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Abstract The aim of multitask learning is to improve

the generalization performance of a set of related tasks

by exploiting complementary information about the tasks.

In this paper, we review established approaches for reg-

ularization based Multitask Learning, sketch some re-

cent developments, and demonstrate their applications

in Computational Biology and Biological Imaging.
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1 Introduction

Multitask learning (MTL) is a machine learning tech-

nique that considers learning across multiple tasks that

are possibly related to each other. Inspired by models

of learning in human brain, multitask learning first ap-

peared in the context of Neural Networks [4,5].

In this paper, we specifically address the following

three major research questions:

– How can we integrate the information contained in

multiple related tasks into the learning process in

order to obtain better predictors?

– How can we capture the similarity between tasks

and best incorporate this into a learning framework?

– What are examples of applications in Genome Biol-

ogy and Biological Imaging that profit from learning

from multiple tasks simultaneously?
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A strong motivation to study MTL in the context

of biology stems from complex, coupled inference tasks.

For instance, in order to decipher biological processes,

biologists often aim at bringing together knowledge that

has been obtained in multiple experiments, e.g., each

experiment performed on a different organism. A chal-

lenge here is to take into account the fact that some

organisms are more closely related to each other than

others (cf. Figure 1). In order to form effective pre-

diction models, several recent MTL learning machines

try to respect the differences between these organisms,

while exploiting similarities.

From a top level perspective, this is achieved by

learning the classifiers for the tasks in a joint learning

problem, such that the classifiers of the particular tasks

are coupled. This coupling is usually achieved by pro-

moting similar tasks to yields similar prediction models,

where the strength of the coupling strongly depends on

how closely related the tasks are.

Fig. 1 Examples of biological organism with varying sim-
ilarity. The associated learning models are denoted by wt,
t = 1, 2, 3. The organism shown to the left and right are
marginally related, while both of them are closely related to
the one shown in the center.

In Section 3, we give a detailed example of a multi-

task model in the spirit of Figure 1, taken from the ap-

plication domain of the genome biology. But the range

of application scenarios goes beyond the organisms-as-

task scenario. For instance, we may want to learn a
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model for a biochemical mechanism from several tis-

sues, cell lines - or in the case of cancer biology - tumor

types, all of which could be treated as different tasks in

a MTL setting.

Another application example is shown in Section 4,

where we show how the principle of coupling models can

also be extended to applications in Biological Imaging.

We show that MTL can be successfully applied to lever-

age 2D images to facilitate the analysis of 3D images.

2 Multitask Learning

In this section we describe the problem setting of multi-

task learning. We also present particular instances of

multi-task learning machines, focusing on formulations

that are appealing for computational biology. For a de-

tailed overview, see the survey of [14].

2.1 Regularization-based Multitask Learning

From a historical perspective, regularization-based MTL

is based on regularized risk minimization [17] and su-

pervised learning methods such as the Support Vector

Machine (SVM) [3,6] or Logistic Regression. In regular-

ized risk minimization, we aim at computing a model

w by minimizing an objective J(w) consisting of a

loss-term L that captures the error with respect to the

training data (X,Y ) and a regularizer Ω that penalizes

model complexity:

J(w) = L(w|X,Y ) + Ω(w).

This formulation can easily be generalized to the MTL

setting, where we are interested in obtaining several

models parametrized by w1, ...,wT , where T is the num-

ber of tasks. The above formulation can be extended

by introducing an additional regularization term ΩMTL

that penalizes the discrepancy between individual mod-

els:

J(w1, ...,wT ) =

T∑
t=1

J(wt) + ΩMTL(w1, ...,wT ).

2.1.1 Common Approaches

In the following, we denote the training examples by

(xi, yi), i = 1, . . . , n, each of which is associated with a

task τ(i) ∈ {1, . . . , T}. We denote the set of indices of

training points of the tth task by It := {i ∈ {1, . . . , n} :

τ(i) = t} and their number by nt := #It. One of

the first works on regularization-based MTL is by Ev-

geniou and Pontil [9], where at optimization time all

parameter vectors are “pulled” towards their average

w̄ = 1
T

∑T
t=1 wt,

ΩMTL(w1, ...,wT ) =
1

2
||wt − w̄||2 .

Note that all tasks are treated equally in the above for-

mulation; however, often we are given the priori infor-

mation that some tasks are more related to each other

than the remaining ones. To penalize the differences

between the parameter vectors accordingly, the above

setting was extended by [8],

ΩMTL(w1, ...,wT ) =
1

2

T∑
s=1

T∑
t=1

Ast ||ws −wt||2 .

where the graph adjacency matrix A = (Ast), captures

the task similarities. We can rewrite the above formu-

lation using the graph Laplacian L = (Lst),

ΩMTL(w1, ...,wT ) =
1

2

T∑
s=1

T∑
t=1

Lstw
T
s wt,

where L = D − A, where Ds,t = δs,t
∑
k As,k. Finally,

it can be shown that this gives rise to the following

Multitask kernel in the respective dual form:

K((x, s), (z, t)) = H+
st ·KB(x, z),

where KB is a kernel defined on examples and H+ =

(H+
st) denotes the pseudo inverse of H := I + L, where

I is the identity matrix. A closely related formulation

was successfully used in the context of Computational

Biology by [10], where a kernel on tasks KT is used

instead of the pseudo-inverse, giving rise to

K((x, s), (z, t)) = KT (s, t) ·KB(x, z). (1)

Note that the corresponding joint feature space between

task t and feature vector x can be written as a tensor

product φ(t, x) = φT (t) · φB(x) [10]. A special case of

(1) is studied in [7] in the context of Domain Adap-

tation, where φT (t) = (1, 1, 0) was used as the source

task descriptor and φT (t) = (1, 0, 1) for the target task,

corresponding to KT (s, t) = (1 + δs,t).

3 Application in Computational Biology

In this section, we show an application of MTL to the

recognition of splice sites – an important problem in

genome biology. By now it is well understood and there

exist experimentally confirmed labels for a broad range

of organisms. In previous work, we have investigated

how well information can be transferred between source

and target organisms in different evolutionary distances

(i.e. one-to-many) and training set sizes [15]. We iden-

tified MTL algorithms that are particularly well suited
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for this task. In a follow-up project we investigated how

our results generalize to the MTL scenario (i.e. many-

to-many) and showed that exploiting prior information

about task similarity provided by taxonomy can be

very valuable [18]. An example how MTL can improve

performance compared to baseline methods individual

(i.e. learn a classifier for each task independently) and

union (i.e. pool examples from all tasks and obtain a

global classifier) is given in Figure 2. The figure shows
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Fig. 2 Results of the RNA splicing experiment comparing
MTL to baseline methods individual and union. Figure taken
from [18].

results for 6 out of 15 organisms for the baseline meth-

ods individual and union and the MTL algorithm de-

scribed in Section 2.1. The mean performance is shown

in the last column. For each task, we obtained 10000

training examples and an additional test set of 5000

examples. We normalized the data sets such that there

are 100 negative examples per positive example. We re-

port the area under the precision recall curve (auPRC),
which is an appropriate measure for unbalanced classi-

fication problems (i.e. detection problems). For an elab-

orate discussion of our experiments with splice site pre-

diction, please consider the original publications [15,

18].

4 Application to Biological Imaging

Here, we briefly describe another application of MTL

to Biological Imaging. In this example, we jointly learn

prediction models for well annotated 2D data and crude

3D data. The goal is to transfer the knowledge learned

from the 2D data to regularize the 3D model such that

the 3D model is trained robustly even with very limited

annotations.

Current biological research is exhibiting a significant

trend towards using 3D imaging techniques to monitor

complex biological activities at the molecular and cellu-

lar level. This has catalyzed the emergence of a new field

which is referred to as bioimage informatics, which aims

at advancing image analysis to cope with the increasing

complexity and quantity of data from 3D imaging. De-

spite the prevailing employment of 3D imaging and the

heavy focus on advancing 3D image analysis, a ques-

tion is raised: should we just ignore all the available 2D

data? In this application, we show that early 2D data

can be used to facilitate the processing of the emerg-

ing 3D data using MTL by treating 2D and 3D as two

tasks.

Fig. 3 2D and 3D image sequences exhibit different yet cog-
nate distributions in the joint feature space. Prediction mod-
els share a component and are trained jointly.

In practice, the early 2D data is well studied and

contains rich annotation, but the fresh 3D dataset is

crude and manually annotating it is particularly ex-

hausting and time-consuming. Therefore, we want to

train a high-quality prediction model for the 3D data

using as little annotation as possible. A concrete exam-

ple is shown in Fig. 3 in the context of cell tracking

from time-lapse experiments. These two experiments

capture similar biological processes (cell movement, di-

vision, etc.), yielding cognate distributions of tracking

features (we adopted the segmentation in [13] and the

tracking features described in [11]). However, due to

differences in the underlying biological entities and the

experiment conditions, they also exhibit a certain de-

gree of variations (Fig. 3, right). To explore the con-

nection and also capture the difference, we try to learn

prediction models for 2D and 3D jointly, which share a

common component w but also have distinct, domain-

dependent parts (i.e., ws−w and wt−w, the deviation

of domain-specific parameters to their shared base).

Since images are intrinsically structured data, the

models we discuss here are structured prediction models

[16]. We can extend the model described in Section 2.1

to the domain of structured prediction as follows:

min
w,ws,wt

λ1
2
‖w −ws‖2 +

λ1
2
‖w −wt‖2 +

λ2
2
‖w‖2

+Ωs(ws) + Ωt(wt),
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Table 1 Comparison among several training settings. The baseline is a model trained using all fully annotated 3D data –
the most expensive one in terms of annotation cost. Training on 2D data only, though being the cheapest approach, yields a
significant increase of errors (39.8% w.r.t. the baseline). The same applies to training on partially annotated 3D data (21.9%
increased error w.r.t. the baseline (much cheaper, though). By combining the datasets from these two approaches into a MTL
setting, we reduced the relative error to only 3.6% at the same annotation cost.

Methods Test loss Relative to baseline
Trained on fully annotated 3D data (as baseline) 3.69% 0.0%
Trained on fully annotated 2D data 5.16% +39.8%
Trained on partially (25%) annotated 3D data 4.41% ± 0.33 +21.88%±9.0%
Jointly trained on 2D (full) and 3D (partial, 25%) 3.82% ± 0.09 +3.59%±2.57%

where Ωs(ws) and Ωt(wt) are the empirical loss from

the source and target domain, respectively. The two hy-

per parameters λ1 and λ2 have two uses: firstly, they

control the regularization to avoid over-fitting; secondly,

the ratio λ1

λ2
controls the similarity between the two

domains (higher means more related) [9]. We assume

that data is completely annotated in the source do-

main (2D). Therefore, Ωs(ws) is the convex hinge loss

for structured prediction [16]. On the other hand, we

only require partial annotations for the target domain

(3D). Accordingly, the “best” full annotation has to be

inferred during the training, which leads to the bridge

loss introduced in [12]. The resulting objective func-

tion is a convex-concave function and we adopt the fast

CCCP procedure [12] to solve it. For more details, we

refer the users to [12].

The 2D data in our experiment were acquired us-

ing a Nikon’s TE2000 inverted microscope while the

3D data were acquired using a confocal microscope by

Zeiss. For more details, we again refer to [12]. Results

are shown in Table 1. Our baseline is a model trained

using fully annotated 3D data, which is of course very

expensive in terms of annotation efforts. This baseline

approach yields a test loss of 3.69% (first row), which is

significant better than simply training on the 2D data

(second row). To address this issue, we tried 25% par-

tial annotation which brings apparent improvement yet

not sufficient (third row). By jointly learning on 2D and

3D data (fourth row), we bring the relative error down

to 3.59% ± 2.57%.

5 Conclusion and Outlook

We have presented a brief overview of regularization-

based MTL methods that allow the joint learning from

several tasks, with applications in Genome Biology and

Biological Imaging, where joint learning was helpful.

Especially in the context of biomedical data, where

generating training labels can be very expensive, MTL

learning can be viewed as an appealing means to obtain

more cost-effective predictors.

We have shown how to incorporate task similari-

ties into the learning framework by means of graph-

regularizers. In this context, a great challenge in MTL

is how to obtain meaningful task similarities. In some

applications this can be provided by domain experts

or is naturally available, for instance, in form of a tax-

onomy. Recently, advances were made to address the

question of how the similarity or relatedness of tasks

can be learned from data directly. While we did not

cover this aspect of transfer learning in this paper, we

would like to stress that this question is of central im-

portance when applying MTL methods in practice and

point out the methods by [2,21,1] and our own work

[20,19].
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