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Abstract

PAC-Bayes generalization bounds have been
shown to provide non-vacuous performance cer-
tificates for several Machine Learning models.
However, under adversarial corruptions, these
bounds often fail to maintain their non-vacuous
nature due to the increased empirical risk. In
this work, we address this limitation by deriving
and computing the first non-vacuous generaliza-
tion bounds for models operating under adver-
sarial conditions. Our approach combines the
PAC-Bayes and Adversarial Smoothing frame-
works to derive generalization bounds for ran-
domly smoothed models. We empirically demon-
strate the efficacy of our bounds in providing ro-
bust population risk certificates for stochastic Con-
volution Neural Networks (CNN) operating un-
der L2-bounded adversarial corruptions for both
MNIST and CIFAR-10.

1. Introduction
Deep neural networks (DNN) are known to outperform
other models in complex applications (LeCun et al., 2015).
However, it is difficult to justify their use in modern safety-
critical applications, as DNN models are generally suscepti-
ble to various security threats (Szegedy et al., 2013; Papernot
et al., 2016), particularly adversarial examples (Biggio et al.,
2013; Szegedy et al., 2013).

Past attempts to predict the robustness of trained models
from training data (Yin et al., 2019; Awasthi et al., 2020;
Khim and Loh, 2018; Mustafa et al., 2022; Gao and Wang,
2021; Farnia et al., 2018) inherit the limitations of uni-
form convergence bounds in explaining the generalization of
DNNs (Nagarajan and Kolter, 2019). The resulting bounds
for modern models are vacuous, thus, while providing valu-
able theoretical insights, are of little practical use.
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Dziugaite and Roy (2017) introduced the concept of non-
vacuous bounds on the population risk of stochastic DNNs,
leading to the emergence of self-certified DNNs. Self-
certified DNNs refer to models or algorithms that provide
population risk certificates based solely on the training data
(Pérez-Ortiz et al., 2021). These risk certificates play a cru-
cial role in deploying DNNs in sensitive scenarios. Such
certificates, however, are lacking in adversarial settings.

On the other hand, existing robustness verification meth-
ods are capable of providing robustness certificates against
adversarial examples for individual test samples. For in-
stance, exact verification methods (Katz et al., 2017a; Ehlers,
2017; Tjeng et al., 2017) provide deterministic robustness
certificates to a given test sample. Yet, they suffer from
high computational complexity, particularly for large mod-
els. In contrast, randomized smoothing techniques (Cohen
et al., 2019) have been proposed to scale up to deeper mod-
els. These algorithms, however, are primarily focused on
test-time verification and cannot provide adversarial risk
certificates based solely on training data.

To overcome these limitations, our objective is to derive and
compute non-vacuous generalization bounds for the adver-
sarial loss. Our approach is designed for stochastic DNNs
and enables the computation of population risk certificates
for the adversarial loss. Although we primarily focus on the
L2 measure of robustness in this work, our approach can be
extended to other measures as well.

2. Non-vacuous generalization bounds in an
adversarial setting

Problem setting We start by introducing the notation and
problem setting. Let X ⊂ Rd denote the input space
and Y ⊂ {0, 1}K the output space (one-hot encoding
of K classes). The joint input-output space X × Y is
endowed with an unknown probability measure P . We
consider a stochastic classification setting using classi-
fiers h : (W,X) 7→ h(W ;x) parameterized by vectors
W ∈ W ⊂ Rp, where the classifier is represented by a
probability measure Q ∈ M(W) on the set of parame-
tersW . HereM(W) is the set of all probability measures
on W . We measure the prediction quality with the loss
ℓ : X × Y × YX → [0, 1]. For instance, the 0-1 loss
ℓ01(x, y, h(W ; ·)) = I(h(W ;x) = y). The risk associated
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with the stochastic prediction Q is defined as: L(Q, ℓ) :=
EW∼Q

[
E(x,y)∼P ℓ(x, y, h(W ; ·))

]
Our goal is to learn Q

by minimizing the risk (i.e., Q∗ = argminQ L(Q, ℓ)),
but L depends on the unknown population distribution
P . Thus, we resort to minimizing the empirical risk:
L̂(Q,S, ℓ) := EW∼Q[

1
n

∑n
i=1 ℓ(xi, yi, h(W ; ·))], where

S := {(xi, yi) ∼ P | i ∈ [n]} is an i.i.d training sam-
ple. Here, [n] = {1, . . . , n}. Evaluating and optimizing
L̂(Q,S, ℓ) directly is often computationally intractable due
to the expectation with respect to the probability measure
Q. To address this, we resort to Monte Carlo approxi-
mation of Q using m i.i.d. samples {Wj ∼ Q | j ∈
[m]}, resulting in an unbiased estimate: L̂(Q̂, S, ℓ) ≈
1

mn

∑m
j=1

∑n
i=1 ℓ

(
xi, yi, h(Wj ; ·)

)
.

We consider an attack model where an adversary manipu-
lates the input x by adding noise to it to disrupt the clas-
sifier’s prediction. That is, the adversary’s goal is to find
an altered input x̃ deviating from the original input x by a
certain Euclidean distance while incurring a maximal loss.
In other words, the adversary seeks to solve the optimiza-
tion problem x̃ = argmaxx̃:∥x−x̃∥2<R ℓ(x̃, y, h(W ; ·)).
The adversarial loss is defined as ℓadv(x, y, h(W ; ·)) :=
maxx̃:∥x−x̃∥2<R ℓ(x̃, y, h(W ; ·)).

2.1. PAC-Bayesian bounds for neural networks in
adversarial environments

Now we introduce our approach for computing non-vacuous
generalization bounds of adversarial deep learning. We
start by considering an idealized setting. In Section 2.2, we
extend the results to compute practical certificates.

We first apply the classical PAC-Bayes theorem (Langford
and Caruana, 2001; McAllester, 1999) (see Theorem E.7 in
the appendix) to the adversarial loss to get, with probability
at least 1− δ, L(Q, ℓadv)

≤ KL−1

(
L̂(Q,S, ℓadv),

KL(Q||Q0) + ln( 2
√
n

δ )

n

)
. (1)

where KL(·||·) is the Kullback-Leibler (KL) divergence,
KL(p, q) for p, q ∈ [0, 1] is the KL-divergence be-
tween Bernouli distributions with parameters p and q,
KL−1(p, c) := sup{q ∈ [0, 1] : KL(p, q) ≤ c}. Com-
puting the bound (1) is computationally challenging due to
the intractability of evaluating the expectation with respect
to Q in L̂(Q,S, ℓadv) and solving maxx̃:∥x−x̃∥<R ℓ(x̃, y, h)
for DNNs (Madry et al., 2017). To address the first chal-
lenge, we utilize Monte Carlo sampling to approximate
Q (Langford and Caruana, 2001) (see Lemma E.8). To
address the problem of evaluating ℓadv we resort to adver-
sarial verification methods. Exact verification methods for
computing an upper bound on ℓadv are computationally pro-
hibitive, particularly for larger models (Xiao et al., 2018;
Katz et al., 2017b). Furthermore, these methods require

the given model to be robust, which is often difficult to
satisfy for a subset ofW with a large probability measure
under Q. To overcome these issues, we employ Randomized
Smoothing (RS) (Cohen et al., 2019), which allows us to
derive efficient and scalable upper bounds on ℓadv without
the robustness assumption of the original model.

RS transforms a classifier h(W ; ·) into a provably robust
classifier g(W ; ·) by applying the operator Tσ defined by

g(W ;x) = Tσh(W ;x) := argmax
y∈Y

Pr[h(W ;x+ ϵ) = y],

for x ∈ X , W ∈ W . Here, ϵ ∼ N (0, σI) represents a
random noise vector and σ > 0 determines the level of
smoothing. The smoothed classifier g(W ; ·) selects the out-
put class y that maximizes the probability of the original
classifier h(W ; ·) producing the same output class for per-
turbed inputs x + ϵ. This smoothing process makes the
classifier more robust to small input perturbations (Cohen
et al., 2019). The lemma below presents an upper bound on
the empirical adversarial loss of the randomized smoothing
classifier. The detailed proof can be found in Appendix E.

Lemma 2.1. Let ϵ ∼ N (0, σI) with σ > 0, and let p, p :
W ×X → [0, 1] such that, for all (x, y) ∈ S and W ∈ W ,

Pg(W ;x) ≥ p(W,x) ≥ p(W,x) ≥ P¬g(W ;x),

where Pg(W ;x) := Pr(h(W ;x + ϵ) = g(W ;x)) and
P¬g(W ;x) := maxc̸=g(W ;x) Pr(h(W ;x+ ϵ) = c). Then,

L̂(Q,S, ℓadv) ≤ L̂(Q,S, ℓ̃), where, ℓ̃(x, y, g(W ; ·)) :=

max{ℓ(x, y, g(W ; ·)), I(Φ−1(p(W,x))−Φ−1(p(W,x)) ≥
2R
σ )} and Φ is the CDF of a standard normal distribution.

Note that p(W,x) serves as a lower bound on the probability
of the class predicted by the smoothed classifier g(W ;x),
while p(W,x) represents an upper bound on the probability
of any other class. The loss function ℓ̃ captures the idea that
as the difference between p(W,x) and p(W,x) increases,
the robustness of g(W,x) also improves. This means that
when the gap between p(W,x) and p(W,x) is large, indicat-
ing high confidence in the predicted class, ℓ̃ coincides with
the natural loss ℓ(x, y, g(W ; ·)). However, when the dif-
ference between p(W,x) and p(W,x) is small, suggesting
a lack of robustness, ℓ̃ takes on its maximum value, indi-
cating the potential presence of an adversarial example for
g(W ;x). In this way, the loss function ℓ̃ provides a measure
of the robustness of the smoothed classifier g(W,x) based
on the probability bounds p(W,x) and p(W,x).

Lemma 2.1 provides an upper bound on L̂(Q,S, ℓadv) us-
ing L̂(Q,S, ℓ̃), allowing us to replace the computation
of ℓadv with that of ℓ̃. Notably, in ℓ̃, there is no need
to solve the intractable adversarial optimization problem
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max∥x̃−x∥2<R ℓ(x̃, y, g(W ; ·)). Although the exact compu-
tation of p(W,x) and p(W,x) within ℓ̃ is also intractable,
we can efficiently estimate them using sampling-based tech-
niques (Cohen et al., 2019) (See Section 2.2). The final
bound is summarized in the following theorem, which is
derived from Lemma 2.1 and the bound (1). The detailed
proof can be found in Appendix E.

Theorem 2.2. Let Q0 ∈M(W) be a prior probability mea-
sure. Then, with probability 1− δ over the randomness of
the training sample S, simultaneously for all Q ∈M(W),
we have L(Q, ℓadv) ≤

KL−1

(
L̂(Q,S, ℓ̃),

KL(Q||Q0) + ln( 2
√
n

δ )

n

)
. (2)

2.2. Computing the certificate

In this section, we provide a tractable upper bound on (2)
that holds with high probability. The main computational
challenge lies in computing L̂(Q,S, ℓ̃). To address this
challenge, we first efficiently approximate the expectation
with respect to Q by Monte Carlo sampling (Langford and
Caruana, 2001) (see Lemma E.8) to get the bound, with
probability at least 1− δ over the randomness in Q̂,

L̂(Q,S, ℓ̃) ≤ KL−1

(
L̂(Q̂, S, ℓ̃),

ln( 2δ )

n

)
. (3)

Algorithm 1 Estimate an upper bound on L̂(Q̂, S, ℓ̃)

Input : S, N0, N , σ, {Wi}mi=1, α, R
Output : An estimate of L̂(Q̂, S, ℓ̃)

1 errors count← 0
2 for (x, y) ∈ S do
3 for j ← 1 : m do
4 {ϵt}N0

t=1 ← Sample N0 samples from N (0, σI)

5 counts←
∑N0

t=1 h(Wj ;x+ ϵt)
6 cA ←= argmaxk∈[K] countsk
7 {ϵt}Nt=1 ← Sample N sample from N (0, σI)

8 counts←
∑N

t=1 h(Wj ;x+ ϵt)
9 pA ← BinomialLowerConf(countscA , N, 1− α)

10 if pA ≤ 1
2 or cA ̸= y or Φ−1(pA) <

R
σ then

11 errors count← errors count+1
12 end
13 end
14 end
15 return errors count /m|S|

It remains now to estimate an upper bound on L̂(Q̂, S, ℓ̃).
We proceed by addressing the difficulty of evaluating
g(W ; ·), which is computationally intractable. To over-
come this, we leverage the CERTIFY algorithm proposed
by Cohen et al. (2019), which provides a sampling-based

approach to approximate g(W ; ·). Algorithm 1 presents
an algorithm to estimate the empirical error L̂(Q̂, S, ℓ̃)
based on CERTIFY. We first estimate the prediction cA ≈
g(Wj ;x) by sampling N0 instances from h(Wj ;x + ϵ)
(lines 4-6). Next, we proceed to estimate a lower bound
on Pr(h(Wj ;x + ϵ) = cA) that holds with probability
at least 1 − α. Specifically, in lines 7-8, we count the
number of times h(Wj , x + ϵt) predicts cA in N trials,∑N

t=1 I(h(Wj ;x + ϵt) = cA). In line 9, we estimate the
lower bound pA on Pr(h(Wj ;x+ ϵ) = cA) using the con-
fidence interval estimation procedure BinomialLowerConf
(Brown et al., 2001), which ensures a lower bound with
probability at least 1 − α. Finally, lines 10-11 compute
the upper bound on ℓ̃(x, y, g(W ; ·)). The following lemma
assesses the quality of Algorithm 1.

Lemma 2.3. Let S ⊂ X × Y and W := {Wi}mi=1 be a
set of weights. Let Alg1 be the output of Algorithm 1, then
with probability at least 1− δ over the randomness of the
algorithm,

L̂(Q̂, S, ℓ̃) ≤ B(Q̂, S, δ),

where B(Q̂, S, δ) :=

(
Alg1+α+

√
2α(1−α) ln( 1

δ )

m|S| +
ln( 1

δ )

3m|S|

)
.

We obtain the final certificate by combining Theorem 2.2,
Eq.(3), and Lemma 2.3:

Theorem 2.4. Let Q0 ∈M(W) be prior distribution and
Alg1 is the output of algorithm 1. Then with probability at
least 1− δ − δ′ − δ′′, simultaneously for Q ∈M(W), the
adversarial risk L(Q, ℓadv) is upper-bounded by

KL−1

(
KL−1

(
B(Q̂, S, δ′′),

ln(
2
δ′ )

n

)
,
KL(Q||Q0)+ln(

2
√
n

δ )

n

)

2.3. Training a certifiable network

In this section, we consider training self-certified stochastic
models, that is, models for which the bound in Theorem
2.4 is non-vacuous. Recall that the goal of training is to
find a posterior distribution Q ∈M(W) that minimizes the
adversarial PAC-Bayes bound (1), which can be formulated
as selecting Q̂ that attains the minimum

min
Q∈M(W)

KL−1

(
L̂(Q,S, ℓadv),

KL(Q||Q0) + ln( 2
√
n

δ )

n

)
.

Evaluating and minimizing the adversarial PAC-Bayes
bound directly is challenging. Therefore, we aim to derive a
surrogate objective that is amenable to optimization, partic-
ularly using SGD-based algorithms. Since the KL−1 term
does not have a closed-form solution, several upper bounds
have been proposed in the literature (McAllester, 1999;
Pérez-Ortiz et al., 2021; Tolstikhin and Seldin, 2013; Thie-
mann et al., 2017). In an extensive empirical study, Pérez-
Ortiz et al. (2021) observed that the bound PAC-Bayes-
quadratic (Rivasplata et al., 2020) outperformed the other
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Figure 1. Robust risk certificates for MNIST and CIFAR-10.

candidates across various settings. Therefore, we focus on
this bound in our experiments. The PAC-Bayes-quadratic
bound takes the following form: fq(Q,Q0, S, ℓadv) := √

L̂(Q,S, ℓadv) +
KL(Q||Q0)+ln( 2

√
n

δ )

2n

+

√
KL(Q||Q0)+ln( 2

√
n

δ )

2n

2

.

Now we proceed to estimate the gradient of
fq(Q,Q0, S, ℓadv). It is computationally efficient to
compute the KL-divergence and its gradients when
using normal distributions with diagonal covariance for
both the prior Q0 and the posterior Q. To estimate the
gradients of L̂(Q,S, ℓadv) with respect to the parameters
of Q (i.e. µ and Σ), we use the pathwise gradient
estimator (Price, 1958; Jankowiak and Obermeyer, 2018;
Pérez-Ortiz et al., 2021). This approach addresses the
computational challenges in evaluating the expectation with
respect to Q. Specifically, we consider the approximation
∇(µ,Σ)L̂(Q,S, ℓadv) ≈ ∇(µ,Σ)

1
n

∑n
i=1 ℓadv(xi, yi, g(W ; ·)),

where W := µ + Σ
1
2V , V ∼ N (0, I). Next, we focus

on the classifier g(W ;x). During the training process, we
employ the empirical version of the classifier, which is
given by 1

M

∑M
t=1 h(W ;x+ ϵt), where ϵt are i.i.d. samples

from the normal distribution N (0, σI). To approximate the
adversarial loss, we utilize adversarial training techniques
(Madry et al., 2017; Tramèr et al., 2017). Specifically, we
adopt the SMOOTHADV approach proposed by Salman et al.
(2019), in which Projected Gradient Descent (PGD) is used
to find an adversarial example for each training sample. The
gradients of the inputs required by PGD are approximated
by ∇xℓ

(
1
M

∑M
t=1 h(W ;x + ϵt)

)
. It is important to note

that during the training process, the cross-entropy loss is
used as a surrogate for the 0-1 loss. Algorithm 2 in the
appendix provides a summary of the training procedure.

3. Experiments
In this section, we demonstrate the practical applications of
our self-certified model training and evaluation techniques,

showcasing their utility and efficacy. We compute the em-
pirical certificates (Algorithm 1) and the adversarial risk
bound (Theorem 2.4) for various training settings on the
well-established MNIST and CIFAR-10 datasets.

Our model achieves robust risk certificates across all set-
tings Overall, our method consistently achieves robust cer-
tificates across all datasets. Figure 1 shows the results of our
experiments. Orange lines depict the bound on L̂(Q̂, S, ℓ̃)
as presented in Algorithm 1, while blue lines depict the
bound on L(Q, ℓadv) as given in Theorem 2.4. The com-
puted bounds are indeed non-vacuous for both MNIST on
the small network and CIFAR-10 on the deep network.

Our approach scales well with deeper networks When
evaluating a deeper network on CIFAR-10, we observed
that despite the network’s larger size (41M parameters vs.
4.8M parameters), the generalization gap did not signifi-
cantly change. This finding emphasizes that KL-divergence
is a superior measure of complexity for DNNs compared to
relying solely on the number of parameters. Other measures
with similar implications have been proposed in the liter-
ature, such as the distance to initialization (Bartlett et al.,
2017; Arora et al., 2019). For further insights, a detailed set
of additional experiments is available in the Appendix.

4. Conclusion
In this work, we have addressed the challenge of adversarial
attacks in machine learning models by developing novel
generalization bounds and practical methodologies for com-
puting robustness certificates. Our approach leverages the
PAC-Bayesian and randomized smoothing frameworks and
demonstrates the ability to provide non-vacuous certificates
for neural networks in adversarial settings. Through rigor-
ous experiments on benchmark datasets, we have validated
the effectiveness of our method in yielding robust certifi-
cates for stochastic convolutional neural networks.
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A. Limitations and future work
One limitation of the proposed approach is its applicability only to stochastic DNNs. However, the work Biggs and Guedj
(2022) provides a promising direction to extend the bounds to the deterministic DNN case. Additionally, the current bounds
are specific to L2 robustness, but we aim to generalize them to Lp robustness using techniques proposed by (Yang et al.,
2020). Another limitation is the computational complexity, as our bounds require a large sample of both input noise and
network parameters. However, in practice, we observed that the empirical average of errors converges relatively quickly,
indicating the potential for exploring bounds of a faster convergence rate.

B. Related work
In this section, we briefly discuss the related work.

Adversarial generalization on deterministic DNNs Attias et al. (2019) utilized the VC dimension of the hypothesis class
to derive adversarial generalization bounds. Some studies assume that the attacker’s strategy is known in advance (Gao
and Wang, 2021; Farnia et al., 2018), which is a strong assumption as real-world attackers can utilize a variety of attack
techniques. Xing et al. (2021) employed algorithmic stability techniques to analyze the generalization of adversarial training.
Several works have employed the Rademacher complexity to study the generalization of ℓp-additive-perturbation attacks
(Khim and Loh, 2018; Yin et al., 2019; Awasthi et al., 2020; Xiao et al., 2021). Mustafa et al. (2022) utilized covering
numbers arguments (Lei et al., 2019; Mustafa et al., 2021) to derive generalization bounds for general attacks beyond
ℓp-additive attacks. These bounds, however, are numerically vacuous when applied to modern DNNs and datasets.

Non-vacuous bounds on stochastic DNNs Dziugaite and Roy (2017) were the first to compute non-vacuous bounds on
stochastic DNNs using techniques from Langford and Caruana (2001). Dziugaite and Roy (2018) utilized differential privacy
to train data-dependent priors. Pérez-Ortiz et al. (2021) performed an extensive study on optimizing several PAC-Bayes
bounds and computed the state-of-the-art risk certificate in the natural settings. Biggs and Guedj (2022) brought non-vacuous
PAC-Bayes bounds to deterministic shallow networks by a carefully designed architecture. These bounds, however, do not
apply to adversarial settings.

Practical algorithms inspired by PAC-Bayes bounds Wu et al. (2020) draw insight from PAC-Bayes bounds to derive
a scheme of adversarial training in which both the input and network weights are attacked. Wang et al. (2022) proposed
minimizing an upper bound on a PAC-Bayes bound by using the trace of the Hessian of the empirical loss. Viallard et al.
(2021) proposed to optimize a PAC-Bayes bound of a lower bound on the adversarial loss. They give tightness guarantees
on this lower bound by a total variation between the random and adversarial noise distributions. This quantity, however, is
very hard to estimate in practice. These methods, while showing practical success in the empirical evaluation of robustness,
do not provide any guarantees on the population adversarial risk.

Adversarial verification methods Based on Mixed Integer Linear Programming (MILP) and Satisfiability Modulo
Theories (SMT), exact verifiers (Katz et al., 2017a; Ehlers, 2017; Tjeng et al., 2017) are complete-verifiers, that is, they
will report adversarial examples when they exist. MILP verifiers do not scale well to large networks (Cohen et al., 2019).
Conservative verifiers (Wong and Kolter, 2018; Dvijotham et al., 2018; Raghunathan et al., 2018) use relaxation and duality
techniques to verify a given input. These, however, tend to flag robust inputs as adversarial for expressive networks (Salman
et al., 2019). Randomized smoothing (Cohen et al., 2019) are probabilistic verification methods that showed to scale to large
DNNs and datasets. They transform a given classifier into a robust one by adding Gaussian noise to its inputs. The resulting
classifier is provably robust to L2 attacks. Yang et al. (2020) extends randomized smoothing to provide general guarantees
to general Lp norms. These methods, however, concern test time verification, without any guarantees on their generalization
properties.

Adversarial attacks Adversarial attacks are usually categorized as white-box (Carlini and Wagner, 2017) or black-
box (Brendel et al., 2017), depending on the information available to the attacker. Most commonly, the attacker is
constrained to alter the input by additive noise from an ℓp-ball. Recently, further (non-additive) attack models have been
considered. In which the adversary manipulates the input by a non-linear transformation, either in the input space (e.g.,
rotation of an input image; Engstrom et al., 2019) or in a semantic representation space (e.g., in the frequency domain of an
image; Awasthi et al., 2021).



Computing non-vacuous PAC-Bayes generalization bounds for Models under Adversarial Corruptions

Practical Defenses In response to such attacks, several defense mechanisms have been developed, for instance, based on
regularizing the model’s Lipschitz constant (Bietti et al., 2018; Cissé et al., 2017), input gradient (Hein and Andriushchenko,
2017; Ross and Doshi-Velez, 2018), or input Hessian (Mustafa et al., 2020) at training. The most widely used defense
mechanism against adversarial attacks is adversarial training (Madry et al., 2017) and its variants (Kannan et al., 2018;
Zhang et al., 2019). Its key idea is to replace clean training samples with their adversarial counterparts while maintaining
their correct labels. Systematic studies have shown that the resulting models are robust and can withstand a large number of
attacks (Athalye et al., 2018).

C. Details on the experimental setup
In this section, we provide more details on the experimental setup used in the main manuscript and, if not mentioned
otherwise, in the appendix. In Algorithm 2, line 1, the prior is randomly initialized. However, following (Pérez-Ortiz et al.,
2021), we found that learning the prior mean via ERM yields consistently stronger bounds. We use 70% of the training data
to learn the prior for CIFAR-10 and 50% of the data for MNIST. The remaining data is utilized to learn the posterior and
compute the certificates. During training, we fix the number of ϵi samples for smoothing to M = 4, use 10 steps for the
PGD adversarial attack, a KL regularization for the posterior training with a factor of λKL = 0.1, a batch size of 256, SGD
optimization with a momentum of 0.9 for learning the prior and 0.95 for learning the posterior, and train for 100 epochs both
for the prior and posterior. We tested different learning rate schedulers and used a linear learning rate decrease of one-tenth
at the 60th epoch for CIFAR-10 and every 20 epochs for MNIST. The smoothing variance for training (Algorithm 2, line 11)
and computing the certificates (Algorithm 1, lines 4 and 7) is set to σϵ = 0.5. The final attacker capacity during training
(Algorithm 2, line 13) is set to Rtrain = 1.0. We implemented a “warm-up” where we gradually increase Rtrain during
the first 10 epochs of prior and posterior training until it matches the final attacker capacity. For the empirical certificate
computation, we utilize 100 Monte Carlo samples for selection (N0 = 100) and 10000 samples for estimation (N = 10000).
We set δ = δ′ = δ′′ = 0.01, α = 0.001, and pmin = 10−5 (see Theorem 3). 300 Monte Carlo samples (m=300) are used
for the adversarial risk bound.

DNN architectures For MNIST, we use a simple CNN architecture (∼4.8M parameters) consisting of two convolutional
layers with 32 and 64 filters, respectively. They are followed by two fully connected layers with 128 and 10 output neurons,
respectively. We use ReLU activation and a dropout of 50% for each but the final layer. For CIFAR-10, we adopt a VGG-like
(Simonyan and Zisserman, 2014) deep CNN (∼41M parameters) following Pérez-Ortiz et al. (2021). This architecture
comprises 13 convolutional layers with up to 512 filters. The final prediction is computed using three fully connected
layers with 1024, 512, and 10 output neurons, respectively. Similar to MNIST, ReLU activation, and dropout are applied
to all layers except the final one. Additionally, we observed that incorporating Batch Normalization (BatchNorm) (Ioffe
and Szegedy, 2015) facilitates faster prior learning. We exclude the learnable affine transformation that scale and shift the
normalized data, and we freeze the running statistics after learning the prior to ensure that the network is fully parameterized
by its weights.

Our model is sensitive to hyperparameters Due to computational constraints–training and computing the certificates on
CIFAR-10 takes approximately 30 hours on 8 A100 GPUs–we performed a greedy grid search of the hyperparameters. For
CIFAR-10, picking from learning rates in {5e-4, 1e-3, 5e-3, 1e-2, 5e-2}, we determined that 1e-3 produced the best results
for the posterior, while 5e-3 was optimal for the prior. Overall the model displayed robustness to the choice of learning
rate. However, we found that the stochastic network is sensitive to the choice of the prior covariance Σ0. Any value above
Σ0 = 0.015I makes the posterior training not converge, while any value below Σ0 = 0.01I showed no further improvement.
Additionally, the prior tends to overfit, prompting us to search for an optimal dropout rate. Among the values tested (0.1, 0.2,
0.3, 0.5), a dropout rate of 0.2 proved to be the most effective. Our data preprocessing involved standardizing all data and
applying simple data augmentation techniques, i.e., random resizing with padding of four and random horizontal flips. For
MNIST, we searched within the same set of hyperparameters as for CIFAR-10. We picked 5e-2 as a learning rate for the
posterior and 1e-3 for the prior. The prior Σ0 was selected to be 0.03I . We set the dropout parameter to 0.5.
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D. Summary of the training proceadure
The following algorithm summarizes the training procedure derived in Section 2.3.

Algorithm 2 Adversarial PAC-Bayes
Input :Training set S, number of iteration T , batch size B
Output :Posterior distribution model Q

16 Randomly initialize µ0, ρ0
17 µ← µ0

18 ρ← ρ0
19 for t← 1 : T do
20 Sb ← Sample a batch from S with batch size B
21 V ← Sample from N (0, I)
22 Σρ ← ln(1 + exp(ρ))

23 W ← µ+Σ
1
2
ρ V

24 S̃b ← []
25 for (x, y) ∈ Sb do
26 {ϵi}Mi=1 ← Sample m i.i.d samples from N (0, σ2I)
27 Generate adversarial examples for samples (x, y) by solving:

x̂ = argmax∥x̂−x∥2≤R ℓ
(
x̃, y, 1

M

∑M
t=1 h(W ; ·+ ϵt)

)
28 Append {(x̂+ ϵi, y)}Mi=0 to the adversarial training set S̃b.
29 end
30 Update µ and ρ by SGD/ADAM with gradients ∇µfq(N (µ0,Σ0),N (µ,Σρ), L̂(δW , S̃b, ℓ)) and

∇ρfq(N (µ0,Σ0),N (µ,Σρ), L̂(δW , S̃b, ℓ)), where δW is the Dirac measure.
31 end
32 return N (µ, ρ)
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E. Proofs of theorems
In this section, we present the missing proofs in the main manuscript.

E.1. Proofs of section 3.2

In this section, we give the missing proofs for section 3.2 in the main manuscript. We use Theorem 1 in (Cohen et al., 2019)
in the proof of Lemma 1.

Theorem E.1 (Theorem 1 in (Cohen et al., 2019)). Let h : X → Y be a given function, ϵ be a random variable with a
Gaussian distribution N (0, σI), where I is the identity matrix. Define g = Tσh. Suppose cA ∈ Y , and let pA, pB ∈ [0, 1]
be defined such that

Pr(h(x+ ϵ) = cA) ≥ pA ≥ pB ≥ max
c̸=cA

Pr(h(x+ ϵ) = c).

Then we have
g(x̃) = cA, for all ∥x̃− x∥2 < R,

where
R =

σ

2
(Φ−1(pA)− Φ−1(pB)),

where Φ is the CDF of a standard normal distribution.

We are now ready to present the proof of Lemma 1 in the main manuscript.

Lemma E.2 (Restated). Let S := {(x1, y1), . . . , (xn, yn)} ⊂ X × Y be a given dataset, Q ∈ M(W) be a probability
measure on the set of weightsW . Further, let ϵ ∼ N (0, σI) with some σ > 0, and let pA, pB :W ×X → [0, 1] such that,
for all (x, y) ∈ S and W ∈ W ,

Pr(h(W ;x+ ϵ) = g(W ;x)) ≥ pA(W,x) ≥ pB(W,x) ≥ max
c̸=g(W ;x)

Pr(h(W ;x+ ϵ) = c).

Then the following statements are true:

L̂(Q,S, ℓadv) ≤ L̂(Q,S, ℓ̃), (4)

L̂(Q̂, S, ℓadv) ≤ L̂(Q̂, S, ℓ̃), (5)

L(Q, ℓadv) ≤ L(Q, ℓ̃), (6)

where
ℓ̃(x, y, g(W ; ·) :=

{
ℓ(x, y, g(W ; ·)) if Φ−1(pA(W,x))− Φ−1(pB(W,x)) ≥ 2R

σ

1 otherwise,

and Φ is the CDF of a standard normal distribution.

Proof. appendix We commence the proof by first observing the stability property of function g as delineated in Theorem
E.1. Subsequently, through the careful construction of ℓ̃, we demonstrate its capacity to provide an upper bound for the
adversarial loss ℓadv.

Let W ∈ W and consider an arbitrary (x, y) ∈ X × Y . By Theorem E.1 and the definitions of pA(W,x) and pB(W,x), we
establish that

g(W ; x̃) = g(W ;x) for all ∥x̃− x∥2 < R′,

where
R′ =

σ

2
(Φ−1(pA(W,x))− Φ−1(pB(W,x))).

Thus, we can deduce that

ℓadv(x, y, g(W ; ·)) = max
∥x̃−x∥2<R

ℓ(x̃, y, g(W ; ·)) = ℓ(x, y, g(W ; ·)),
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whenever R′ ≥ R. In instances where R′ ≤ R, as per the definition of ℓ̃, we ascertain that the loss assumes its maximum
value of 1. Consequently, we arrive at the conclusion that

ℓadv(x, y, g(W ; ·)) ≤ ℓ̃(x, y, g(W ; ·)).

Since W , x, and y are arbitrarily chosen, the above inequality holds for all (x, y,W ) ∈ X × Y ×W . By the monotonicity
property of expectations, Equations (4) to (6) follow. Thus, we conclude the proof.

Next, we present the proof of Theorem 2.

Theorem E.3 (Restated). Let Q0 ∈M(W) be a prior probability measure. Then, with probability 1−δ over the randomness
of the training sample S, simultaneously for all Q ∈M(W), we have

L(Q, ℓadv) ≤ KL−1

(
L̂(Q,S, ℓ̃),

KL(Q||Q0) + ln( 2
√
n

δ )

n

)
. (7)

Proof. Recall that by Lemma E.2 we have L̂(Q,S, ℓadv) ≤ L̂(Q,S, ℓ̃). Since KL−1(·, ·) is monotonically increasing in the
first argument, the result holds by Eq. (2) in the main manuscript.

E.2. Proofs of section 3.3

In this section, we present the missing proofs of Section 3.3 in the main manuscript. We first present Bernstein’s inequality,
a useful result that we utilize in the proof of Lemma 3.

Lemma E.4 (Bernstein’s Inequality (Boucheron et al., 2003)). Let X1, . . . ,Xn be i.i.d real-valued random variables with
Xi ≤ 1, and E[Xi] = 0, for i ∈ [n]. Further, let

1

n

n∑
i=1

Var(Xi) ≤ ν.

Then with probability at least 1− δ,

1

n

n∑
i=1

Xi ≤

√
2ν ln( 1δ )

n
+

ln( 1δ )

3n
(8)

Next, we give the proof of Lemma 3.

Lemma E.5 (Restated). Let S := {(xi, yi)}ni=1 ⊂ X × Y andW := {Wi}mi=1 be a set of weights. Let Alg1 be the output
of Algorithm 1, then with probability at least 1− δ over the randomness of the algorithm, we have

L̂(Q̂, S, ℓ̃) ≤

Alg1+α+

√
2α(1− α) ln( 1δ )

mn
+

ln( 1δ )

3mn

 .

Proof. Firstly, let us consider (xi, yi) ∈ S for i ∈ [n] and Wj ∈ W where j ∈ [m]. In Algorithm 1, lines 5 and 6 provide
an estimation for the predicted class cA of g(Wj ;xi). This estimation relies on the empirical estimate ĝ(Wj ;xi) of the
function g(Wj ;xi). For the sake of simplicity, let us define ℓ̃ij := ℓ̃(xi, yi, g(Wj ; ·)) and ℓ̂ij := ℓ̃(xi, yi, ĝ(Wj ; ·)). The
objective of Algorithm 1 is to utilize ℓ̂ij as a substitute for computing ℓ̃ij . To ensure the validity of this substitution, it is
imperative that ℓ̃ij ≤ ℓ̂ij . Thus, we proceed by quantifying the frequency with which this condition is not satisfied. Let
Zij := I(ℓ̃ij > ℓ̂ij), where Zij is a random variable indicating whether the surrogate loss is smaller than the original loss.
Consequently, we have the following inequality:

L̂(Q̂, S, ℓ̃) :=
1

nm

n∑
i=1

m∑
j=1

ℓ̃ij ≤
1

mn

n∑
i=1

m∑
j=1

(ℓ̂ij + Zij). (9)
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We now proceed to establish an upper bound for 1
mn

∑n
i=1

∑m
j=1 Zij . Let pcA = Pr(h(W ;x + ϵ) = cA) and p̂c be the

lower 1− α confidence interval estimate of pc based on a finite sample of size N as computed in line 9. Consequently, we
have:

Pr(pc < p̂c) ≤ α.

According to the definition of ℓ̃, ℓ̃ij ≤ ℓ̂ij only if pc < p̂c. Thus, the variables Zij are independent Bernoulli random
variables with a success probability less than α, a mean E[Zij ] ≤ α, and a variance Var(Zij) ≤ α(1 − α). Let Z =
1

mn

∑
i

∑
j(Zij − E[Zij ]). Then we know that Z is a random variable bounded by 1 with zero mean and a variance less

than α(1− α).

By applying Bernstein’s inequality (Lemma E.4), we obtain, with a probability of at least 1− δ, the following inequality:

Z ≤

√
2α(1− α) ln( 1δ )√

mn
+

ln( 1δ )

3mn
,

1

mn

n∑
i=1

m∑
j=1

Zij ≤
1

nm

n∑
i=1

m∑
j=1

E[Zij ] +

√
2α(1− α) ln( 1δ )√

mn
+

ln( 1δ )

3mn
,

≤ α+

√
2α(1− α) ln( 1δ )√

mn
+

ln( 1δ )

3mn
. (10)

By noting that Alg1 = 1
mn

∑n
i=1

∑m
j=1 ℓ̂ij and combining Eq.(9) and Eq.(10), we arrive at the final result.

Finally, we present the proof of Theorem 3.

Theorem E.6 (Restated). Let Q0 ∈ M(W) be prior distribution. Then with probability at least 1 − δ − δ′ − δ′′,
simultaneously for Q ∈M(W), the adversarial risk L(Q, ℓadv) is upper-bounded by

KL−1

(
KL−1

((
Alg1+α+

√
2α(1−α) ln(

1
δ′′ )

mn +
ln(

1
δ′′ )

3mn

)
,
ln(

2
δ′ )

m

)
,
KL(Q||Q0)+ln(

2
√
n

δ )

n

)
.

Proof. The proof follows by combining Lemma 3 with Eq.(4) and Theorem 2 in the main manuscript with the fact that
KL−1 is monotonic in the first argument.

E.3. Helper Lemmas

Theorem E.7 (Classical PAC-Bayes bound (Langford and Caruana, 2001; McAllester, 1999)). Let Q0 ∈M(W) be a prior
probability measure onW . For any δ ∈ (0, 1), with probability at least 1− δ over the randomness of the training sample S,
simultaneously for all distributions Q ∈M(W),

KL(L̂(Q,S, ℓ), L(Q, ℓ)) ≤
KL(Q||Q0) + ln( 2

√
n

δ )

n
.

Lemma E.8 ((Langford and Caruana, 2001)). Let t1, . . . , tm ∼ B(λ) be independent Bernoulli variables with λ ∈ [0, 1].
Then with probability at least 1− δ,

KL

(
1

m

m∑
j=1

tj

∥∥∥λ) ≤ ln( 2δ )

n
.
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F. Additional experiments
In the following sections, we provide ablation studies that focus on sensitive hyperparameters and highlight the usefulness
of smoothing and adversarial learning. First, we demonstrate the effect of learning the prior mean via ERM.

F.1. Learning the prior yields stronger certificates

In this section, we investigate the impact of training a data-dependent prior. On MNIST, our findings align with the
expectations, as learning the prior significantly reduces the generalization gap, as demonstrated in Figure 2. Moreover, our
observations reveal notable enhancements in the empirical training certificates when the prior mean is learned. However,
when considering CIFAR-10, training with data-independent priors proved challenging. The posterior did not outperform
random guessing. These results strongly emphasize the importance of learning the prior to obtaining non-vacuous certificates.
This was also highlighted in the literature (Dziugaite and Roy, 2018; Dziugaite et al., 2021; Pérez-Ortiz et al., 2021).
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(a) Without Prior Training
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(b) With Prior Training

Figure 2. Effect of data-dependent prior. Shown are adversarial risk bounds for a DNN trained with and without prior training on MNIST.
Each subfigure plots the 0-1 loss over increasing attacker capacities (i.e., R). The blue curve represents the risk bound, while the orange
curve represents the empirical certified robustness of the training data.
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F.2. Smoothing and adversarial training improves model robustness

In this experiment, we investigate the effects of varying the random smoothing and adversarial attack hyperparameters
in the training algorithm. In particular, we vary the smoothing variance (Algorithm 1, lines 4 and 7; Algorithm 2, line
11) and the attacker capacity for adversarial learning. As shown in Figure 3, we observe that models are more robust
when confronted with stronger adversarial attacks during training but achieve inferior bounds in a weak adversarial setup
(R < 0.2). Decreasing the variance of smoothing has a similar effect. While it improves the bounds for weaker adversarial
setups, it makes the bounds collapse at R ≥ 0.7.
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(a) σϵ = 0.5
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(b) σϵ = 0.25

Figure 3. Effect of varying the adversarial capacity and smoothing parameter during training. Each color corresponds to a network trained
with varying attacker capacities (i.e., Rtrain). Each subfigure depicts the 0-1 loss as the attacker’s capacity during inference (R) increases.
The dashed curve represents the risk bound, while the dotted curve represents the empirically certified robustness of the training data.
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F.3. Adversarial training improves model robustness

We consider two settings for our experiments. Firstly, we report results for adversarial training as outlined in Algorithm 2. In
the second setting, we omit the adversarial training step, i.e. omitting line 27 in Algorithm 2. Adversarial training imposes a
harder constraint on the models. Consequently, we anticipated that while it would enhance the empirical certificate (orange
line), it could potentially widen the generalization gap, thus leading to inferior risk certificates. Surprisingly, adversarial
training increased the model robustness without significantly affecting the generalization gap. This observation suggests that
the KL regularization is not at odds with adversarial training when applied to smoothed classifiers.
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Figure 4. The figure shows adversarial risk bounds for a DNN trained with (left) and without (right) adversarial training on MNIST (top)
and CIFAR-10 (bottom). Each subfigure depicts the 0-1 loss over increasing attacker capacities (i.e., R). The blue curve represents the
risk bound, while the orange curve represents the empirical certified robustness of the training data.
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F.4. The generalization gap explodes without KL regularization

In this section, we shift our focus toward investigating the impact of Kullback-Leibler (KL) divergence regularization. To
assess its influence on the production of certifiable models, we conduct experiments without KL-regularization, specifically
setting λKL to 0.
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(a) σϵ = 0.5
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(b) σϵ = 0.25

Figure 5. Effect of omitting KL regularization. This figure shows adversarial risk bounds for a DNN trained on CIFAR-10 with two
different smoothing variances σϵ. Each color corresponds to a network trained with varying attacker capacities (i.e., Rtrain). Each
subfigure depicts the 0-1 loss as the attacker’s capacity during inference (R) increases. The dashed curve represents the risk bound, while
the dotted curve represents the empirically certified robustness of the training data.

As expected, the absence of KL-regularization leads to an improvement in the empirical training error. However, the
resulting adversarial risk certificates are found to be vacuous (see Figure 5). This observation underscores the significance
of optimizing the PAC-Bayes bound to computing non-vacuous generalization bounds.
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F.5. No smoothing deteriorates robustness significantly

In this section, we investigate the effect of smoothing in an extreme scenario. We completely remove smoothing during
training; i.e., set σϵ = 0 in line 11 of Algorithm 2.
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(a) smoothing variance σepsilon = 0.25 for computing the certificate
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(b) empirical performance under PGD attack

Figure 6. Effect of adversarial smoothing. This figure shows (a) adversarial risk bounds and (b) empirical performance under PGD attack
for a DNN trained on CIFAR-10 with no smoothing (i.e., σϵ = 0). Each color corresponds to a network trained with varying attacker
capacities (i.e., Rtrain). The figure depicts the 0-1 loss as the attacker capacity during inference (R) increases. In (a), the dashed curve
represents the risk bound, while the dotted curve represents the empirically certified robustness of the training data.

We first investigate the significance of training a smoothed classifier vs. smoothing a naturally or adversarially trained one.
To this end, we compute certificates to classifiers that are trained under natural or adversarial conditions and are subsequently
smoothed by a smoothing parameter σϵ = 0.25. Figure 6a shows the adversarial risk bounds and training data certificates for
different adversarial training settings. Interestingly, the figures demonstrate that naturally trained classifiers fail to provide
reasonable robustness certificates even after smoothing, emphasizing the significance of using randomized smoothing during
training.
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While the aforementioned experiment highlights the importance of randomized smoothing during training, it raises an
intriguing question: Are the trained models robust, despite the absence of certifiability through smoothing techniques? To
address that question, we subject these models to PGD attacks, thereby establishing a lower bound on empirical adversarial
risk. Evidently in Figure 6b, the model’s robust performance decreased significantly even for adversarially-trained models.
This provides evidence that it is challenging to obtain robustness for a set of models with large probability as measured by
the posterior, underscoring the effectiveness of randomized smoothing in obtaining such a set of robust models.

F.6. Training the prior is prone to overfitting

In our early experiments without dropout, we noticed that, while the prior often achieves a training error of close to 0%, the
posterior fails to follow. It is stuck at around 50% training error. Even though we use the common data augmentation, we
hypothesize that the prior overfits on the training data. Figure 7 shows adversarial risk bounds for varying dropout rates
when training the prior mean via ERM. We use Rtrain = 0.5. It can be seen that the model achieves the best bounds with a
dropout rate of roughly 20%. Without dropout, the model seems to overfit and produces far inferior bounds. On the other
hand, larger dropout rates seem to cause the model to underfit as the bounds deteriorate.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
R

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ce
rti

fie
d 

0-
1 

lo
ss

dropout=0.0
dropout=0.1
dropout=0.2
dropout=0.3
dropout=0.4
dropout=0.5
dropout=0.6
dropout=0.7

training data adversarial certificate
adversarial risk bound

Figure 7. Effect of dropout in prior training. This figure shows adversarial risk bounds for a DNN trained on CIFAR-10. Each color
corresponds to a network trained with varying dropout rates during prior training. The figure depicts the 0-1 loss as the attacker capacity
during inference (R) increases. The dashed curve represents the risk bound, while the dotted curve represents the empirically certified
robustness of the training data.
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F.7. Training the posterior is sensitive to the prior variance

As shown in Appendix F.1, learning the prior mean via ERM improves the model performance significantly. This prompts
us to investigate the impact of the prior covariance on the posterior performance. Figure 8 shows adversarial risk bounds for
varying prior covariances Σ0 and fixed Rtrain = 0.5. We find that the model is sensitive to this hyperparameter. Increasing
Σ0 above 0.015 deteriorates the bounds drastically. Decreasing Σ0 below 0.01 seems to have no significant effect.
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Figure 8. Effect of prior variance. This figure shows adversarial risk bounds for a DNN trained on CIFAR-10. Each color corresponds to a
network trained with varying prior covariances Σ0. The figure depicts the 0-1 loss as the attacker capacity during inference (R) increases.
The dashed curve represents the risk bound, while the dotted curve represents the empirically certified robustness of the training data.

G. Approximating KL−1

In this section, for completeness, we present the numerical algorithm to approximate the inverse Kullback-Leibler divergence
KL−1 (Dziugaite and Roy, 2017). In order to approximate KL−1(p, c) = sup{q ∈ [0, 1] : KL(p||q) ≤ c}, we leverage
Newton’s method for finding the roots of the function f(q; p, c) = KL(p||q) − c. This approach is effective since the
proximity of q to the supremum in the definition of KL−1 corresponds to the closeness of f to zero at q. Newton’s method
utilizes iterative updates of the form qn+1 = qn − f(qn)(

df
dq

∣∣∣
q=qn

)−1 to converge towards a root of f . For Bernoulli

distributions, the Kullback-Leibler divergence is expressed as KL(p, q) = p ln p
q + (1− p) ln 1−p

1−q , and its derivative with
respect to q is ∂ KL

∂q = 1−p
1−q −

p
q . Thus, we can utilize updates in the following form:

qn+1 = qn −
p ln p

qn
+ (1− p) ln 1−p

1−qn
− c

1−p
1−qn

− p
qn

to approximate KL−1(p, c).

To initialize the process (setting q0), we employ the simple upper bound KL−1(p, c) ≤ p+
√

c
2 (Dziugaite and Roy, 2017)

and ensure that the initial estimate falls within the domain [0, 1] by setting:

q0 = min

{
1, p+

√
c

2

}
.


