we have

} rD 1
2 }2Fr § d1

�

2d1
` 1

2
}
a
diagpqqX}2Fr “ p1{2q�` p1{2q

ÿ

i,u

X
2
i,u

ÿ

j

pi,j}yj}2 “ �, (14)

and similarly } rE 1
2 }2 § �. Thus if }M}8 § 1 and rankpMq § ⇢, we have }ÄM}˚ § ?

⇢}ÄM}Fr §
?
⇢

b∞
u,vr rD

1
2
u s2r rE

1
2
v s2M2

i,j § ?
⇢}M}8

b∞
u,vr rD

1
2
u s2r rE

1
2
v s2 § ?

⇢�. Similarly, }|M}˚ § ?
⇢p�

under the same condition.

3.4 Generalisation bounds for the smoothed adjusted trace norm

Although knowing the distribution is not realistic, it is instructive to see that one can obtain guarantees
of order Opdr logpdqq for the function class rFr as a reasonably straightforward extension of the ideas
developed for Proposition 3.2. The proof is provided in Appendix C.
Proposition 3.3. Let ÄMS “ argmin}ÄM}§?

r�

∞
⇠P⌦ lpp rXÄM rY Jq⇠, G⇠ ` ⇣⇠q be the trained matrix

ÄM and rZ˚ “ argminZP rFr
ElpZ⇠, G⇠ ` ⇣⇠q be the optimal rZ when the predictors are restricted to

the class rFr. Let also rZS “ rXÄMS
rY J. We have w.p. • 1 ´ �:

lp rZSq ´ lp rZ˚q § 16`
?
�

?
r
?
dp1 `

a
logp2dqq?

N
` 24`xy

?
d1d2rp1 ` logp2dqq

N
` b

c
logp2{�q

2N
.

3.5 Generalisation bounds for the smoothed empirically adjusted trace norm

Below is a more challenging result (proof in Appendix D) which concerns the function class qFr

corresponding to the empirically smoothed regulariser.
Theorem 3.2. Fix any target matrix G and distribution p. Define qZS “ argminpl̂SpZq : Z P qFrq
where l̂SpZq “ 1

N

∞
⇠P⌦ lpZ⇠, G⇠ ` ⇣⇠q. For any � P p0, 1q, w.p. • 1 ´ �

lp qZq § inf
ZP rFr

lpZq ` C
“
`
?
r�px ` yq2 ` b

‰
d

�2d logpd
� q

N
, (15)

5It is trivial to extend the proofs to arbitrary ↵ at the cost of a factor of 1{minp↵, 1 ´ ↵q.
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where � “ x2 y2

x2y2 and C is a universal constant. In particular, in expectation over the draw of the
training set we have

lp qZq § inf
ZP rFr

lpZq ` 2C
“
`
?
r�px ` yq2 ` b

‰
c

�2d logpdq
N

. (16)

The significance of this result is that even in the case of an arbitrary distribution, minimizing the
smoothed empirical adjusted nuclear norm }|M}˚ results in sample complexity bounds of order
dr logpdq, meaning that our distribution-dependent transformations have completely removed the
negative effects of non-uniformity on the sample complexity. Note the proof requires careful technical
variations compared to the proof of the comparable results in [23]. As an example, Lemma E.1 is the
equivalent of Lemma 2 in page 8 of the supplementary in [23] (whose proof is far shorter).

3.6 Variations on the optimization problems

As in the related literature ([19, 22] etc.), we worked with a bounded loss, and expressed our results
for the loss minimizer within a function class defined by explicit norm constraints. However, it is
also possible to modify the results (under some boundedness assumptions) to make them apply to
lagrangian formulations such as (18) (1), (2). In typical contexts where the entries are known to be
bounded, this can even be done with the square loss. As an example, we consider the following
immediate corollary of Proposition 3.3 and its global version C.1 (appendix):
Corollary 3.4. Assume that all of the entries of the ground truth are bounded by a constant C,
and that they are observed without noise. Let Z# “ XM#Y

J be the solution to the following
optimization problem:

min
M

} rD 1
2PMQ

´1 rE 1
2 }˚ subject to rXMY

Js⇠ “ G⇠ @⇠ P ⌦. (17)

Let �Cpxq “ signpxqminp|x|, Cq. For any `-Lipschitz loss l, we have (with probability • 1 ´ �)

lp�CpZ#qq § 8`
?
�

?
drGp1 `

a
logp2dqq?

N
` 12`xy

?
d1d2rGp1 ` logp2dqq

N
` 2C`

c
logp2{�q

2N
.

where rG is the smallest r such that the ground truth G satisfies G P rFr.

A further result which applies in the presence of noise is provided in Appendix H.

4 Experimental verification

In this section, we experimentally validate the advantages of our adjusted regularisation strategies
described in Subsection 3.3. In all experiments, we work with the square loss.

4.1 Experiments on synthetic data

We construct square data matrices in Rnˆn with a given rank r § d for several combinations of
n, d, r. We provide each model with d-dimensional side information spanning the row and column
spaces. The sampling distribution is a power-type law depending on ⇤ such that ⇤ “ 0 yields
uniform sampling (details in appendix). We compare three approaches: (1) Standard inductive matrix
completion with the side information matrices X,Y (IMC) (2) Our smoothed adjusted regulariser
�}ÄM} (for several values of ↵) (ATR)6; and finally (3) our smoothed empirically adjusted regulariser
�}|M} (for several values of ↵) (E-ATR). For each n P t100, 200u we evaluate the following d, r

combinations: p30, 4q, p50, 6q and p80, 10q. In order to study a meaningful data-sparsity regime, in
each case we sampled dr! entries where ! P t1, 2, 3, 4, 5u. We show the most representative results
here. More comprehensive results are provided in the supplementary material.

We observe that our methods outperform standard inductive matrix completion by significant margins
in many regimes, even in the case of uniform sampling. Furthermore, the empirical version of our
model actually often performs better than the exact one, which matches the observations made in [23]
in the case of standard matrix completion. More detailed results are reported in the appendix.

6Note that in this synthetic context, it is actually possible to compute ÄM since the distribution is known.
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Figure 1: Left: performance as a function of the data sparsity parameter ! for n, d, r “ 200, 80, 10.
Right: Performance on different n, d, r combinations for ! “ 4. Legend: parameter to the right is ↵.

Table 3: Results of real-world datasets (RMSE)
SoftImpute [6] IMCNF [19] E-ATR-0.5 E-ATR-0.75 E-ATR-1.0

Douban 0.9582 0.8197 0.7691 0.7614 0.8779
LastFM 2.4109 1.7612 1.6159 1.6943 2.3371
MovieLens 0.9280 0.9252 0.9056 0.9139 0.9262

4.2 Real data experiments

We evaluate the performance of our model on three real life datasets: Douban, LastFM and MovieLens
(further described in the supplementary). In real data we work with the following adjusted version of
the model in [19]:

min
M,Z

1

N

ÿ

pi,jqP⌦
lpXMY

J ` Z,Gi,j ` ⇣i,jq ` �1} qD 1
2 pPM pQ´1 qE 1

2 }˚ ` �2} qD
1
2
I Z

qE
1
2
I }˚ (18)

where qD, qE are defined as above based on the side information matrices X,Y , and qDI ,
qEI are defined

as qD, qE except based on the side information matrices pI, Iq. In particular, } qD1{2
I Z qE1{2

I }˚ “ } qZ}˚
is the smoothed weighted trace norm of Z in the sense of [23]. We report results in Table 3 and note
our method outperforms both SoftImpute and IMCNF, especially with appropriate smoothing.

5 Conclusion

In this paper, we have provided the first distribution-free bounds for approximate recovery in inductive
matrix completion with the trace norm with the following two desirable properties: (1) being non
vacuous for identity or community side information and (2) being completely independent of the
size of the matrix. We further presented an adjusted regularisation strategy which relies on a careful
rescaling along distribution-dependent directions that captures the interaction between the side
information matrices and the sampling distribution. Our bounds, which concern both the standard
regulariser (rate Opd3{2?

r logpdqq) and our adjusted version (rate Opdr logpdqq) are almost exactly
what one would obtain by replacing the size of the matrix with the size of the side information in
the standard matrix completion bound. Thus, we have bridged the large gap between the theoretical
guarantees for matrix completion and inductive matrix completion.

Broader impact

The work in this paper is theoretical and without any foreseeable significant societal impact.
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A Proof of Theorem 3.1

Preliminary discussion:
The following lemma from [1] was used in the proof in the non inductive case [2].
Lemma A.1 (Latała, 2005). Let X be a random matrix with independent, zero mean entries, we have

Ep}X}q § C`

¨

˝max
i

dÿ

j

EpX2
i,jq ` max

j

dÿ

i

EpX2
i,jq ` 4

dÿ

i,j

EpX4
i,jq

˛

‚,

where C` is a universal constant.

The proof of the result in [2] relies on this Lemma, which applies to random matrices with i.i.d. entries

and an elegant decomposition of the entries into two groups: (1) entries that have been sampled many
times, and (2) entries that have not been sampled too often. On group 1, the partial sums of the
Rademacher variables concentrate trivially (as the function is constant there), whilst on group 2, the
entries are well spread out and Lemma A.1 limits the spectral norm similarly to the uniform case.
The idea of the proof is to carefully tune those two contributions by adjusting the threshold involved
in the split.

In our inductive situation, directly using a similar splitting strategy can only yield bounds with
non-logarithmic dependence on n, or bounds of the type of equation (3) (which are well known
and vacuous when the side information is of comparable size to the matrix). To understand the
problem intuitively, it is helpful to think of the case of ’community side information’, where users
and items can be divided into equally-sized groups (’communities’) by partition functions cU :
t1, 2, . . . ,mu Ñ t1, 2, . . . , d1u and cI : t1, 2, . . . , nu Ñ t1, 2, . . . , d2u respectively, with the rating
of pi, jq depending only on the groups cU piq and cIpjq to which i and j belong respectively. If the
side information consists in indicator functions of the communities, simply applying known results
for standard matrix completion yields distribution-free bounds of order Opd

3{2?
rq (in this case

d “ maxpd1, d2q will be equal to the max number of communities), whilst applying existing IMC
results only yields bounds of order rd2.

Comparing the proof techniques in the MC and "IMC with communities" cases with this example
in mind, it becomes clear that the split should no longer be into frequently sampled entries and less
frequently sampled entries, but into frequently sampled communities and less frequently sampled
communities. To generalise this to arbitrary X,Y , we must define a concept of "frequently sampled"
combinations pX . ,u, Y . ,vq of columns of the side information matrices. In practice this corresponds
to a split between entries of XJ

RNY (where rRN si,j contains the sum of the Rademacher variables
corresponding to entry i, j) by high or low variance: we use the rotational invariance of the trace
operator and equivalently express the Rademacher averages in inductive space. However, the
entries of the resulting matrix are certainly not independent, which makes it impossible to apply the
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concentration results from [1]. Instead, we must rely again on the matrix Bernstein inequality F.4.
Obtaining a covariance structure that is amenable to application of this result requires performing an
iterative procedure involving series of distribution dependent rotational transformations of the side
information and other estimates at each step.

Proof of Theorem 3.1. The theorem follows immediately from the classic result (Theorem F.1) as
well as its variation F.2 together with the Rademacher complexity bound below (Theorem A.1).

Recall that for any x1, . . . , xN and any function class F we can define the (data dependent)
Rademacher complexity pRpx1,...,xnqpFq as

pRpx1,...,xnqpFq :“ E� sup
fPF

1

N

Nÿ

i“1

�ifpxiq, (A.1)

where the �i’s are i.i.d. Rademacher random variables (i.e. Pp�i “ 1q “ Pp�i “ ´1q “ 0.5).

Theorem A.1. Let X P Rmˆd1 and Y P Rnˆd2 be side information matrices. Consider the function

class

FM :“

"
XMY

J
ˇ̌
ˇ̌}M}˚ § M

*

We have the following bound on the expected Rademacher complexity of l ˝ FM:

Ex1,...,xN R pl ˝ FMq § b

c
2⇡

N
`

16xy`M ` `

N
logp2dq `

d
10`bxyM

?

d

N
 , (A.2)

where  “

„a
logp2dq `

b
logpNp20M2`

?

drx2y2s{b ` 1q

⇢
is a logarithmic quantity.

In other words,

ER pl ˝ FMq “ rO

¨

˝

d
`bxyM

?

d

N
`
`xyM
N

`
b

?

N

˛

‚ (A.3)

Before we proceed with the proof, we need to establish a few lemmas.
Lemma A.2 (Variation on Lemma 8 in [3]). Let r P N and suppose we are given r fixed matrices

E1, E2, . . . , Er P Rmˆn
with the property that |Eu|i,j § B for all u, i, j. Now consider the

following function class for a constant C P R`
:

FC :“

#
rÿ

u“1

�uEu : |�u| § C @u § r

+
. (A.4)

For any ✏ ° 0 there exists a cover C✏ Ä F with the following two properties:

1. For any Z P F there exists a rZ P C✏ such that for all pi, jq P rms ˆ rns we have

|Zi,j ´ rZi,j | § ✏

2.

|C✏| §

„
2CBr

✏
` 1

⇢r

(A.5)

Proof. We consider the following discretised version of F for an ✏1 which will be determined later:

D✏1 :“

#
rÿ

u“1

pu✏
1
Eu

ˇ̌
p@uq pu P Z ^ |pu✏

1
| § C

+
(A.6)

Let Z P F . We can write Z “
∞r

u“1 �uEu for some �us. Let rZ “
∞r

u“1 signp�uq

Y
|�u|
✏1

]
✏

1
Eu.
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Note that rZ P D✏1 . Furthermore, for any i, j we have
ˇ̌
ˇZi,j ´ rZi,j

ˇ̌
ˇ “

ˇ̌
ˇ̌
ˇ

rÿ

u“1

rEusi,j

„
�u ´ signp�uq

Z
|�u|

✏1

^
✏

1
⇢ˇ̌

ˇ̌
ˇ (A.7)

§ B

rÿ

u“1

✏
1

“ Br✏
1
. (A.8)

Thus, setting ✏1
“

✏
Br , we obtain that C✏ :“ D✏1 is indeed a uniform ✏-cover of F w.r.t. to the L

8
norm (over the whole sample space rms ˆ rns).

Finally, it is trivial to calculate that

|C✏1 | “

„
2C

✏1 ` 1

⇢r

“

„
2CBr

✏
` 1

⇢r

, (A.9)

as expected.

The following useful result is an immediate consequence of the McDiarmid inequality. A similar
result was presented in [4] (cf. Theorem 11 page 469) for the expected Rademacher complexity.
Lemma A.3. For any fixed x1, . . . , xN and any function class F mapping to r´1, 1s we have with

probability • 1 ´ � over the draw of the Rademacher variables �1, . . . ,�N ,

ˇ̌
ˇ̌
ˇsupfPF

1

N

Nÿ

i“1

�ifpxiq ´ pRpx1,...,xnqpFq

ˇ̌
ˇ̌
ˇ §

c
2 logp2{�q

N
. (A.10)

We now present the following result, of great importance to the proof of Theorem A.1, and which
may be of independent interest. It may be viewed as a modification of Dudley’s Entropy theorem F.6
entertwined with Talagrand’s concentration Lemma.
Proposition A.4. Let F1,F2 : X Ñ R be two function classes, let l : R2

Ñ r´1, 1s be a bounded

loss function with Lipschitz constant `.

Assume that the function class F1 has the property for all ✏, it has a uniform cover of size N pF1, ✏q,

where N pF1, ✏q is some function of ✏. That is to say, there is a cover Cp✏q of size N pF1, ✏q such that

for all f1 P F1 there exists f̃1 P Cp✏q such that for all x P X we have

ˇ̌
ˇf1pxq ´ f̃1pxq

ˇ̌
ˇ § ✏. (A.11)

Define the function class F “ tf1 ` f2|f1 P F , f2 P F2u.

For all ✏ and for any training set x1, . . . , xN , we have the following bound on the (expected)

Rademacher complexity of the function class l ˝ F:

pRpl ˝ Fq § `✏` 2`pRpF2q `

c
logpN pF1, ✏qq

N
`

c
2⇡

N
. (A.12)

In particular, the above also holds for the expected Rademacher complexity after taking expectations.

Remark: The requirement on the cover Cp✏q is quite strong: we require that one fixed cover be an
✏-cover w.r.t. the l

8 norm for any training set. However, this condition can be satisfied when the
function class considered is parametric and globally Lipschitz, as is the case in our application of the
result to the proof of Theorem A.1.

Proof. Fix an ✏ ° 0 and let Cp✏q be a uniform ✏ cover of F1. By the Lipschitz property we have for
any � “ p�1,�2 . . . ,�N q:

sup
fPF

1

N

Nÿ

i“1

�ilpfpxiq, yiq (A.13)
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“ sup
f1PF

sup
f2PF2

1

N

Nÿ

i“1

�ilpfpxiq, yiq (A.14)

“ sup
f1PF

sup
f2PF2

1

N

Nÿ

i“1

�ilpf̃1pxiq ` rf1 ´ f̃1spxiq ` f2pxiq, yiq (A.15)

§ sup
f1PF

sup
f2PF2

1

N

Nÿ

i“1

�ilpf̃1pxiq ` f2pxiq, yiq (A.16)

` sup
f1PF

sup
f2PF2

1

N

Nÿ

i“1

�i

”
lprf1 ´ f̃1spxiq ` f̃1pxiq ` f2pxiq, yiq ´ lpf̃1pxiq ` f2pxiq, yiq

ı
(A.17)

§ sup
f1PF

sup
f2PF2

1

N

Nÿ

i“1

�ilpf̃1pxiq ` f2pxiq, yiq ` `✏, (A.18)

where at the last line we have used the fact that l is `-Lipschitz and that Cp✏q is an L
8 cover for any

dataset, including x1, x2, . . . , xN .

Now, observe that for all f̃1 P Cp✏q and for our fixed training set x1, . . . , xN we can apply Lemma A.3
to the function class

lf̃1
˝ F2 :“

!
rlpf̃1pxiq ` f2pxiqq, yis

N
i“1

ˇ̌
f2 P F2

)
.

Thus, for any � ° 0, we have w.p. • 1 ´ � over the draw of the Rademacher variables,
ˇ̌
ˇ̌
ˇ supf2PF2

1

N

Nÿ

i“1

�ilpf̃1pxiq ` f2pxiq, yiq ´ E� sup
f2PF2

1

N

Nÿ

i“1

�ilpf̃1pxiq ` f2pxiq, yiq

ˇ̌
ˇ̌
ˇ (A.19)

“

ˇ̌
ˇ̌
ˇ supf2PF2

1

N

Nÿ

i“1

�ilpf̃1pxiq ` f2pxiq, yiq ´ pRplf̃1
˝ F2q

ˇ̌
ˇ̌
ˇ (A.20)

§

c
2 logp2{�q

N
(A.21)

where at the second line we have simply defined pRplf̃1
˝ F2q :“ E� supf2PF2

1
N

∞N
i“1 �ilpf̃1pxiq `

f2pxiq, yiq.

Now, composing inequality (A.21) with a union bound over all possible choices of f̃1 P Cp✏q we have
that for all � ° 0, w.p.• 1 ´ �, every f̃1 P Cp✏q satisfies

ˇ̌
ˇ̌
ˇ supf2PF2

1

N

Nÿ

i“1

�ilpf̃1pxiq ` f2pxiq, yiq ´ pRplf̃1
˝ F2q

ˇ̌
ˇ̌
ˇ (A.22)

§

c
logpN pF1, ✏qq ` 2 logp2{�q

N
(A.23)

§

c
2 logp2{�q

N
`

c
logpN pF1, ✏qq

N
. (A.24)

Now, note that for any choice of f̃1, we can apply the Talagrand contraction Lemma(cf. [4] (Theorem
12 page 469), [5] (corollary 3.17) , [6](Lemma 8 page 1 of supplementary)) to the function class
Rplf̃1

˝ F2q to obtain (for any f̃1):

pRplf̃1
˝ F2q § 2`pRpF2q. (A.25)

Plugging Equations (A.24) and A.25 back into equation (A.18), we have that w.p. • 1 ´ �,

sup
fPF

1

N

Nÿ

i“1

�ilpfpxiq, yiq § `✏` 2`pRpF2q `

c
2 logp2{�q

N
`

c
logpN pF1, ✏qq

N
. (A.26)
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The only thing left to do is a simple integration over �: let X denote the random variable

X :“ sup
fPF

1

N

Nÿ

i“1

�ilpfpxiq, yiq ´ `✏´ 2`pRpF2q ´

c
logpN pF1, ✏qq

N
. (A.27)

By equation (A.26) we have for all " ° 0

PpX • "q § 2 exp

ˆ
´
"
2
N

2

˙
. (A.28)

Integrating over " we obtain

EpXq §

ª 8

0
2 exp

ˆ
´
"
2
N

2

˙
d" (A.29)

“
2

?
2

?

N

ª 8

0
expp´✓

2
qd✓ “

c
2⇡

N
. (A.30)

Plugging this equation (A.29) back into the definition of X (eq. (A.27)) we obtain:

pRpl ˝ Fq § `✏` 2`pRpF2q `

c
logpN pF1, ✏qq

N
`

c
2⇡

N
, (A.31)

as expected.

Proof of Theorem A.1. Let ⇠1, . . . , ⇠n be sampled i.i.d from the sampling distribution D on
t1, 2, . . . ,mu ˆ t1, 2, . . . , nu. Let s1, s2, . . . , sN be iid Rademacher random variables. For any
element of ⇠ P t1, 2, . . . ,mu ˆ t1, 2, . . . , nu we also write e⇠ for the matrix with all entries equal to
0 except the entry corresponding to ⇠, which is set to 1.

Define the Rademacher matrix RN :“
∞N

o“1 e⇠oso. Define also U “ X
J
RNY . This is a random

variable.

We begin with the following easy observations:

Tr
`
EpUU

J
q
˘

“ Tr
`
EpU

J
Uq

˘
“

d1ÿ

u“1

d2ÿ

v“1

EpU
2
u,vq

“

ÿ

u,v

ÿ

i,j

pi,jpXi,uq
2
pYjvq

2
“ N

ÿ

i,j

pi,j}xi}
2
}yj}

2

“ N�. (A.32)

Note also that for any M ,
@
XMY

J
, RN

D
“ xM,Uy.

We will now need to iteratively define a sequence of matrices U
k
, Ū

k
, M̄

k
, V̄

k
P Rd1ˆd2 and

Tk for k “ 0, 1, . . . ,K for some stopping time K. The whole construction depends on a real
parameter p ° 0 which will be chosen later. It is important to note that although the construction of
U

k
, Ū

k
, M̄

k
, V̄

k also depends on the sampling distribution D, it is a deterministic construction and
does not depend on the data (the same is true of M̄k for a given core matrix M ).

Tk is a sequence of reals defined by Tk “ Ep}Ū
k
}
2
Frq

First, we set Ū0
“ V̄

0
“ U, M̄

0
“ M (and T0 “ N�).

Assuming that Ūk and M̄
k have been defined already, we define the next iteration as follows.

We first obtain an orthogonal matrix A
k

P Rd1ˆd1 (resp. B
k

P Rd2ˆd2) which diagonalises
EpŪ

k
pŪ

k
q

J
q (resp. EppŪ

k
q

J
Ū

k
q) so that EpŪ

k
pŪ

k
q

J
q “ pA

k
q

´1
D1A

k and EppU
k
q

J
pU

k
qq “

pB
k
q

´1
D2B

k for some diagonal matrices D1, D2.

Now, we define

V̄
k`1

“ A
k
Ū

k
B

k (A.33)
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M̄
k`1

“ A
k
M̄

k
B

k
. (A.34)

Now, by construction of the matrices A
k`1 and B

k`1, the matrices EppV̄
k`1

qrV̄
pk`1q

s
J

q and
EprV̄

pk`1q
s
J
V̄

k`1
q are both diagonal. We now split according to two cases: Case 1:

VarpV̄ k`1
u,v q § p @u, v (A.35)

Case 2: equation (A.35) does not hold, i.e. there exists uk`1, vk`1 P Rd1ˆd2 with VarpV̄ k`1
uk`1,vk`1

q °

p.

In case 1, we end the procedure and set K “ k. In case 2, we set

Ū
k`1

“ V̄
k`1

´ euk`1,vk`1 V̄
k`1
uk`1,vk`1

(A.36)

(i.e. Ūk`1 is identical to V̄
k`1 on all entries except puk`1, vk`1q where it is set to zero.)

The procedure repeats until case 1 occurs. Note that since the only operations on M̄ are from
equation (A.34) we have that M̄k

“ A
k´1

A
k´1

. . . , A
0
MB

0
B

1
. . . B

k´1
“ Ā

k´1
MB̄

k´1 where
Ā

k´1 (resp. B̄k´1) denotes the orthogonal matrix A
k´1

A
k´1

. . . A
0 (resp. B0

B
1
. . . B

k´1). Finally,
we define

U
k

“

k´1π

i“0

rA
i
s
´1

Ū
k

0π

i“k´1

rB
i
s
´1

“ rĀ
k´1

s
´1

Ū
k
rB̄

k´1
s
´1

. (A.37)

Now, observe that by the rotational invariance of the Frobenius norm and the nuclear norms:

}M̄
k
}˚ “ }M}˚ (A.38)

Ep}V̄
k`1

}
2
Frq “ Ep}Ū

k
}
2
Frq “ Ep}U

k
}
2
Frq “ Tk (A.39)

and therefore for all k § K ´ 1:

Tk`1 “ Ep}U
k`1

}
2
Frq “ Tk ´ VarpV k`1

uk`1,vk`1
q § Tk ´ p. (A.40)

In particular, since T0 “ Ep}U}
2
Frq “ �N is finite, the procedure must finish in finite time K with

K §
�N

p
. (A.41)

Now, Uk is of course only the reexpression of Ūk in the original orthogonal basis: in particular by
the rotational invariance of the Frobenius inner product we have

xM,U
k
y “ xM̄

k
, Ū

k
y.

Further, we can express the recurrence relations (A.36) and (A.33) directly in this original orthogonal
basis in terms of transformations on the U

ks:

U
k`1

“ rĀ
k
s
´1

Ū
k`1

rB̄
k
s
´1 (A.42)

“ rĀ
k
s
´1

”
V̄

k`1
´ euk`1,vk`1 V̄

k`1
uk`1,vk`1

ı
rB̄

k
s
´1 (A.43)

“ rĀ
k
s
´1

“
A

k
Ū

k
B

k
´ euk`1,vk`1xA

k
Ū

k
B

k
, euk`1,vk`1y

‰
rB̄

k
s
´1 (A.44)

“ rĀ
k
s
´1

“
A

k
Ā

k´1
U

k
B̄

k´1
B

k
´ euk`1,vk`1xA

k
Ū

k
B

k
, euk`1,vk`1y

‰
rB̄

k
s
´1 (A.45)

“ rĀ
k
s
´1

“
Ā

k
U

k
B̄

k
´ euk`1,vk`1xĀ

k
U

k
B̄

k
, euk`1,vk`1y

‰
rB̄

k
s
´1 (A.46)

“ U
k

´ xĀ
k
U

k
B̄

k
, euk`1,vk`1yrĀ

k
s
´1

euk`1,vk`1rB̄
k
s
´1 (A.47)

“ U
k

´ xU
k
, rĀ

k
s
´1

euk`1,vk`1rB̄
k
s
´1

yrĀ
k
s
´1

euk`1,vk`1rB̄
k
s
´1 (A.48)

“ U
k

´ xU
k
, EkyEk, (A.49)

where at the second line (A.43) we have used equation (A.36), at the third line (A.44) we have used
equation (A.33), at the fourth line (A.45) we have used equation (A.37), at the fifth line (A.46) we
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have used equation (A.37) again as well as a simplification via the definitions of Āk and B̄
k, at the

seventh line (A.48) we have used properties of the Frobenius inner product, and at the eighth and last
line (A.49) we have defined Ek “ rĀ

k
s
´1

euk`1,vk`1rB̄
k
s
´1. Note again crucially that the Eks are

deterministic matrices.

Now, we write P for the (projection) operator Pk : Rd1ˆd2 Ñ Rd1ˆd2 : W fiÑ xW,Eky. Then
equation (A.49) can be written

U
k`1

“ pI ´ PkqU
k
, (A.50)

where I denotes the identity operator from Rd1ˆd2 to itself. Iterating, we obtain for all k

U
k

“

k´1π

i“0

pI ´ PiqU. (A.51)

Note that both Pk and pI ´ Pkq are self-adjoint. Hence, we can write

@
M,U

k
D

“

C
M,

k´1π

i“0

pI ´ PiqU

G
(A.52)

“

C
0π

i“k´1

pI ´ PiqM,U

G
(A.53)

“
@
M

k
, U

D
, (A.54)

where at the last line we have defined M
k

“
±0

i“k´1pI ´ PiqM .

Now, note that we can write

M
k

“

0π

i“k´1

pI ´ PiqM (A.55)

“ M ´

k´1ÿ

u“0

Pu

u`1π

i“k´1

pI ´ PiqM (A.56)

“ M ´

k´1ÿ

u“0

Eu

C
Eu,

u`1π

i“k´1

pI ´ PiqM

G
(A.57)

“ M ´

k´1ÿ

u“0

Eu�
k
upMq, (A.58)

where we have defined �kupMq :“
A
Eu,

±u`1
i“k´1pI ´ PiqM

E
. Note that }Eu}Fr “ }Eu} “ 1

and since each operator pI ´ Piq is a projection and in particular a contraction with respect to the
Frobenius norm we have that }

±u`1
i“k´1pI ´ PiqM}Fr § }M}Fr § }M}˚. Hence for any M with

}M}˚ § M we have for any u † k § K:
ˇ̌
�
k
upMq

ˇ̌
§ M. (A.59)

We note that by construction, the matrix V̄
K`1

“ A
k
Ū

k
B

k
“ A

k
rĀ

k´1
sU

k
B̄

k´1
B

k, has the
property that EppV̄

K`1
qrV̄

pK`1q
s
J

q and EprV̄
pK`1q

s
J
V̄

K`1
q are both diagonal, and

VarpV̄ k`1
u,v q § p @u, v (A.60)

Thus, we have
››rU

K
srU

K
s
J›› “

›››EppV̄
K`1

qrV̄
pK`1q

s
J

q

››› § pd2 § pd, (A.61)
››rU

K
s
J

rU
K

s

›› “

›››EprV̄
pK`1q

s
J
V̄

K`1
q

››› § pd1 § pd. (A.62)
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We now have the tools to proceed with the proof of the equation (A.2).

We define the following function classes:

F1 :“

#
K´1ÿ

k“0

�kXEkY
J

ˇ̌
ˇ̌
ˇ|�k| § M

+
(A.63)

F2 :“

#
X

«
0π

i“K´1

pI ´ PiqM

�
Y

J
ˇ̌
ˇ̌
ˇ}M}˚ § M

+
. (A.64)

By the constructions above and in particular equation (A.59) we have F Ä F1 ` F2. Furthermore,
also by the construction of Uk etc., we can bound the Rademacher complexity of F2:

E⇠1,...,⇠N pRpF2qq “ E sup
}M}˚§M

C
X

«
0π

i“K´1

pI ´ PiqM

�
Y

J
, RN

G
(A.65)

“ E sup
}M}˚§M

C«
0π

i“K´1

pI ´ PiqM

�
, X

J
RNY

G
(A.66)

“ E sup
}M}˚§M

C«
0π

i“K´1

pI ´ PiqM

�
, U

G
(A.67)

“ E sup
}M}˚§M

@
M,U

K
D

(A.68)

§ ME
`
}U

K
}
˘

(A.69)

where as usual } .} denotes the spectral norm.

Now, observe that

U
K

“

K´1π

i“0

pI ´ PiqU “

Nÿ

o“1

K´1π

i“0

pI ´ PiqX
J
e⇠oY (A.70)

“

Nÿ

o“1

so

K´1π

i“0

pI ´ Piqx⇠o1y
J
⇠o2
, (A.71)

which is a sum of i.i.d centred random matrices. Thus we can apply Proposition (F.4) to it. The value
of "M" in that proposition is clearly bounded by xy (indeed, for all i, j, }xiy

J
j }Fr “ }xiy

J
j } § xy,

the operator
±K´1

i“0 pI´Piq is a contraction with respect to the Frobenius norm, and the spectral norm
is certainly bounded by the Frobenius norm). A bound on the value of "�" from Proposition (F.4)
follows from our iterative construction and in particular from equations (A.61) which ensure that "�"
is bounded by

?
pd:

Nÿ

o“1

⇢
2
o §

a
pd. (A.72)

It follows by an application of Proposition (F.4) to equation (A.69) that

NE⇠1,...,⇠N pRpF2qq § ME
`
}U

K
}
˘

(A.73)

§

a
8{3p1 `

a
logp2dqqM

a
pd ` M8xy

3
p1 ` logp2dqqq. (A.74)

On the other hand, a simple application of Lemma A.2 tells us that F1 admits a uniform L
8 cover

C1{N (w.r.t. the whole sample space), of granularity 1{N with

N8pF1, 1{Nq “

ˇ̌
C1{N

ˇ̌
§ r2NMxyK ` 1s

K
§ rNp2MxyK ` 1qs

K
, (A.75)

since the maximum entry of Eu is bounded by xy for any u.
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By Proposition A.4 (rescaled taking into account the bound b on the loss function) we have for any
training set

pRN pl ˝ Fq § `✏` 2`pRN pF2q ` b

c
logpF8pF1, 1{Nqq

N
` b

c
2⇡

N
. (A.76)

Taking expectations with respect to the training set on both sides and then applying equation (A.75)
and (A.74) we obtain:

Er pRN pl ˝ Fqs §
`

N
` 2`Ep pRN pF2qq ` b

c
logpF8pF1, 1{Nqq

N
` b

c
2⇡

N
(A.77)

§
`

N
`

2`M
N

„a
8{3p1 `

a
logp2dqq

a
pd `

8xy

3
p1 ` logp2dqqq

⇢
(A.78)

` b

c
K logpNp2MxyK ` 1qq

N
` b

c
2⇡

N
(A.79)

§ b

c
2⇡

N
`

`

N
`

10`M
N

a
logp2dq

a
pd `

16xy`M
N

logp2dq (A.80)

` b

d
� logpNp2Mxy�N{p ` 1qq

p
(A.81)

§ b

c
2⇡

N
`

`

N
`

10`M
N

a
logp2dq

a
pd `

16xy`M
N

logp2dq (A.82)

` b

d
x2y2 logpNp2Mxyrx2y2sN{p ` 1qq

p
, (A.83)

where at line (A.81) we have plugged in the bound for K from equation (A.41) and at line (A.83) we
have used the fact that � § x2y2.

We can finally set the value of p, to balance the two contributions in equation (A.81) above: we set

p :“
xyNb

10M`
?

d
, (A.84)

which plugged into equation (A.83) gives

ErRN pl ˝ Fqs (A.85)

§ b

c
2⇡

N
`

16xy`M ` `

N
logp2dq `

10`M
N

a
logp2dq

a
pd` (A.86)

b

d
x2y2 logpNp2Mrx3y3sN{p ` 1qq

p
(A.87)

§ b

c
2⇡

N
`

16xy`M ` `

N
logp2dq` (A.88)

d
10`bxyM

?

d

N

„a
logp2dq `

b
logpNp20M2`

?

drx2y2s{b ` 1q

⇢
, (A.89)

as expected.

B Proof of Propositions 3.1 and 3.2

Proposition 3.2 is included in the wordier version B.1 and proved below.
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Proposition B.1. W.p.• 1 ´ � for all M with }M} § M:

E
“
lppXMY

J
q⇠, G⇠q

‰
´

1

N

ÿ

⇠P⌦
lppXMY

J
q⇠, G⇠q (B.1)

§
4`

?

N
Mmaxp�

1
˚,�

2
˚qp1 `

a
logp2dqq `

6`

N
Mxyp1 ` logp2dqq ` b

c
logp2{�q

2N
,

thus as long as N • 9rxy{maxp�
1
˚,�

2
˚qs

2
p1 ` logp2dqq, we have with probability • 1 ´ � over the

draw of the training set S

E
“
lppXMY

J
q⇠, G⇠q

‰
´

1

N

ÿ

⇠P⌦
lppXMSY

J
q⇠, G⇠q (B.2)

§
6`Mmaxp�

1
˚,�

2
˚qp1 `

a
logp2dqq

?

N
` b

c
logp2{�q

2N
.

Proof of Proposition B.1. We will show the following bound on the Rademacher complexity of the
function class FM :“ tXMY

J : }M} § Mu

EpRq §
1

?

N
M

c
8

3
maxp�

1
˚,�

2
˚qp1 `

a
logp2dqq `

1

N
M8

3
xyp1 ` logp2dqq (B.3)

and for N • 9rxy{maxp�
1
˚,�

2
˚qs

2
p1 ` logp2dqq:

EpRq §
3Mmaxp�

1
˚,�

2
˚qp1 `

a
logp2dqq

?

N
, (B.4)

The claims then follow from Theorem F.1, together with Talagrand’s contraction Lemma.

Now, by the circular properties of the trace and the duality between the nuclear and spectral norms,
writing F for the matrix with Fi,j :“

∞N
o“1 �o1⇠0“pi,jq,

„
1

N
xXMY

J
, F y

⇢
“

1

N
TrppXMY

J
q

J
F q “

1

N
TrpYM

J
X

J
F q “

1

N
TrpXJ

FYM
J

q

“
1

N
xX

J
FY,My § }M}˚}X

J
FY }. (B.5)

RpFMq “ E sup
}M}˚§M

„
1

N
xXMY

J
, F y

⇢

§
M
N

Ep}X
J
FY }q. (B.6)

The term Ep}X
J
FY }q can be written as

∞N
o“1 �ox⇠

o
1
y

J
⇠o2

“
∞N

o“1 �oxioy
J
jo , thus, we can prove

concentration inequalities for it using the non commutative Bernstein inequality (Proposition (F.4)).

We first note that for all i, j, }xiy
J
j } § xy. Furthermore, we have Epi,jq„p

`››rxiy
J
j srxiy

J
j s

J››˘
“

}
∞

i,j pi,jxiy
J
j yjx

J
i } “ }

∞
i,j pi,jxix

J
i }yj}

2
} “ }

∞
i xix

J
i qi} “ }rL} “ p�

1
˚q

2, and similarly,
Epi,jq„p

`››rxiy
J
j s

J
rxiy

J
j s

››˘
“ p�

2
˚q

2.

Using this together with Proposition (F.4) we obtain

Ep}X
J
FY }q §

?

N

c
8

3
maxp�

1
˚,�

2
˚qp1 `

a
logp2dqq `

8

3
xyp1 ` logp2dqq. (B.7)

Plugging this back into equation (B.6), we obtain

EpRq §
1

?

N
M

c
8

3
maxp�

1
˚,�

2
˚qp1 `

a
logp2dqq `

1

N
M8

3
xyp1 ` logp2dqq (B.8)
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(which yields (B.3)) and as long as N • 9rxy{maxp�
1
˚,�

2
˚qs

2
p1 ` logp2dqq,

EpRq §
1

?

N
M

c
8

3
maxp�

1
˚,�

2
˚qp1 `

a
logp2dqq `

1
?

N
Mmaxp�

1
˚,�

2
˚q

a
1 ` logp2dq

§
3Mmaxp�

1
˚,�

2
˚qp1 `

a
logp2dqq

?

N
, (B.9)

as expected. This establishes equation (B.4) and the claim follows from Talagrand’s concentration
lemma and the Rademacher Theorem F.1.

Proposition 3.1 follows from the more general result below.
Proposition B.2. Let us write FM for the function class corresponding to matrices of

the form XMY
J

with }M}˚ § M. Assume uniform sampling and write K :“

max

„b
d1

}XJX}
m

}Y }2Fr
n ,

b
d2

}Y JY }
n

}X}2Fr
m

⇢
.

We have with probability • 1 ´ �, for all M P FM:

E
“
lppXMY

J
q⇠, G⇠ ` ⇣⇠q

‰
´

1

N

ÿ

⇠P⌦
lppXMY

J
q⇠, G⇠ ` ⇣⇠q

§
4`K

?

rdp1 `

a
logp2dqq

?

N
`

6`

N
Mxyp1 ` logp2dqq ` b

c
logp2{�q

2N
, (B.10)

where
?
r “ pM{

?
d1d2q and b is a bound on the loss.

Similarly, as long as

N • 9

«?

dxy

K

�2

p1 ` logp2dqq (B.11)

we have with probability • 1 ´ � over the draw of the training set S, for all a M P FM:

E
“
lppXMY

J
q⇠, G⇠ ` ⇣⇠q

‰
´

1

N

ÿ

⇠P⌦
lppXMY

J
q⇠, G⇠ ` ⇣⇠q

§
6`pM{

?
mnqmaxp

a
}XJX}}Y }

2
Fr,

a
}Y JY }}X}

2
Frqp1 `

a
logp2dqq

?

N
` b

c
logp2{�q

2N

“
6`K

?

rdp1 `

a
logp2dqq

?

N
` b

c
logp2{�q

2N
. (B.12)

Furthermore, the above result holds under the following more general "uniform inductive marginals"

condition (analogous to the "uniform marginals"):

@i,

ÿ

i,j

pi,j}yj}
2

“
}Y }

2
Fr

mn
and @j,

ÿ

i,j

pi,j}xi}
2

“
}X}

2
Fr

mn
. (B.13)

Proof of Proposition B.2. In this case, let us simply compute the values of �1
˚ and �2

˚. We have, by
definition, qi “

∞
j pi,j}yj}

2, thus under conditions (B.13), qi “
}Y }2Fr
mn for all i, and therefore

p�
1
˚q

2
“ }rL} “

}X
J
X}}Y }

2
Fr

mn
. (B.14)

Similarly, we have j “
}X}2Fr
mn for all j and

p�
2
˚q

2
“ } rR} “

}Y
J
Y }}X}

2
Fr

mn
. (B.15)

Plugging equations (B.14) and (B.15) into the first result (B.2) yields inequality (B.12) as expected.
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Remark: The sample complexity provided by Proposition B.2 above scales like
Opp1{✏

2
qrrK2

d logpdqsq where ✏ is the tolerance in terms of expected loss. In the case of iden-
tity side information we recover the result of Oprrd logpdqs{✏

2
q from [7]. In the inductive case, the

result is similar but with the correction term offered by K2, which makes the bound better when the
side information has lower effective dimension.

For instance, suppose d1 “ d2, m “ n and the dimensions of X and Y are both k ! d, and the top
left k ˆ k entries of X and Y form an identity matrix, with all other entries of X and Y being zero.
Suppose also we are in the uniform sampling scenario. We then have that K2

“ k
2
{d

2, yielding
a sample complexity Oprdrk

2
{d

2 logpdqs{✏
2
q “ Oprkr

k
d logpdqs{✏

2
q, which is counter-intuitively

tight because of the extra factor of k
d . Indeed, it would appear the problem is similar to the uniform

sampling case with identity side information and a k ˆ k matrix, which should yield a bound of
Opkr logpkqq, but not better.

However, this factor comes from the scale parameter ✏. Indeed, recall that the expected error is
computed with respect to the sampling distribution in both cases. In this example, every entry pi, jq

where either xi “ 0 or yj “ 0 is known to be equal to zero. This means that we only need ✏d2{k
2

accuracy on the non zero entries to reach ✏ accuracy overall. However, only k
2
{d

2 entries are usable
(corresponding to xi ‰ 0 and xj ‰ 0). This means if we were using an optimal strategy, we would
actually have a sample complexity of Op

k2

d2 k logpkqq. Our own sample complexity is actually slightly
worse than that due to the smoothing procedure, which ensures stability and theoretical guarantees,
but deprives us of a small part of the advantages of the weighting and adjustment. It is worth noting
that this slight limitation is similar to an analogous weakness in the results of [7]: indeed, even in the
MC case treated in that reference, the smoothed weighted trace norm 1 (which requires knowledge of
the distribution) yields bounds of order Oprn logpnqq. That is the case even if the (known) distribution
happens to be supported on a subset of the matrix with size ñ ˆ ñ where ñ ! n, despite the fact that
a direct application of the result to the smaller matrix would yield better bounds in this case. It is
interesting but challenging to consider the possibility of extending both our results and those of [7] to
cover for these effects.

C Proof of Proposition 3.3

Proposition 3.3 follows from the wordier result below:

Proposition C.1 (Long version of proposition 3.3). W.p. • 1 ´ �, for all M P rFr:

E
“
lppXMY

J
q⇠, G⇠ ` ⇣⇠q

‰
´

1

N

ÿ

⇠P⌦
lppXMY

J
q⇠, G⇠ ` ⇣⇠q (C.1)

§
8`

?

�
?
r
?

dp1 `

a
logp2dqq

?

N
`

12`xy
?
d1d2rp1 ` logp2dqq

N
` b

c
logp2{�q

2N
.

Further, as long as N • minpd1, d2q
18x2y2

� p1 ` logp2dqq, we have with probability • 1 ´ � over

the draw of the training set S for all M P rFr

E
“
lppXMY

J
q⇠, G⇠q

‰
´

1

N

ÿ

⇠P⌦
lppXMY

J
q⇠, G⇠q

§
12`

?

�
?
r
?

dp1 `

a
logp2dqq

?

N
` b

c
logp2{�q

2N
, (C.2)

Proof. This follows from a careful application of the Proposition B.1 to a modified problem where
the side information matrices X and Y are replaced by XP

´1 rD´ 1
2 and Y Q

´1 rE´ 1
2 .

Let ✓pxq, ✓p�
1
˚q (etc.) denote the value taken by x, �1

˚ (etc.) after the substitution above. Thus, we
only need to show that replacing the values of the quantities appearing in formula (B.2) by their new
values (computed below gives the formula (C.2)).

1The exact, non-empirical version
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We have ✓pxq “ }rXP
´1 rD´ 1

2 s
J

}2,8 § x} rD´ 1
2 } §“ x

b
2d1

� . And similarly, ✓pyq § y
b
2d2

� .
We also have ✓pMq “

?
r�.

One trickier computation is that of ✓p�
1
˚q and ✓p�

2
˚q:

✓p�
1
˚q is the spectral norm of the matrix ✓pXq “ XP

´1 rD´ 1
2 evaluated with respect to the post-

substitution inner product x, y✓plq. Note that the new values ✓pqiq and ✓piq for j and qj have the
following properties:

✓pqiq “

ÿ

j

pi,j}✓pyjq}
2

“

ÿ

j

pi,j}yjQ
´1 rE 1

2 }
2

§

ÿ

j

pi,j}yj}
2
} rE 1

2 }
2

§
2qid2
�

, (C.3)

and similarly

✓pjq §
2jd1
�

.

In particular, for any vector v P Rm we have

}v}
2
✓plq “ xv, vy✓plq “ v

J diagp✓pqqqv § v
J diagpqqv

2d2
�

§ }v}
2
l
2d2
�

, (C.4)

and similarly for vectors in Rn with a factor of 2d1
� .

As a result we can compute:

✓p�
1
˚q

2
“ }✓pXq

J diagp✓pqqqp✓pXqq}

“ }pXP
´1 rD´ 1

2 q
J diagp✓pqqqpXP

´1 rD´ 1
2 q}

§
2d2
�

}pXP
´1 rD´ 1

2 q
J diagpqqpXP

´1 rD´ 1
2 q}

“
2d2
�

} rD´ 1
2P rP

´1
DP sP

´1 rD´ 1
2 } “

2d2
�

}2I}

§
4d2
�

, (C.5)

and similarly

✓p�
1
˚q

2
§

4d1
�

. (C.6)

Plugging the post substitution values computed above into each of the relevant expressions in
Proposition B.1, we obtain first that w.p. • 1 ´ �:

4`
?

N
✓pMqmaxp✓p�

1
˚q, ✓p�

2
˚qqp1 `

a
logp2dqq `

6`

N
✓pMq✓pxyqp1 ` logp2dqq (C.7)

§
4`

?

N
�

?
rmaxp

c
4d2
�

,

c
4d1
�

qp1 `

a
logp2dqq ` `

12`
?
d1d2{�

N

?
r�xyp1 ` logp2dqq

(C.8)

“
8`

?

�
?
r
?

dp1 `

a
logp2dqq

?

N
`

12`
?
rd1d2

N
xyp1 ` logp2dqq (C.9)

(C.10)

as expected.
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And then also that (w.p. • 1´�) E
“
lppXMY

J
q⇠, G⇠q

‰
´

1
N

∞
⇠P⌦ lppXMY

J
q⇠, G⇠q ´ b

b
logp2{�q

2n

is bounded above by

6`✓pMqmaxp✓p�
1
˚q, ✓p�

2
˚qqp1 `

a
logp2dqq

?

N
“

6`
?

�
?
rmaxp

b
4d2
� ,

b
4d1
� qp1 `

a
logp2dqq

?

N

“
12`

?

�
?
r
?

dp1 `

a
logp2dqq

?

N
,

with the condition that N needs to be larger than

9✓prxy{maxp�
1
˚,�

2
˚qsq

2
p1 ` logp2dqq

“ 9

«
xy

c
2d1
�

c
2d2
�

{

c
2

�

?

d

�2
?
r�p1 ` logp2dqq

“ minpd1, d2q
18x2y2

�
p1 ` logp2dqq, (C.11)

as expected.

D Proof of Theorem 3.2

Theorem 3.2 follows from the longer version below.

Theorem D.1. Fix any target matrix G and distribution p. Define qZS “ argminpl̂SpZq : Z P qFrq.

For any � P p0, 1q, with probability • 1 ´ � over the draw of the training set we have

lp qZq § inf
rFr

lpZq `
“
48`

?
r�px ` yq

2
` 2b

‰
d

2 logp
12d
� qr�pd ` 3q ` �2s

N
, (D.1)

where � “
x2 y2

x2y2 . In particular, in expectation over the draw of the training set we have

lp qZq § inf
rFr

lpZq `
“
96`

?
r�px ` yq

2
` 4b

‰
c

2 logp12dqr�pd ` 3q ` �2s

N
. (D.2)

Proof of Theorem D.1. The lemmas which are used are proved below.

We write Z
˚ for an element of argmin rFr

lpZq. First, by applying Proposition 3.3, we have that
N •

a
minpd1, d2q18�p1 ` logp2dqq, we have with probabiltiy • 1 ´ �{3:

lp qZq ´ l̂Sp qZq §
12`

?

�
?
r
?

dp1 `

a
logp2dqq

?

N
` b

c
logp6{�q

2N
. (D.3)

Define CpSq “ max
´
0,

››› 1?
r˚�

}M˚
›››

˚
´ 1

¯
. Note that p1´CpSqqZ

˚
P qFr. Thus, using Lemma E.4

we also have similarly with probability • 1 ´ �{3:

l̂Spp1 ´ CpSqqZ
˚

q ´ lpp1 ´ CpSqqZ
˚

q (D.4)

§
24`

?

��
?
r
?

dp1 `

a
logp2dqq

?

N
` b

c
logp6{�q

2N
,

as long as N • 8�2 ` �r8d ` 20srlogp2dq ` logp
6
� qs. By definition, since p1 ´ CpSqqZ

˚
P qFr we

also have

l̂Sp qZq ´ l̂Spp1 ´ CpSqqZ
˚

q § 0. (D.5)

Next, by Lemma E.3, as long as N • 2 logp
6d
� qr�pd ` 3q ` �

2
s, with probability • 1 ´ �{3 over the

draw of the training set:

lpp1 ´ CpSqqZ˚q ´ lpZ˚q

14



§ `}ÅM˚}˚

„
1

x2
`

1

y2

⇢ d
2 logp

12d
� qr�pd ` 3q ` �2s

N

§ `
?
r�

„
1

x2
`

1

y2

⇢ d
2 logp

12d
� qr�pd ` 3q ` �2s

N
. (D.6)

Combining all of the above, we get that as long as N • 2 logp
6d
� qr�pd ` 3q ` �

2
s and N •a

minpd1, d2q18�p1 ` logp2dqq, we have

lp qZq ´ lpZ˚q (D.7)

§ lp qZq ´ l̂Sp qZq ` l̂Sp qZq ´ l̂Spp1 ´ CpSqqZ
˚

q` (D.8)

l̂Spp1 ´ CpSqqZ
˚

q ´ lpp1 ´ CpSqqZ
˚

q ` lpp1 ´ CpSqqZ˚q ´ lpZ˚q

§
12`

?

�
?
r
?

dp1 `

a
logp2dqq

?

N
` b

c
logp6{�q

2N
(D.9)

`
24`�

?

�
?
r
?

dp1 `

a
logp2dqq

?

N
` b

c
logp6{�q

2N
(D.10)

` `
?
r�

„
1

x2
`

1

y2

⇢ d
2 logp

12d
� qr�pd ` 3q ` �2s

N
(D.11)

§
48`�

?

�
?
r
?

dp1 `

a
logp2dqq

?

N
` 2b

c
logp6{�q

2N
(D.12)

` `
?
r�px2

` y2
q

d
2 logp

12d
� qr�pd ` 3q ` �2s

N
(D.13)

§
48`�

?

�
?
r
?

dp1 `

a
logp2dqq

?

N
(D.14)

`
“
`
?
r�px2

` y2
q ` 2b

‰
d

2 logp
12d
� qr�pd ` 3q ` �2s

N
(D.15)

§
“
48`

?
r�px ` yq

2
` 2b

‰
d

2 logp
12d
� qr�pd ` 3q ` �2s

N
. (D.16)

Furthermore, the conditions on N can now be dropped since the RHS is greater than b whenever N
fails to satisfy either of them.

The expectation version of the theorem follows directly from Lemma F.5.

E Lemmas for the proof of Theorem 3.2

Proposition E.1. For any � P p0, 1q, with probability • 1 ´ �, we have

1
?
2

§

››› rD 1
2P pP´1 qD´ 1

2

››› §

?

2, (E.1)

as long as N • 8�2 ` �r8d1 ` 20srlogp2d1q ` logp
1
� qs.

Similarly, for any � P p0, 1q, with probability • 1 ´ �, we have

1
?
2

§

››› rE 1
2Q pQ´1 qE´ 1

2

››› §

?

2, (E.2)

as long as N • r8�2 ` �r8d2 ` 20ssrlogp2d2q ` logp
1
� qs.
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Proof. We will write T for the matrix rD 1
2P pP´1 qD´ 1

2 whose spectral norm we want to bound.

We consider the matrix

T :“ rD´ 1
2P pP´1 qD pPP

´1 rD´ 1
2 “ pT

´1
q

J
pT

´1
q. (E.3)

We can write T as a sum of independent random matrices as follows:

T : “
1

N

ÿ

⇠P⌦
rD´ 1

2P

„
1

2
x⇠1x

J
⇠1}y⇠2}

2
`

1

2d1
}x⇠1}

2
}y⇠2}

2
I

⇢
P

´1 rD´ 1
2

“
1

N

ÿ

i,j

hi,j
rD´ 1

2P

„
1

2
xix

J
i }yj}

2
`

1

2d1
}xi}

2
}yj}

2
I

⇢
P

´1 rD´ 1
2

“
1

N

Nÿ

o“1

⇤o, (E.4)

where ⌦ is the multi-set containing all the iid sampled entries and ⇤ “

rD´ 1
2P

”
1
2x⇠

o
1
x

J
⇠o1

}y⇠o2 }
2

`
1

2d1
}x⇠1}

2
}y⇠2}

2
I

ı
P

´1 rD´ 1
2 and the ⇠

o (o “ 1, . . . , N ) are the
sampled entries.

Now, we can compute the expectation of T and ⇤ as follows:

EpT q “ Ep⇤⇠q “

ÿ

i,j

pi,j
rD´ 1

2P

„
1

2
xix

J
i }yj}

2
`

1

2d1
}xi}

2
}yj}

2
I

⇢
P

´1 rD´ 1
2 (E.5)

“ rD´ 1
2PP

´1 rDPP
´1 rD´ 1

2 “ I. (E.6)

Now, note that for any pi, jq P t1, 2, . . . ,mu ˆ t1, 2, . . . , nu we have

}⇤pi,jq} “

›››› rD´ 1
2P

„
1

2
xix

J
i }yj}

2
`

1

2d1
}xi}

2
}yj}

2
I

⇢
P

´1 rD´ 1
2

›››› § p
1

2
x2y2

`
1

2d1
p�q} rD}

´1

§ p
1

2
x2y2

`
1

2d1
p�q

2d1
p�

§
x2y2

x2y2
` 1 “ � ` 1 (E.7)

By abuse of notation, we write below ⇤ for the random variable ⇤⇠ where ⇠ P t1, 2, . . . ,mu ˆ

t1, 2, . . . , nu is distributed according to p.

We now begin to bound }Epp⇤´ Ep⇤qqp⇤´ Ep⇤qq
J

q}. We first note that
››E

`
p⇤´ Ep⇤qqp⇤´ Ep⇤qq

J˘›› “

››Ep⇤⇤J
q ´ Ep⇤qEp⇤q

J››

“

››Ep⇤⇤J
q ´ I

›› §

››Ep⇤⇤J
q

›› . (E.8)

Thus, we now note that by equation (E.4):

Ep⇤⇤J
q “ (E.9)

ÿ

i,j

pi,j
rD´ 1

2P

„
}yj}

2

2
xix

J
i `

}xi}
2
}yj}

2

2d1
I

⇢
P

´1 rD´1
P

„
}yj}

2

2
xix

J
i `

}xi}
2
}yj}

2

2d1
I

⇢J
P

´1 rD´ 1
2 .

From this it follows that

››Ep⇤⇤J
q

›› §

›››››
ÿ

i,j

pi,j
rD´ 1

2P

„
1

2
xix

J
i }yj}

2

⇢
P

´1 rD´1
P

„
1

2
xix

J
i }yj}

2

⇢
P

´1 rD´ 1
2

››››› (E.10)

`

›››››
ÿ

i,j

pi,j
rD´ 1

2P

„
1

2d1
}xi}

2
}yj}

2
I

⇢
P

´1 rD´1
P

„
1

2
xix

J
i }yj}

2

⇢
P

´1 rD´ 1
2

›››››
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`

›››››
ÿ

i,j

pi,j
rD´ 1

2P

„
1

2
xix

J
i }yj}

2

⇢
P

´1 rD´1
P

„
1

2d1
}xi}

2
}yj}

2
I

⇢
P

´1 rD´ 1
2

›››››

`

›››››
ÿ

i,j

pi,j
rD´ 1

2P

„
1

2d1
}xi}

2
}yj}

2
I

⇢
P

´1 rD´1
P

„
1

2d1
}xi}

2
}yj}

2
I

⇢
P

´1 rD´ 1
2

››››› .

We bound each of the four terms above separately:

For the first (and key) term, we have:

1

4

›››››
ÿ

i,j

pi,j
rD´ 1

2P
“
xix

J
i }yj}

2
‰
P

´1 rD´1
P

“
xix

J
i }yj}

2
‰
P

´1 rD´ 1
2

›››››

§
1

4

›››››
ÿ

i,j

pi,j
rD´ 1

2P
“
xix

J
i }yj}

2
‰
P

´1 rD´ 1
2

››››› supi,j

››› rD´ 1
2P

“
xix

J
i }yj}

2
‰
P

´1 rD´ 1
2

›››

§
1

4

2d1
�

x2y2

›››››
ÿ

i,j

pi,j
rD´ 1

2P
“
xix

J
i }yj}

2
‰
P

´1 rD´ 1
2

›››››

“
d1

2�
x2y2

››› rD´ 1
2PP

´1
DPP

´1 rD´ 1
2

››› “
d1

2�
x2y2

}D rD´1
} §

d1

x2y2
x2y2

“ d1�. (E.11)

For the second term we have

›››››
ÿ

i,j

pi,j
rD´ 1

2P

„
1

2d1
}xi}

2
}yj}

2
I

⇢
P

´1 rD´1
P

„
1

2
xix

J
i }yj}

2

⇢
P

´1 rD´ 1
2

›››››

§
x2y2

2d1

››› rD´ 1
2 I rD´ 1

2

›››

›››››
ÿ

i,j

pi,j
rD´ 1

2P

„
1

2
xix

J
i }yj}

2

⇢
P

´1 rD´ 1
2

›››››

§
x2y2

2d1

2d1
�

1

2

››› rD´ 1
2PP

´1
DPP

´1 rD´ 1
2

››› §
x2y2

x2y2
“ �. (E.12)

For the third term we obtain similarly:
›››››
ÿ

i,j

pi,j
rD´ 1

2P

„
1

2
xix

J
i }yj}

2

⇢
P

´1 rD´1
P

„
1

2d1
}xi}

2
}yj}

2
I

⇢
P

´1 rD´ 1
2

››››› §
x2y2

x2y2
“ �. (E.13)

Finally for the fourth term we have:
›››››
ÿ

i,j

pi,j
rD´ 1

2P

„
1

2d1
}xi}

2
}yj}

2
I

⇢
P

´1 rD´1
P

„
1

2d1
}xi}

2
}yj}

2
I

⇢
P

´1 rD´ 1
2

›››››

§

›››››
x2y2 rD´1

2d1

›››››

2

§

››››
x2y22d1
2d1�

››››
2

§ �
2
. (E.14)

Plugging equations (E.11), (E.12), (E.13) and (E.14) into equations (E.10) and (E.8) we finally
obtain:

››E
`
p⇤´ Ep⇤qqp⇤´ Ep⇤qq

J˘›› §

››Ep⇤⇤J
q

›› § �pd1 ` 2q ` �
2
. (E.15)

We now apply the non-communtative Bernstein inequality (F.3) to T ´ EpT q which is the average
of N i.i.d. instances of ⇤. With the notation from Proposition F.3 we have M “ � ` 1 (from
equation (E.7)), ⌫2 “

∞N
o“1

1
N2 r�pd1 ` 2q ` �

2
s “

1
N r�pd1 ` 2q ` �

2
s (from equation (E.15)),

n “ m “ d1 and we obtain (for all ⌧ ):

P p}T ´ EpT q} • ⌧q § p2d1q exp

ˆ
´

⌧
2
{2

⌫2 ` M⌧{3

˙

17



§ p2d1q exp

ˆ
´

N⌧
2
{2

r�pd1 ` 2q ` �2s ` p� ` 1q⌧{3

˙
(E.16)

Setting ⌧ “
1
2 we obtain, as long as N • r8�2 ` �r8d1 ` 20ssrlogp2d1q ` logp

1
� qs:

P
ˆ

}T ´ EpT q} •
1

2

˙
§ p2d1q exp

ˆ
´

⌧
2
{2

⌫2 ` M⌧{3

˙

§ p2d1q exp

ˆ
´

N

8r�pd1 ` 2q ` �2s ` 2p� ` 1q

˙

§ p2d1q exp

ˆ
´

N

8�2 ` �r8d1 ` 20s

˙

§ �. (E.17)

Thus, we now know that as long as N • 8�2 ` �r8d1 ` 20srlogp2d1q ` logp
1
� qs we have with

probability • 1 ´ � that

}T ´ EpT q} §
1

2
. (E.18)

This already implies that }T } § 1 ` 0.5 § 2 and therefore }T
´1

} §
?
2, leaving us only the second

inequality to prove.

We will show that inequality (E.18) actually implies inequality (E.1).

To that effect, recall from equation (E.3) that T “ pT
´1

q
J

pT
´1

q “ G
´1 where G “ TT

J. Thus
we have G “ rI ` pT ´ Iqs

´1. Rewriting this as G rI ` pT ´ Iqs “ I and taking spectral norms
on both sides we obtain

}G}�inf prI ` pT ´ Iqsq § 1, (E.19)

where for any symmetric matrix A, �infpAq denotes the smallest eigenvalue of A.

Now note that by inequality (E.18), for any unit vector v, we have

v
J

rI ` pT ´ Iqs v “ 1 ´ v
J

pT ´ Iq v • 1 ´ } pT ´ Iq } • 1 ´
1

2
“

1

2
. (E.20)

Thus the smallest eigenvalue of }rI ` pT ´ Iqs} is bounded below by 1
2 , i.e.

�inf prI ` pT ´ Iqsq •
1

2
. (E.21)

Plugging inequality (E.21) back into identity (E.19), we obtain:

}G} § 2. (E.22)

Finally, recall that G “ TT
J and thus }G} “ }T }

2, which together with inequality (E.22) finally
implies

}T } §

?

2, (E.23)

as expected.

Lemma E.2. Let ÄM P Rd1ˆd2 be a fixed matrix with }M}˚ “ 1. For any � P p0, 1q we have that

w.p. • 1 ´ �, (as long as N • 2 logp
2d
� qr�pd ` 3q ` �

2
s):

}|M}˚ “ } qD 1
2 pPP

´1 rD´ 1
2 ÄM rE´ 1

2Q pQ´1 qE 1
2 }˚ § }ÄM}˚

»

–1 `

d
2 logp

4d
� qr�pd ` 3q ` �2s

N

fi

fl ,

(E.24)

where d :“ maxpd1, d2q.
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Proof. Writing |M for the matrix qD 1
2 pPP

´1 rD´ 1
2 ÄM rE´ 1

2Q pQ´1 qE 1
2 we want to control, we have by

the properties of the trace norm:

}|M}˚ “ max
A,B

ˆ
1

2

“
}A}

2
Fr ` }B}

2
Fr

‰
: AB

J
“ |M

˙

Let qA, qB denote the matrices which realize the maximum above. Now note that we
have r qD 1

2 pPP
´1 rD´ 1

2 s
´1 qA qBr rE´ 1

2Q pQ´1 pE 1
2 s

´1
“ r qD 1

2 pPP
´1 rD´ 1

2 s
´1 |M r rE´ 1

2Q pQ´1 pE 1
2 s

´1 , i.e.
rA rB “ ÄM where

rA :“ r qD 1
2 pPP

´1 rD´ 1
2 s

´1 qA and
rB :“ r qE 1

2 pQQ
´1 rE´ 1

2 s
´1 qB. (E.25)

In particular, we have

}ÄM}˚ “ max
A,B

ˆ
1

2

“
}A}

2
Fr ` }B}

2
Fr

‰
: AB “ ÄM

˙

•
1

2

”
} rA}

2
Fr ` } rB}

2
Fr

ı
. (E.26)

Now, we can express qA and qB as r qD 1
2 pPP

´1 rD´ 1
2 s rA and r qE 1

2 pQQ
´1 rE´ 1

2 s rB respectively, and thus
we have

}|M}˚ “
1

2

”
} qA}

2
Fr ` } qB}

2
Fr

ı

“
1

2

”
}r qD 1

2 pPP
´1 rD´ 1

2 ss rA}
2
Fr ` }r qE 1

2 pQQ
´1 rE´ 1

2 ss rB}
2
Fr

ı

§ maxp}r qD 1
2 pPP

´1 rD´ 1
2 s}, }r qE 1

2 pQQ
´1

s}q
2 1

2

”
} rA}

2
Fr ` } rB}

2
Fr

ı

§ maxp}r qD 1
2 pPP

´1 rD´ 1
2 s}, }r qE 1

2 pQQ
´1 rE´ 1

2 ss}q
2
}ÄM}˚. (E.27)

Hence, we need to bound the quantity maxp}r qD 1
2 pPP

´1 rD´ 1
2 s}, }r qE 1

2 pQQ
´1 rE´ 1

2 ss}q. Using sim-
ilar notation to proposition E.1 we have T1 “ r qD 1

2 pPP
´1 rD´ 1

2 sr qD 1
2 pPP

´1 rD´ 1
2 s

J and T2 “

r qE 1
2 pQQ

´1 rE´ 1
2 ss

Picking up the proof of proposition (E.1) at equation (E.16), we obtain (for all ⌧ § 1):

Pp}r qD 1
2 pPP

´1 rD´ 1
2 s}

2
• 1 ` ⌧q § P p}T1 ´ I} • ⌧q

§ p2d1q exp

ˆ
´

⌧
2
{2

⌫2 ` M⌧{3

˙

§ p2d1q exp

ˆ
´

N⌧
2
{2

r�pd1 ` 2q ` �2s ` p� ` 1q⌧{3

˙

§ p2d1q exp

ˆ
´

N⌧
2
{2

r�pd1 ` 3q ` �2s

˙
. (E.28)

Rewriting, this implies that with probablity greater than 1 ´ �, we have

}r qD 1
2 pPP

´1 rD´ 1
2 s}

2
§ 1 `

d
2 logp

2d1
� qr�pd1 ` 3q ` �2s

N
, (E.29)

as long as N • 2 logp
2d1
� qr�pd1 ` 3q ` �

2
s.
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Similarly, (as long as N • 2 logp
2d2
� qr�pd2 ` 3q ` �

2
s) we have (for any �) with probability • 1´ �,

}r qE 1
2 pQQ

´1 rQ´ 1
2 s}

2
§ 1 `

d
2 logp

2d2
� qr�pd2 ` 3q ` �2s

N
. (E.30)

Putting the above two results together and plugging them into equation (E.27), we obtain (as long as
N • 2 logp

2d
� qr�pd ` 3q ` �

2
s) with probability greater than 1 ´ �:

}|M}˚ § }ÄM}˚

»

–1 `

d
2 logp

4d
� qr�pd ` 3q ` �2s

N

fi

fl , (E.31)

as expected.

Lemma E.3. Fix M˚ such that }ÅM˚} “ } rD 1
2PMQ

´1 rE 1
2 } “

?
r˚� §

?
r�. Define

CpSq “ max

˜
0,

››››
1

?
r˚�

}M˚

››››
˚

´ 1

¸
, (E.32)

where |M “ qD 1
2 pPM pQ´1 qE 1

2 .

Writing Z˚ “ XM˚Y J
“ rXÅM˚ rY J

“ qX}M˚ qY J
, as long as N • 2 logp

2d
� qr�pd ` 3q ` �

2
s, with

probability • 1 ´ � over the draw of the training set:

Epi,jq„p

`
l
“
p1 ´ CpSqqrZ˚si,j , Gpi,jq

‰
´ l

“
rZ˚si,j , Gpi,jq

‰˘

§ `}ÅM˚}˚

„
1

x2
`

1

y2

⇢ d
2 logp

4d
� qr�pd ` 3q ` �2s

N
(E.33)

Proof. We have, writing ⇥ for the matrix with ⇥i,j “ pi,j and using the notation |A| for the matrix
obtained from A by replacing each entry by its absolute value:

Epi,jq„p

`
l
“
p1 ´ CpSqqrZ˚si,j , Gpi,jq

‰
´ l

“
rZ˚si,j , Gpi,jq

‰˘

“

ÿ

i,j

pi,j l
“
p1 ´ CpSqqrZ˚si,j , Gpi,jq

‰
´ l

“
rZ˚si,j , Gpi,jq

‰

§ `

ÿ

i,j

pi,j

ˇ̌
p1 ´ CpSqqrZ˚si,j ´ rZ˚si,j

ˇ̌

§ `CpSq

ÿ

i,j

pi,j

ˇ̌
rZ˚si,j

ˇ̌
“ `CpSq x⇥, |Z˚|y “ CpSq

@
⇥, |XM˚Y J

|
D

“ `CpSq

A
r⇥, rXÅM˚ rY J

E
, (E.34)

where we write r⇥ for the matrix with r⇥i,j “ ⇥i,j signprXM˚Y J
si,jq for all i, j.

Replacing the expressions XP
´1 rD´ 1

2 and Y Q
´1 rE´ 1

2 for rX and rY respectively and using the
circular invariance of the trace we obtain:

Epi,jq„p

`
l
“
p1 ´ CpSqqrZ˚si,j , Gpi,jq

‰
´ l

“
rZ˚si,j , Gpi,jq

‰˘

§ `CpSq

A
r⇥, rXÅM˚ rY J

E
“ CpSq

A
r⇥, rXP

´1 rD´ 1
2 sÅM˚ rE´ 1

2QY
J

E

“ `CpSq

A
rD´ 1

2PX
J r⇥Y Q

´1 rE´ 1
2 , ÅM˚

E

§ `CpSq}ÅM˚}˚} rD´ 1
2PX

J r⇥Y Q
´1 rE´ 1

2 }

“ `CpSq}ÅM˚}˚
›››
”

rD´ 1
2PX

J
A

´1
ı
Ar⇥B

”
B

´1
Y Q

´1 rE´ 1
2

ı››› , (E.35)

where A,B are arbitrary invertible matrices.

20



Now by Lemma E.5, setting A “ diagp}x1}
2
, . . . , }xm}

2
q and B “ diagp}y1}

2
, . . . , }yn}

2
q, we

obtain:

›››
”

rD´ 1
2PX

J
A

´1
ı
Ar⇥B

”
B

´1
Y Q

´1 rE´ 1
2

ı›››

§
1

2

››››
”

rD´ 1
2PX

J
A

´1
ı
diagpAr⇥B1nq

”
rD´ 1

2PX
J
A

´1
ıJ››››

`
1

2

››››
”
B

´1
Y Q

´1 rE´ 1
2

ıJ
diagp1J

mAr⇥Bq

”
B

´1
Y Q

´1 rE´ 1
2

ı›››› (E.36)

§
1

2x2

››››
”

rD´ 1
2PX

J
ı
diagpr⇥B1nq

”
rD´ 1

2PX
J

ıJ››››

`
1

2y2

››››
”
Y Q

´1 rE´ 1
2

ıJ
diagp1J

mAr⇥q

”
Y Q

´1 rE´ 1
2

ı›››› (E.37)

§
1

2x2

››››
”

rD´ 1
2PX

J
ı
diagp⇥B1nq

”
rD´ 1

2PX
J

ıJ››››

`
1

2y2

››››
”
Y Q

´1 rE´ 1
2

ıJ
diagp1J

mA⇥q

”
Y Q

´1 rE´ 1
2

ı›››› (E.38)

“
1

2x2

››››
”

rD´ 1
2PX

J
ı
diagpqq

”
rD´ 1

2PX
J

ıJ››››

`
1

2y2

››››
”
Y Q

´1 rE´ 1
2

ıJ
diagpq

”
Y Q

´1 rE´ 1
2

ı›››› (E.39)

“
1

2x2

››› rD´ 1
2PP

´1
DPP

´1 rD´ 1
2

››› `
1

2y2

››› rE´ 1
2Y Q

´1
QEQ

´1
Q rE´ 1

2

›››

§
1

x2
`

1

y2
(E.40)

where at line (E.36), we have used Lemma E.5 and at line (E.38) we have used that diagpr⇥B1nq §

diagp⇥B1nq (i.e. diagp⇥B1nq ´ diagpr⇥B1nq is positive semi-definite).

Now, using Lemma E.2 together with equation (E.40) above plugged into equation (E.35), we finally
obtain that as long as N • 2 logp

2d
� qr�pd ` 3q ` �

2
s, we have with probability • 1 ´ �:

Epi,jq„p

`
l
“
p1 ´ CpSqqrZ˚si,j , Gpi,jq

‰
´ l

“
rZ˚si,j , Gpi,jq

‰˘

§ `CpSq}ÅM˚}˚
›››
”

rD´ 1
2PX

J
A

´1
ı
Ar⇥B

”
B

´1
Y Q

´1 rE´ 1
2

ı›››

§ `CpSq}ÅM˚}˚

„
1

x2
`

1

y2

⇢

§ `}ÅM˚}˚

„
1

x2
`

1

y2

⇢ d
2 logp

4d
� qr�pd ` 3q ` �2s

N
, (E.41)

as expected.

Lemma E.4. For any r ° 0 and � P p0, 1q, as long as N • 8�2 ` �r8d ` 20srlogp2dq ` logp
2
� qs,

we have with probability • 1 ´ � over the draw of the training set:

sup
ZP qFr

”ˇ̌
lpZq ´ l̂SpZq

ˇ̌ı
§ sup

ZP rF4r�2

”ˇ̌
lpZq ´ l̂SpZq

ˇ̌ı
(E.42)
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Proof. This follows from Lemma E.1 upon noticing that if
››› rD 1

2P pP´1 qD´ 1
2

››› §
?
2, and XMY

J
P

qFr and
››› rE 1

2Q pQ´1 qE´ 1
2

››› §
?
2, and XMY

J
P qFr:

}ÄM} “ } qD 1
2 pPP

´1 rD´ 1
2 ÄM rE´ 1

2Q pQ´1 qE 1
2 }˚ § 2}|M}. (E.43)

Using this and the fact that �{p� § � yields the result immediately.

Lemma E.5. Let U P Rd1ˆm
,K P Rmˆn

, V P Rnˆd2 be matrices and let 1m (resp. 1n) denote a

column vector in Rm
(resp. Rn

) all of whose entries are equal to 1.

We have the following bound on the spectral norm of UKV :

}UKV } §
1

2

“
}U diagpK1d1qU

J
} ` }V

J diagp1J
d2
KqV }

‰
. (E.44)

Proof. The result essentially follows from the Cauchy-Schwarz inequality. Indeed, let u P Rd1 and
v P Rd2 be two unit vectors. We have, using Cauchy-Schwarz at the second line:

u
J
UKV v “

mÿ

i“1

nÿ

j“1

ru
J
U siKi,jrV vsj

§

mÿ

i“1

nÿ

j“1

1

2

“
ru

J
U s

2
iKi,j ` rV vs

2
jKk,j

‰

“
1

2
u

J
U diagpK1d1qU

J
u `

1

2
v

J
V

J diagp1J
d2
KqV v

§
1

2

“
}U diagpK1d1qU

J
} ` }V

J diagp1J
d2
KqV }

‰
. (E.45)

Since u and v were arbitrary unit vectors, the result follows.

F Low-level lemmas

Here collect Lemmas from the literature that are useful for our proofs. Sometimes we need to prove
them purely to obtain explicit constants, but everything in this section is known.
Lemma F.1 (Non commutative Khinchine inequality [8, 9, 10]). Let X P Rdˆd

be a matrix with

jointly Gaussian, centred real-valued entries. There exists a universal constant Ck such that the

following bound holds on the expectation of the spectral norm of X:

E p}X}q § Ck

a
logpdq

”
}EpX

J
Xq}

1
2 ` }EpXX

J
q}

1
2

ı
(F.1)

Recall the following classic theorem [11, 12, 4]:
Theorem F.1. Let Z,Z1, . . . , Zn be i.i.d. random variables taking values in a set Z , and let a † b.

Consider a set of functions F P ra, bs
Z

. @� P p0, 1q, we have with probability • 1 ´ � over the draw

of the sample S that

@f P F , EpfpZqq §
1

n

nÿ

i“1

fpziq ` 2ESpRSpFqq ` pb ´ aq

c
logp2{�q

2n
.

We also have that with probability • 1 ´ �, the following data-dependent bound holds:

@f P F , EpfpZqq §
1

n

nÿ

i“1

fpziq ` 2RSpFq ` 3pb ´ aq

c
logp4{�q

2n
.

Proposition F.2 (Bernstein inequality, cf. [13], Corollary 2.11). Let X1, X2, . . . , XN be independent

real valued random variables with the following properties for some real numbers ⌫,M

• Xi § M almost surely
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•
∞N

i“1 EpX
2
i q § ⌫

2
.

Let S “
∞N

i“1 Xi ´ EpXiq, we have (for all t • 0)

PpS • tq § exp

ˆ
´

t
2
{2

⌫2 ` Mt{3

˙
. (F.2)

The inequality can be extended to the matrix-wise case as follows:
Proposition F.3 (Non commutative Bernstein inequality, Cf. [14]). Let X1, . . . , XS be independent,

zero mean random matrices of dimension m ˆ n. For all k, assume }Xk} § M almost surely, and

denote ⇢
2
k “ maxp}EpXkX

J
k q}, }EpX

J
k Xkq}q and ⌫

2
“

∞
k ⇢

2
k. For any ⌧ ° 0,

P
˜›››››

Sÿ

k“1

Xk

››››› • ⌧

¸
§ pm ` nq exp

˜
´

⌧
2
{2

∞S
k“1 ⇢

2
k ` M⌧{3

¸
. (F.3)

Proposition F.4. Under the assumptions of Proposition F.3, writing �
2

“
∞S

k“1 ⇢
2
k, we have

E
˜›››››

Sÿ

k“1

Xk

›››››

¸
§

a
8{3�p1 `

a
logpm ` nqq `

8M

3
p1 ` logpm ` nqq. (F.4)

Proof. The result in O notation is an exercise from [15], and a similar result is also mentioned in
both [7] and [16].

For completeness and to get the exact constants, we include a proof as follows.

Let Y “

›››
∞S

k“1 Xk

›››. By Proposition F.3, splitting into two cases depending on whether ⌧M § �
2

or ⌧M • �
2 we have

PpY • ⌧q § min

ˆ
1, pm ` nq exp

„
´
3⌧2

8�2

⇢˙
` min

ˆ
1, pm ` nq exp

„
´

3⌧

8M

⇢˙
(F.5)

Now note that writing  for logpm ` nq8M{3, we have
ª 8

0
1 ^ pm ` nq exp

ˆ
´

3⌧

8M

˙
d⌧ (F.6)

§

ª 

0
1 ^ pm ` nq exp

ˆ
´

3⌧

8M

˙
d⌧ `

ª 8


pm ` nq exp

ˆ
´

3⌧

8M

˙
d⌧

§ `

„
´8M

3
pm ` nq exp

ˆ
´

3⌧

8M

˙⇢8



“ `
8Mpm ` nq

3
exp

ˆ
´

3

8M

˙

“ `
8Mpm ` nq

3
“

8M

3
p1 ` logpm ` nqq. (F.7)

We also have, writing  for �
a
logpm ` nq8{3,

ª 8

0
1 ^ pm ` nq exp

ˆ
´
3⌧2

8�2

˙
d⌧ §

ª  

0
1d⌧ `

ª 8

 
pm ` nq exp

ˆ
´
3⌧2

8�2

˙
d⌧

§  `

ª 8

 
exp

ˆ
´
3p⌧

2
´  

2
q

8�2

˙
d⌧ §  `

ª 8

 
exp

ˆ
´
3p⌧ ´  q

2

8�2

˙
d⌧

§  ` �

a
2⇡{3 “ �

”a
logpm ` nq8{3 `

a
2⇡{3

ı
§

a
8{3�p1 `

a
logpm ` nqq. (F.8)

Plugging inequalities (F.6) and (F.8) into equation (F.5), we obtain:

EpY q §

ª 8

0
PpY • ⌧qd⌧ §

a
8{3�p1 `

a
logpm ` nqq

8M

3
p1 ` logpm ` nqq, (F.9)

as expected.
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Lemma F.5. Let F be a random variable that depends only on the draw of the training set. Assume

that with probability • 1 ´ �,

EpF q § fp�q, (F.10)

for some given monotone increasing function f . Then we have, in expectation over the training set:

EpF q §

8ÿ

i“1

fp2´i
q21´i

, (F.11)

In particular, if fp�q “ C1

b
logp

1
� q ` C2, then we have in expectation over the draw of the training

set:

EpF q §
C1

?
2 ´ 1

` C2. (F.12)

Proof. By assumption we have for any �:

P pX • fp�qq § � (F.13)

Let us write Ai for the event Ai “ tF § fp�iqu where we set �i “ 2´i for i “ 1, 2, ... . We also set
Ãi “ AizAi´1 for i “ 1, 2, ... with the convention that A0 “ H so that Ã1 “ A1.

We have, for i • 2, Pp rAiq § PpA
c
i´1q § �i´1, and for i “ 1, Pp rA1q § 1 “ �i´1. Thus we can write

EpF q §

8ÿ

i“1

EpX| rAiqPp rAiq §

8ÿ

i“1

EpX| rAiq�i´1 §

8ÿ

i“1

fp�iq�i´1, (F.14)

yielding identity (F.11) as expected.

Next, assuming fp�q “ C1

b
logp

1
� q ` C2, we can continue as follows:

EpF ´ C2q §

8ÿ

i“1

fp�iq�i´1 §

8ÿ

i“1

rC1

a
logp2iqs21´i (F.15)

§

8ÿ

i“1

rC1

?

is21´i
§ C1

8ÿ

i“1

?

2
1´i

“
C1

?
2 ´ 1

(F.16)

where at the second line we have used the fact that for any natural number i,
?
i §

?
2
i´1

.

As an immediate consequence we obtain the following Rademacher type theorem in expectation:
Theorem F.2. Let Z,Z1, . . . , ZN be i.i.d. random variables taking values in a set Z , and let a † b.

Consider a set of functions F P ra, bs
Z

. @� P p0, 1q, we have in expectation over the draw of the

sample S that

inf
fPF

˜
EpfpZqq ´

1

N

nÿ

i“1

fpziq

¸
§ 2EpRSpFqq ` 5pb ´ aq

c
1

N
. (F.17)

Proposition F.6 ( [17, 18]). Let F be a real-valued function class taking values in r0, 1s, and assume

that 0 P F . Let S be a finite sample of size n. For any 2 § p § 8, we have the following relationship

between the Rademacher complexity RpF |Sq and the covering number N pF |S, ✏, } .}pq.

RpF |Sq § inf
↵°0

ˆ
4↵ `

12
?
n

ª 1

↵

b
logN pF |S, ✏, } .}pqd✏

˙
,

where the norm } .}p on Rm
is defined by }x}

p
p “

1
n p

∞m
i“1 |xi|

p
q.
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Figure G.1: Weighted RMSE as a function of ! .

G More detailed discussion of the experimental setting

G.1 Synthetic data

Generation and training procedure: First we sample matrices A and B in Rmˆd with i.i.d.
Np0, 1q entries. We also sample K1 and K2 in Rdˆr. We then compute F “ AK1K

J
2 B

J and set
G “ m normalizepF q, X “

?

md normalizepAq and Y “

?

md normalizepBq where the operator
normalize normalises the matrix to have unit Frobenius norm. Regarding the sampling distribution,
we set pi,j9 expp⇤|Gi,j |q where ⇤ is a hyperparameter. In particular, when ⇤ “ 0 we have uniform
sampling. For each n P t100, 200u we evaluate the following pd, rq combinations: p30, 4q, p50, 6q

and p80, 10q. In order to study a meaningful data-sparsity regime, in each case we sampled dr!

entries where ! P t1, 2, 3, 4, 5u. Each pn, d, rq configuration was tested on 50 matrices. Training
details: the �s were chosen in the range r10´6

, 2 ˆ 102s, each configuration was run to convergence
without warm starts.

More detailed results: Below are detailed results of the syntehtic data experiments. The first
graph G.1 shows the performance as a function of our data sparsity paramameter ! in different
configurations, whilst Figure G.3 provides the corresponding boxplots documenting the variance
with respect to the draw of the random matrix. Figure G.2 shows, in many different situations, the
progression of performance as the size of the side information increases. Corresponding boxplots are
provided in Figure G.4.

We observe that our methods (especially the smoothed version) generally outperform standard IMC
in the meaningful sparsity regimes. Interestingly, when data is too sparse to make any meaningful
prediction, standard IMC frequently outperforms our method (though our methods become better
as more data becomes available), suggesting that ↵ could be tuned depending on the sparsity of the
observations.

G.2 Description of real-life datasets

• Douban2 (R P R4999ˆ4577): Douban is a social network where users can produce content
related to movies, music, and events. Douban users are members of the social network and
Douban items are a subset of popular movies. The rating range is t1, 2, . . . , 5u and the entry
pi, jq corresponds the rating of user i to movie j. To construct side information, we collected
the following data from the Douban website: each movies’ genres, its number of views, the
number of people who rated the movie, and the number of reviews written.

• LastFM (R P R1875ˆ4354): Last.fm is a British music website that builds a detailed profile
of each user’s musical taste. Differently from the other datasets an entry pi, jq represents the
number of views of user i to band/artist j. We expressed the number of views in a log scale.

2Rating matrix available in https://doi.org/10.7910/DVN/JGH1HA
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Figure G.2: Weighted RMSE as a function of the size of the side information.

Figure G.3: Weighted RMSE as a function of !, boxplots.

Figure G.4: Weighted RMSE as a function of the size of the side information, boxplots.
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The website allows users to tag artists, which provides us with the opportunity to group the
items (artists) by their associated tags.

• MovieLens (R P R6040ˆ3382): We consider the MovieLens 1M dataset, which is a broadly
used and stable benchmark dataset. MovieLens is a non-commercial website for movie
recommendations. Just as in Douban, an entry pi, jq represents the rate of user i to movie j

on a scale from 1 to 5. We used movies’ genres and gender as item and user side information
respectively.

Training details: In all real data experiments, we used 85% of the data for training, 10% for
validation and 5% for the test set.

We optimized the model (18) via the accelerated subgradient method of [19], alternating the optimiz-
ation between each term with only two iterations per term.

To choose a suitable hyper parameter range, the matrices qX and qY were normalised to have Frobenius
norm

?
m and

?
n respectively, and values in the range r1, 200s were explored for both �1,�2.

Initially, twenty alternations were run for each tested hyper parameter combination. We then ran the
model to convergence for the final hyperparameter configuration. For the real data experiments, we
used a rank-restricted version of the SVD’s with rank 30.

We performed the experiments in a cluster with 72 CPUs (3GHz) and 750GB of RAM. We relied on
warm starts to reach convergence faster. For a given X,Y , and given a solution Z1 ` Z2 (with Z1

(resp. Z2) corresponding to the inductive (resp. non inductive) term), a warm start XM0Y
J

` Z0

can be constructed as follows: Set Z0 “ Z2. Set M0 “ pX
J
Xq

´1
X

J
Z1Y pY

J
Y q

´1. If X or Y is
not full rank the above inverses can be replaces by pseudoinverses.

H Variations on the optimization problems and loss functions

Models involving a non-inductive term We first note that using the subadditivity of the Rademacher
complexity, it is trivial to obtain results for a combined function class corresponding to the regular-
iser (18):

Proposition H.1. Suppose for simplicity that m “ n, d1 “ d2 “ d, and
x2y2

x2y2 “ � § K for some

constant K “ Op1q and define the function class rGr1,r2 :“ tXMY
J

` Z : } rD 1
2PMQ

´1 rE 1
2 }˚ §

�
?
r1 ^ } rD

1
2
I Z

rE
1
2
I }˚ §

?
r2u. As long as N • T where T is Opnq, w.p. • 1 ´ � we have for all

F P rGr1,r2 :

lpF q ´ l̂SpF q § rO
ˆ

p`` bq

?
�r1d `

?
r2n

?

N

˙
. (H.1)

Proof. Follows from the Rademacher complexity bound from Proposition 3.3 (cf. also Prop.B.1)
applied to both side information pairs pX,Y q and pI, Iq, together with the subadditivity of the
Rademacher complexity. Note that the condition on n is only necessary to get rid of Op1{Nq terms
for cosmetic purposes.

Lagrangian Formulation and Square Loss
Similarly to other work ([20, 2] etc.) we expressed our results in terms of bounds on the expected loss
of the empirical risk minimizers subject to explicit norm constraints. However, it is easy to express
similar results for the solution to a regularised optimization problem in "Lagrangian formulation"
such as the ones we propose3. We have also relied on a bounded loss function. However, in most
practical situations, the values of the entries are restricted by domain knowledge (for instance, in
the Recommender Systems field, ratings are typically restricted to the range r1, 5s). This effectively
renders any Lipschitz loss bounded, including the square loss, as long as one also truncates the output
of the algorithm to fit the required range.

We begin by completing the (trivial) proof of Corollary 3.4.
3just as in the case of exact norm constraints, the hyperparameters must be assumed to have been properly

tuned
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Proof of Corollary 3.4. Since G satisfies the optimization constraints on the training set ⌦, we must
have } rD 1

2PM#Q
´1 rE 1

2 }˚ §
?
rG�, which allows us to apply proposition (C.1) to the loss function

�2C ˝ l, which coincides with l when applied to the matrix �CpZ#q ´ G.

We now show further how to adapt our result C.1 to make it apply to the solution to a Lagrangian
formulation involving the square loss. Further similar manipulations can be applied to our other
results.
Proposition H.2. Assume that the noise ⇣ is bounded by a fixed constant C almost surely, and that

so are all of the entries of the ground truth matrix G. Let

M� “ argmin
M

1

N

ÿ

pi,jqP⌦
rXMY

J
´ Gi,j ´ ⇣i,js

2
i,j ` �} rD 1

2PMQ
´1 rE 1

2 }˚,

and Z� :“ XM�Y
J

denote the solutions to a Lagrangian formulation of the problem with the square

loss l (which is unbounded).

Furthermore, we also write �pxq “ �2Cpxq “ signpxqminp|x|, 2Cq, E “ lpGq for the expected

square loss at the ground truth (i.e. the variance of the noise) and � :“ C
2
b

logp4{�q
2N . We assume

that � is tuned so that
E`�

2
?
rG� § � § 2 E`�?

rG�
4
.

We have the following bound on the expected L
2

risk of �2CpXM�Y
J

q:

E⇠
´ˇ̌
�2CrXM�Y

J
s⇠ ´ G⇠ ´ ⇣⇠

ˇ̌2¯
“ lp�2CpXM�Y

J
qq (H.2)

§ 3E `
48`

?

�
?
r
?

dp1 `

a
logp2dqq

?

N
`

72`xy
?
d1d2rp1 ` logp2dqq

N
` 19C2

c
logp4{�q

2N
.

Proof. Since lp⇣q § C
2 for any |⇣| § C we have by Hoeffding’s lemma that with probability

• 1 ´ �{2,

|lSpGq ´ lpGq| § C
2

c
logp4{�q

2N
. (H.3)

Then (with the same probability) we have

lSpZ�q ` �} rD 1
2PM�Q

´1 rE 1
2 }˚ § lSpGq ` �

?
rG�

§ lpGq ` �
?
rG�` C

2

c
logp4{�q

2N
.

“ lpGq `�` �
?
rG�

§ 3rE `�s, (H.4)

where at the last line, we have used the constraint on �.

It follows that

} rD 1
2PM�Q

´1 rE 1
2 }˚ §

3rE `�s

�

§ 6
?
rG�, (H.5)

where we have made another use of the constraint on �.

It follows that Z� P rF36rG . Let l̃ “ �4C ˝ l be the truncated square loss: l̃pa, bq “ minp|a´ b|, 4Cq
2.

By Proposition C.1 we now have with probability • 1 ´
�
2 over the draw of the training set:

E
”
l̃ppXM�Y

J
q⇠, G⇠ ` ⇣⇠q

ı
´

1

N

ÿ

⇠P⌦
l̃ppXM�Y

J
q⇠, G⇠ ` ⇣⇠q (H.6)

4Although this tuning depends on the sample size N slightly, it converges as N tends to infinity and is there
for purely cosmetic purposes (to avoid extra logarithmic terms in the final formula).
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§
48`

?

�
?
r
?

dp1 `

a
logp2dqq

?

N
`

72`xy
?
d1d2rp1 ` logp2dqq

N
` 16C2

c
logp4{�q

2N
.

Writing �̄ for the quantity

48`
?

�
?
r
?

dp1 `

a
logp2dqq

?

N
`

72`xy
?
d1d2rp1 ` logp2dqq

N
` 16C2

c
logp4{�q

2N
,

it now follows that (w.p. • 1 ´ �)

lp�2CpXM�Y
J

qq “ E⇠
“
lpp�2CpXM�Y

J
q⇠, G⇠ ` ⇣⇠q

‰

“ E⇠
”
l̃ppXM�Y

J
q⇠, G⇠ ` ⇣⇠q

ı
“ l̃ppXM�Y

J
qq

§ l̃SpXM�Y
J

q ` �̄ (H.7)

§ lSpXM�Y
J

q ` �̄ § 3rE `�s ` �̄, (H.8)
where at equation (H.7) we have used equation (H.6) and at equation (H.8) we have used equa-
tion (H.4). The result follows.

I Further discussion

I.1 Deeper comparison to related works

Here we discuss some related works in more detail than in the main paper.

One very interesting other work is [21] which introduces a joint model that imposes a nulcear norm
based constraint on both M and XMY

J through a modification of the objective: first, the matrices
X and Y are augmented by columns of ones resulting in the matrices X̄ “ rX, 1s and Ȳ “ rY, 1s.
Predictors then take the form E “ X̄MpȲ q

J
`�, with nuclear norm regularisation imposed on both

E and M , and Frobenius norm regularization imposed on �, with the constraint that P⌦pEq “ R⌦

where R⌦ denotes the observed entries. Thus the model achieves a similar aim as [20] through a
different and more original approach. The authors then provide an efficient algorithm for their model
and prove some theoretical guarantees: for exact recovery, they obtain a rate of Oprd logpdq logpnqq

in the uniform sampling case. This is the same as [19], except that the assumptions on X and Y

are weaker (no orthogonality assumption). Of course, both [21] and [19] require a realisability
assumption for exact recovery to be possible. In addition to that, the authors of [21] also show
distribution-free bounds for the approximate recovery case which scale as Op�

2 logpnqq where �
is an upper bound on the ground truth spectral norm of the matrix M (G in their notation). That
bound is comparable to the bounds of the form (3) from [20, 22, 23], though the precise results are
different in formulation (and rely on a different optimizer). Note that in addition to pertaining to a
completely different optimization problem, our results for approximate recovery lack any dependence
on n, even logarithmic, and also do not have the implicit dependence on d1d2 present in that paper.
Note that although it is claimed in the paper that the rate is "logpnq", this is because in that informal
presentation of the results the authors are treating their "�" (which scales at least as

?
d1d2r) as

a constant, which amounts to treating the size of the side information as a constant. This type of
formulation is standard and also used in [19], but corresponds to a different perspective as in this work
we want to remove the dependence on d1, d2. Note also that although it is not explicitly stated in the
paper that the exact recovery results rely on a uniform sampling assumption, such an assumption is
implicit. Indeed, such an assumption is standard in all exact recovery results: there is no known exact
recovery result for arbitrary distributions for either MC or IMC. Further, the results would be clearly
wrong without such an assumption (assume for instance identity side information and a sampling
distribution which only samples the top left quadrant, all of which is perfectly compatible with the
coherence assumptions on X,Y and the ground truth matrix G (F in their notation)). The first
obvious implicit use of the uniform sampling assumption is in line 70 of the supplementary material.
As we explain later, even defining the concept of exact recovery in the non uniform sampling case has
not been done explicitly to the best of our knowledge, and no results exist for this for either inductive
matrix completion or matrix completion in general.
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In [24], the authors explicitly study a disentangled version of [20] specifically tailored to the case
of community side information. Whilst generalisation bounds are provided which scale similarly to
ours in the case of community side information, those are obtained through a direct application of the
matrix completion results from [2] to the auxiliary problem where each community is treated as a
single user. In particular, the results are not applicable in a more general context and they did not
introduce any of the novel proof techniques we rely on here.

[25] proves rates of d2r3 logpdq in the case of exact recovery, as well as abstract conditions for the
possibility of exact recovery in a more general context and results for other problems closely related
to inductive matrix completion (such as matrix regression, see also [26, 27]); [28], which proved
a similar sample complexity rate together with an efficient optimization strategy with favourable
convergence rates; and of course [19], which both introduced the MaxIDE algorithm (an involved form
of projected gradient method with an integrated line search over the step sizes) to solve problem (2),
and proved sample complexity bounds of order rd logpdq logpnq for exact (noiseless) recovery under
the assumption of uniform sampling. Recently, convergence and generalisation guarantees were
shown for an exciting model which functions as inductive matrix completion with unknown "side
information matrices X,Y which must be learned by a two layer neural network from some raw user
and item side information, jointly with the low rank problem [29]. We note that this applies to a fixed
rank problem and does not rely on a nuclear norm regulariser.

Further remarks on related works: In Table 1 and Table 2, we are only concerned with sample
complexity. It is worth noting that many important gains were also achieved in the direction of
improving computational complexity through better algorithms [28, 30].

We also do not compare here with results obtained for other regularisation strategies including the max
norm [31, 32, 33] etc., all of which apply exclusively to matrix completion without side information.
We do note in passing that rates of Opnr logpnqq were obtained very early for matrix completion
with an explicit low-rank assumption [31]. In both MC and IMC, the relevance of the more recent
branch of the literature is tied to the impractical nature of explicitly minimizing the rank and the fact
that the low rank assumption is not satisfied exactly, justifying the use of nuclear norm based methods
and the soft relaxations of the rank that they bring into the theoretical analysis.

J Discussion and future directions

J.1 On transductive Rademacher complexity:

Some results in [2] and [7] are formulated in the transductive [34] setting. In this context, we
assume that the set of observed entries is sampled without replacement, and the training and test
sets are divided uniformly. There is a parallel theory in this case with a concept of transductive
Rademacher complexity at the key. In some cases the bounds can be better in some aspects. For
instance, the transductive bound in [2] scales like Opnr logpnqq in the case of a distribution where the
probabilities of each entries are within a ratio of each other. Such a bound follows in our iid setting
from Proposition 3.3, and indeed similar results had been otherwise obtained (for the non inductive
case) in [31], as the authors of [2] mention. As another significant advantage, the transductive bounds
in [7] involve a smaller power of the log term.

There are two reasons why we didn’t prove transductive bounds in our setting: (1) The transductive
Rademacher complexity is bounded above by the standard Rademacher complexity up to a constant
of 4 5. In particular, all of our results also hold up to a constant in a transductive setting.

6. (2)
Contrary to the MC case, we do not believe that we would get better bounds in this context. Indeed,
the main reason the transductive setting improves the bounds is because it prevents the oversampling
of single entries (see how in the proof of the main theorem in [2], one must distinguish between the
oversampled entries and the moderately sampled entries). It is easy to see by comparing to our proof
of Theorem 3.1, especially consolidating the intuition via the example of community side information,
that the benefits would not carry over to the inductive case: even if the entries are sampled without
replacement, the combinations of communities can still be sampled many times. Thus we do not
expect significant gains from this approach.

5See Footnote 1 on page 3407 of [2], and Lemma 1 in [34]
6This remark also applies to earlier work, they merely proved the transductive bounds because in the matrix

case, this provides an actual improvement.
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J.2 Open directions

There are many possible open problems related to this work and to distribution-free matrix completion
in general:

• Is it possible to provide a rigorous theoretical explanation why the empirically weighted
trace norm outperforms the exactly weighted version in the synthetic data experiments?

• Can we make the bounds even more sensitive to the alignement of the side information
vectors?

• In what situations can one remove the
a
logpdq term in Proposition 3.1?

Regarding the extra log term in Theorem 3.1, we would like to note that although we do not see how
to remove it in general, it is straightforward to remove it (at the cost of higher order dependence on
the coherence of X and Y ) in the specific case where the columns of X and Y each have distinct
support (i.e. the columns of X2 and Y

2, defined as matrices whose entries are the squares of those of
X and Y respectively, are orthogonal), in which particular case a proof with more similarities to that
in [2] still holds.
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K Table of notations

Table K.1: Table of notations for quick reference

Notation Meaning
}A} spectral norm of matrix A

A § B B ´ A is positive semi-definite
}A}˚ nuclear norm of matrix A

I Identity matrix
G P Rmˆn ground truth matrix
⇠1, . . . , ⇠N sampled entries

(P t1, . . . ,mu ˆ t1, . . . , nu)
⇣⇠ Noise observed at sample ⇠

X P Rmˆd (resp. Y P Rnˆd) Row (resp. column) side information matrix
M matrix to optimize (predictors: XMY

J)
S “ ⌦ “ t⇠1, . . . , ⇠Nu (training) set of observed entries

xi “ Xi, . side information vector for ith user (row)
yj “ Xj, . side information vector for jth item (column)
x (resp. y) maxi }xi}

2 (resp. maxj }xj}
2)

x (resp. y) mini }xi}
2 (resp. minj }xj}

2)
�

x2y2

x2y2

d maxpd1, d2q

pi,j Probability of sampling pi, jq

=Pp⇠ “ pi, jqq

p sampling distribution
M constraint on }M}˚

hi,j “
∞
⇠P⌦ 1⇠“pi,jq Number of times entry pi, jq was sampled
l loss function
b global upper bound on l

` Lipschitz constant of l
lpZq Epi,jq„pplprXMY

J
si,j , Gi,j ` ⇣i,jqq

(or more rigorously) E⇠,⇠̄lprXMY
J

s⇠1,⇠2 , ⇠̄oq

l̂pZq
1
N

∞
pi,jqP⌦ lprXMY

J
si,j , Gi,j ` ⇣i,jq

(or more rigorously) 1
N

∞N
o“1 lprXMY

J
s⇠1,⇠2 , ⇠̄oq

�
∞

i,j pi,j}xi}
2
}yj}

2

p� 1
N

∞
i,j hi,j}xi}

2
}yj}

2

qi (resp. q̂i)
∞n

j“1 pi,j}yj}
2 (resp. 1

N

∞n
j“1 hi,j}yj}

2)
j (resp. q̂i)

∞m
i“1 pi,j}xi}

2 (resp. 1
N

∞m
i“1 hi,j}xi}

2)
xv, wyl (resp. xv, wyr)

∞m
i“1 viqiwi (resp.

∞n
j“1 vjhjwj)

xv, wyl̂ (resp. xv, wyr̂)
∞m

i“1 viq̂iwi
∞n

j“1 vj ̂jwj

L X
J diagpqqX “

∞
i,j pi,jxix

J
i }yj}

2

pL X
J diagpq̂qX “

∞
i,j

hi,j

N xix
J
i }yj}

2

R Y
J diagpqY “

∞
i,j pi,jyjy

J
j }xi}

2

pR Y
J diagp̂qY “

∞
i,j

hi,j

N yjy
J
j }xi}

2

D (resp. pD) Eigenvalues of L (resp. pL)
E (resp. pE) Eigenvalues of R (resp. pR)

P orth. matrix diagonalising L so L “ P
´1

DP

Q orth. matrix diagonalising R so R “ Q
´1

EQ

rD ↵D ` p1 ´ ↵q
�
d1
I

(In theorems, ↵ “
1
2 )

rE ↵E ` p1 ´ ↵q
�
d2
I

qD ↵ pD ` p1 ´ ↵q
�
d1
I

qE ↵ pE ` p1 ´ ↵q
�
d2
I
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rX (resp. rY ) XP
´1 rD´ 1

2 (resp. Y Q
´1 rE´ 1

2 )
Y

1 (resp. Y 1) XP
´1

D
´ 1

2 (resp. Y Q
´1

E
´ 1

2 )
pX (resp. pY ) X pP´1 pD´ 1

2 (resp. Y pQ´1 pE´ 1
2 )

qX (resp. qY ) X pP´1 qD´ 1
2 (resp. Y pQ´1 qE´ 1

2 )
M

1
D

1
2PMQ

´1
E

1
2

xM pD 1
2 pPM pQ´1 pE 1

2

ÄM rD 1
2PMQ

´1 rE 1
2

|M qD 1
2 pPM pQ´1 qE 1

2

�
1

P Rd1 (resp. �2
P Rd1 ) singular values of X (resp. Y ) wrt x ., .yl (resp. x ., .yr)

equivalently: �
1
u “

a
Du,u (�2

v “
a
Dv,v) for all u § d1 (resp. v § d2)

�
1
˚ (resp. �2

˚) maxp�
1
q (resp. maxp�

2
q)

cU piq (resp. cIpjqq) community to which user i (resp. item j) belongs
qDI (resp. qEI ) same as qD (resp. qE)

(with identity side info)
Hence: r qDI si,i “ ↵r

∞n
j“1

hi,j

N s ` p1 ´ ↵q
1
d1

and: r qEI sj,j “ ↵r
∞m

i“1
hi,j

N s ` p1 ´ ↵q
1
d2

rFr

!
XMY

J : }ÄM}˚ §
?
r�

)

qFr

!
XMY

J : }|M}˚ §
?
rp�

)

qZ˚ argminZP qFr
ElpZ⇠, G⇠ ` ⇣⇠q

qZS argminpl̂SpZq : Z P qFrq

rZ˚ argminZP rFr
ElpZ⇠, G⇠ ` ⇣⇠q

rZS argminZP rFr
ElSpZq

If G P rFr G “ rZ˚
If G P qFr G “ qZ˚

E lpGq “ E⇠„plppXMSY
J

q⇠, G⇠ ` ⇣⇠q

rGr1,r2

"
XMY

J
` Z s.t.

} rD 1
2PMQ

´1 rE 1
2 }˚ § �

?
r1 ^ } qD

1
2
I Z

qE
1
2
I }˚ §

?
r2

*
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