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Structured learning in its basic formulation requires fully annotated and

accurate training data. Both requirements are often impractical, especially

if training data needs to be generated by human experts. This is because

each training sample can consist of a large number of random variables

whose state has to be specified, and also because annotators have to consider

complex rules to yield valid output structure. This chapter presents several

extensions of structured learning that seek to relieve the annotators’ plight

by enabling learning from “cheap data” and thus making the learning more

“convenient”. For the relevant problem of tracking an unknown number of

divisible objects, this chapter highlights in a tutorial manner (i) structured

learning from partial annotations, (ii) active structured learning and (iii)

structured transfer learning.

Keywords: cheap data, annotation cost, partial annotation, active

learning, transfer learning, max-margin, bundle method
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1.1 Introduction

Structured output predictions can typically be represented in terms of a

graph with both vertex and edge attributes. For instance, each vertex may

be associated with a semantic category, or each edge may have a connection

strength. Such graphs are typically the minimizer of an optimization problem

that combines unary terms — such as the propensity of a specific vertex to

belong to a certain category — with constraints, or with higher-order terms,

that couple the predictions associated with each node or edge.

A relevant instance of structured output prediction is the object tracking

problem. In a tracking-by-assignment approach, we have unary terms that

seek to predict if two targets in subsequent time steps are in fact identical. If

such predictions were made independently, the result may be paradoxical in

that a single target at time t is simultaneously associated with two different

predecessors at time t − 1. Clearly, if the merging of targets can be ruled

out in the application at hand, then only either one or the other association

can be correct, but not both at the same time.

Such structured output prediction problems usually consist of energy

terms whose parameters have to be estimated. This is made possible by

supervised structured learning, which aims at directly optimizing the param-

eters such that the prediction model can reproduce the experts’ annotation

as accurately as possible. Structured learning has significantly broadened

the applications of machine learning to many different fields (Figure 1.1).

As all supervised training, a sufficient and representative training dataset

is required, which, however, becomes a nontrivial issue for structured data.

Firstly, unlike canonical classification or regression whose output is a single

variable, structured model consists of many more variables per sample (for

instance, a DNA sequence can be as long as millions, Figure 1.1B). Sec-

ondly, those variables are interdependent, subject to some rules that have

to be accounted for when annotating the sample (for instance, context-free

grammars in parsing, Figure 1.1A).

This chapter is all about learning approaches that enables efficient learning

with less human effort, which we refer to as structured learning from cheap

data. We will use tracking-by-assignment as a running example in this

chapter. Section 1.2 will show how it can be cast as a structured learning

problem, opening the way to a principled parametrization of expressive

models based on training data alone. However, in biological applications, we

may easily observe thousands of targets in each frame of a video. A standard

structured learning setup would consequently need training samples each of

which has a very complex and large structure. Generating such expensive
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Figure 1.1: Typical structure prediction problems in natural language processing
(A), computational biology (B) and computer vision (C and D).

training data is tedious at best.

Section 1.3 shows how to learn from partial annotations. The un-annotated

parts of the data are treated as latent variables that also need to be optimized

over. This often leads to hard, non-convex optimization problems that can

only be solved approximately by expectation-maximization type procedures.

Computational efficiency is key in such iterative procedures, and we show

how notable speed-ups can be achieved by the recycling of approximation

bounds and an adjustment of convergence criteria over time. Given a good

initialization (which is necessary given that these iterative schemes end up

in a local optimum), such procedures reach competitive accuracy with only a

fraction of full annotations. Theoretically, Section 1.3 also proves consistency

of the loss functions used therein, and offers a probabilistic bound on the

generalization error of structured learning from partial annotations.

Section 1.4 presents an attractive alternative based on active learning,

where one iteratively identifies part of a training set that is deemed most

informative. The rationale is that judiciously choosing the training examples

to be labeled should afford steeper learning curves (accuracy as a function

of training set size) than randomly selecting a subset for labeling.

Finally, in Section 1.5, we illustrate structured transfer learning. The idea

here is to regularize the training procedure by coupling the learning of the

parameters to a related but different learning problems for which abundance
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training data is already available. This technique is an embodiment of the

notion “extra data for better regularization”.

The motivation, prior work and necessary notation will be introduced at

the beginning of each of the three main sections. In Section 1.6 we conclude

with a brief discussion of the presented and future work.

1.2 Running Example: Structured Learning for Cell Tracking

Before diving into the technical details, we first introduce a structured

prediction model for cell tracking that we will use throughout this chapter.

1.2.1 Background

Unlike conventional computer vision problems such as surveillance analysis

which contains a handful of (heterogeneous) objects, a bio-image sequence

normally contains hundreds and even thousands of homogeneous objects

that are divisible according to some biological process (for instance, cell

division). The combination of such vast amount and the very complex

underlying temporal events raises a new challenge to the vision community.

As discussed in Meijering et al. (2009), conventional tracking techniques are

not applicable because of either limited expressive power (for instance, level-

set) or low scalability (for instance, particle filter). Alternatively, tracking-

by-assignment methods have shown promising performance in capturing

complex mixture of events (Padfield et al., 2011) while also keep being

scalable to even thousands of objects (Lou et al., 2011).

1.2.2 Generalized Pairwise Tracking Models

We assume a robust detection algorithm to detect objects (i.e., cells) but we

accept errors such as over-segmentation and under-segmentation. We pro-

pose a generalized pairwise tracking model that encloses a mixture of events

such as cell migration, cell division, as well as over-/under-segmentation,

see Figure 1.2. Formally, given sets of detected objects {C, C ′} from two

subsequent frames, the model assumes a multitude of possible assignment

hypotheses (e.g., events) and seeks a subset that is most compatible with
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Figure 1.2: Panel A) Toy example: two sets of object candidates, and a small subset
of the possible assignment hypotheses. One particular interpretation of the scene is
indicated by solid arrows (left) or equivalently by a configuration of binary indicator
variables y (rightmost column in table). Some rejected hypotheses are shown as light
gray dash lines. Panel B) A factor graph representation of the proposed pairwise
tracking model, which consists of unary potential as individual event scoring and
high-order potential for guaranteeing consistency.

the observations and with the parameter learned from the training data:

argmax
y∈{0,1}M

L(x, y;w) :=
∑
e∈E

∑
c∈P (C)

∑
c′∈P (C′)

〈fec,c′ , we〉yecc′ (1.1)

s.t. ∀c′ ∈ P (C ′),
∑
e∈E

∑
c∈P (C)

yec,c′ = 1, (consistency) (1.2)

∀c ∈ P (C),
∑
e∈E

∑
c′∈P (C′)

yec,c′ = 1. (consistency) (1.3)

Here, M is the total number of hypothetical events, E is a set of event

types (migration, division, etc.), and P (C) is a power set of C such that

we can define events that express, for example, one-to-many matching as

cell division is. Besides, fec,c′ is a feature vector for the hypothetical event e

between objects c and c′, and, parametrized by we, 〈fec,c′ , we〉 is the linear

scoring of this hypothesis, which is counted if yecc′ = 1 (i.e., selected).

However, y is subject to consistency constraints: each candidate in the first

frame must have a single fate, and each candidate from the second frame

a unique past. That is, for hypotheses associated with the same candidate,

only one of them can be accepted. To this end, as the corresponding factor

graph representation (Kschischang et al., 2001) shows (Figure 1.2 B), this

model consists of unary factors that represent the scoring of individual

hypothetical events and high-order factors that couple those events and

guarantee consistency.

Obviously, (1.1) is a linear model, as L(x, y;w) = 〈w,Φ(x, y)〉. Here,

w is the concatenation of event-specific parameters and Φ(x, y) is the

concatenation of event-specific features summed up over all activated events,

which is referred to as the joint feature vector.
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For a given parameter w, we use integer linear programming (ILP) solvers

to find the best assignments. Commercial solvers such as IBM’s CPLEX or

Gurobi’s tools can scale up to thousands of hypotheses (Lou et al., 2011).

1.2.3 Max-Margin Formulation and Optimization

Given N training frame pairs X = {xn} and their correct assignments

Y ∗ = {y∗n}, n = 1, . . . , N , we attempt to find the decision boundary

that maximizes the margin between the correct assignment y∗n and the

closest runner-up solution, i.e., the canonical max-margin learning paradigm

(Taskar et al., 2003; Tsochantaridis et al., 2006):

argmin
w,ξ≥0

λΩ(w) +

N∑
n=1

ξn

s. t. ∀n, ∀y ∈ Yn, L(xn, y
∗
n;w)− L(xn, y;w) ≥ ∆(y∗n, y)− ξn,

(1.4)

where Yn is the output space and using ∆(y∗n, ŷn) instead of a fixed margin

is known as margin rescaling (Tsochantaridis et al., 2006).

Since (1.4) involves an exponentially large number of constraints, the

optimization problem cannot be written down explicitly, let alone be solved

directly. We thus resort to the bundle method (Teo et al., 2010; Do and

Artieres, 2012) which, in turn, is based on the cutting plane approach (see,

for instance, Tsochantaridis et al. (2006); Joachims et al. (2009); Rätsch

et al. (2002)). Briefly, bundle methods iteratively construct piece-wise linear

bounds for the empirical loss (i.e., “cutting” planes) until the bounds are

sufficiently tight. The procedure terminates when the approximation gap ε,

i.e., the difference between the true objective function and its linear bounds

at current w, reaches a threshold (Teo et al., 2010).

Method Description Avg. Loss

Li et al. (2010) Graph matching, no learning 6.18%

Padfield et al. (2011) ILP as max-flow, no learning 1.64%

Manual tweaking Tweaking via visual inspection on results 1.12%

Random Forest Learning local event classifiers 0.55%

Structured learning (L1) Eq. (1.4) with L1 regularization 0.45%

Structured learning (L2) Eq. (1.4) with L2 regularization 0.30%

Table 1.1: Comparison of average loss using six approaches on the DCellIQ dataset.
Compared to Li et al. (2010) who first studied this dataset, structured learning
obtained an improvement by a factor of 20 (0.30% vs. 6.18% loss).
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1.2.4 Results: First Look

We compared the structured output learning algorithm above with L1 and

L2 regularizer against several state-of-the-art cell tracking methods on the

DCellIQ dataset provided by Li et al. (2010). The results can be found

in Table 1.1. Our structured learning based method outperforms all of the

other methods with a clear margin. Compared to Li et al. (2010) who first

studied this dataset, we obtained an improvement by more than one order

of magnitude (0.30% vs. 6.18% loss), illustrating the power of structured

output learning for this application.

1.2.5 Annotation Cost for Training Data Preparation

The encouraging performance boost by structured learning has a major re-

quirement: a sufficiently large set of representative training samples. How-

ever, manually annotating hundreds of events per pair of frames is particu-

larly labor-intensive and time-consuming. This severely limits the applica-

bility of such advanced learning technique when to be deployed in real-world

scenarios. For instance, annotating and validating a training dataset like the

DCellIQ dataset takes 8 to 15 hours.

1.3 Strategy I: Structured Learning from Partial Annotations

1.3.1 Motivation

Canonical structured learning always assumes fully annotated data, i.e.,

specifying the state of each and every random variable in the structured

output. This is particularly expensive for complex and/or large structured

outputs. For example, in natural language processing manually constructing

the entire parsing trees is labor-intensive. Also, in computational biology

as our running example is, even a single sample (i.e., a pair of frames)

contains hundreds of events. This motivates us to investigate the possibility

of learning structured prediction models using only partial annotations,

namely only a fraction of the complex structured output per training sample

requires annotation. We consider this a viable approach because large,

complex output structures are merely the compositional output of simple,

local patterns. As per our examples above, the parsing tree is essentially

constructed using rules from the context-free grammar, and, for cell tracking,

the complete output assignment consists of local events such as cell migration

and cell division.

We build on important previous work for multiclass classification with
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ambiguous labels. For example, Jin and Ghahramani (2002) proposed an

EM-like algorithm that iteratively estimates the label distribution and clas-

sifies using this distribution as a prior. Recently, Cour et al. (2011) proposed

convex loss for partial labels, which in turn resembles the one-versus-all loss

(Zhang, 2004). We will extend this loss to structured data and discuss its

properties. This work is also closely related to structured learning with latent

variables (Yu and Joachims, 2009). The difference lies in the loss and the

optimization strategy. Also, note that structured learning from partial anno-

tations is different from semi-supervised or unsupervised structured learning

(Zien et al., 2007). In those settings, training samples are either completely

annotated or completely unannotated.

1.3.2 Formulation

Formally, we want to learn a structured prediction model from a partially

annotated training set {(xn, y∗n) ∈ Xn × Yn}n∈[N ]. Here, xn is a structured

input from a space Xn. (Note that the cardinality of the spaces Xn, Yn is

typically different for each input n.) y∗ is a partially annotated structured

output which induces a partitioning of the structured output space Y into

two sets Y∗ ∩ Y◦ = ∅, Y∗ ∪ Y◦ = Y. Y∗ comprises all outputs that are

compatible with a partial annotation y∗, while Y◦ encompasses all those

structured outputs that are not compatible with the partial annotation.

Structured learning needs to discriminate a correct structured output

from an exponential number of wrong ones. We follow the max-margin

argument (Tsochantaridis et al., 2006; Taskar et al., 2003) by constructing

a loss function that penalizes small margins between the current prediction

inferred from the partial annotation and the second best output, which,

coupled with margin rescaling, leads to the following loss:

lpartial(x, y∗;w) =

∣∣∣∣max
y∈YP

[f(x, y;w) + ∆(y∗, y)]− max
y∈YR

[f(x, y;w)]

∣∣∣∣
+

Here, YP is a “Penalty” space, since its members make a positive contribu-

tion to the loss. On the contrary, YR denotes a “Reward” space because it

contains the correct configuration and brings a negative contribution. This

loss resembles a generic structure for a number of other losses proposed in

the literature (see a summary in Lou and Hamprecht (2012)). For example,

if YP = Y◦ and YR = Y∗, lpartial(x, y∗;w) becomes the bridge loss proposed

in Lou and Hamprecht (2012), which is used in this chapter.
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Given the loss for partial annotations, we define the learning objective as

min
w

λΩ(w) +
∑
n

max
y∈YP

n

[f(xn, yn;w) + ∆(y∗n, y)]︸ ︷︷ ︸
P (w), convex

−
∑
n

max
y∈YR

n

[f(xn, y;w)]︸ ︷︷ ︸
R(w), convex

s.t. each loss must be non− negative. (1.5)

Equation 1.5 is a subtraction of two convex functions, namely λΩ(w) +

P (w) − R(w). Note that this formulation is equivalent to the canonical

form with slack variables and (exponentially many) constraints. We keep

this form to emphasize the structure of the objective which we will elaborate

next. Note that, for max loss and bridge loss, the nonnegativity constraints

can be achieved by ignoring the gradients of the samples that violate them

during model update, as in usual SVM.

1.3.3 Optimization

In the sequel we will discuss the algorithmic aspects of solving (1.5).

The subtraction of two convex functions forms a convex-concave opti-

mization problem that can be solved by the CCCP procedure (Yuille and

Rangarajan, 2003). Briefly, CCCP iterates between:

Step 1: At iteration t, estimate a linear upper bound on the concave function

−R(w) using its subgradient at wt, i.e., vt = −∂wR(wt).

Step 2: Update the model by argminw J̃(w) := λΩ(w) + P (w) + 〈vt,w〉.
However, structured learning is computationally expensive due to the

repetitive maximization problems one has to solve at every iteration to

compute the subgradients. This becomes even worse in the CCCP framework

because a complete run of structured learning is performed largely from

scratch per iteration. We now introduce a novel method for speeding up

CCCP when structured learning is required.

The learning objective J̃(w) in 1.5 has two important properties:

Complexity: J̃(w) consists of three terms with different complexity: a

regularizer λΩ(w) (e.g., quadratic when using L2 regularization) and a linear

term 〈v,w〉, both smooth and easy to solve, and a complicated, possibly

non-smooth term P (w).

Consistency: J̃(w) changes at each CCCP iteration, due to the update of

v; however, the difficult function P (w) remains the same.

These two observations lead to two ideas for speedup. Firstly, we construct

a piece-wise linear lower bound on the difficult P (w) only, rather than on the

entire objective J̃(w) as in Yu and Joachims (2009). Since the P (w) part of

J̃(w) remains the same, we can reuse these bounds across multiple CCCP

iterations and avoid recomputing them from scratch. When some “good”
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Figure 1.3: CCCP procedure: starting from w0, iteratively match points in the
two curves which have the same subgradient, until convergence to the optimal w∗.
CCCP with fixed precision (left) requires fewer iterations, but more bounds than
CCCP with adaptive precision (right).

linear approximation for P (w) is provided at each iteration, solving J̃(w) is

easy because the other two terms are simple. We name this technique bounds

recycling, since the bounds will be reused to compute the approximation gap

between the original objective and its linear approximation.

Secondly, CCCP iteratively matches points on the two convex functions

(i.e., λΩ(w)+P (w) and R(w)) which have the same subgradient, see Fig. 1.3

(left). Since we usually start with some w0 far from the optimum, it is not

sensible to solve J̃(w) to high precision at early iterations. Otherwise, many

bounds need be computed to achieve this precision at some immature w,

which are mostly not reused at later iterations when precision really mat-

ters. Therefore, we propose to adaptively increase the precision of CCCP

iteration until reaching the required precision. This procedure, named adap-

tive precision, is shown in Fig. 1.3 (right). Since the training precision is

controlled by the approximate gap ε, this means we gradually decrease ε per

CCCP iteration (see line 5, Algorithm 1.1).

To construct a lower bound approximation for P (w), we follow the bundle

minimization method from Teo et al. (2010). Briefly, at somewt, we compute

the subgradient of P (w) and the corresponding offset, denoted as a and b,

respectively.

Now, this lower bound sitting at wt can be expressed as 〈a,w〉 + b ≤
P (w),∀w. We store all subgradients a as column vectors in set A =

{a0,a1, . . .} and the offsets b in set b = {b0, b1, . . .}. Given A and b, solving
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Algorithm 1.1 Structured learning from partial annotations

1: Input: {xn, y∗n}, w0, η, {ε, εmin, ρ}
2: Initialize t← 0, k ← 0,A← ∅, b← ∅,w ← w0

3: repeat
4: Compute vt as the upper bound of the concave function
5: Set adaptative precision ε← max(ε× ρ, εmin)
6: repeat
7: Compute gradient ak and offset bk
8: Set A← A ∪ ak and b← b ∪ bk
9: Update w using Eq. 1.7 with A, b and vt

10: Compute approximation gap ε̂ (see Teo et al. (2010))
11: Set k ← k + 1
12: until ε̂ ≤ ε
13: Set wt+1 ← w
14: Set t← t+ 1
15: until J̃(wt−1)− J̃(wt) ≤ η
16: Output: w

J̃(w) in Eq. (1.5) becomes

min
w

λΩ(w) + max
(a,b)∈(A,b)

(〈a,w〉+ b)︸ ︷︷ ︸
Linearly lower bounded P (w)

+〈v,w〉 (1.6)

Given regularizer Ω(w) = 1
2‖w‖

2, this can be solved in its dual by

max
α

− 1

2λ
α′A′Aα+

(
b′ − 1

λ
v′A

)
α

s.t. α′1 = 1,α ≥ 0.

(1.7)

Note that the particular A in Eq. (1.7) is a matrix representation of the

set of gradients A obtained by concatenating the (column) vectors a ∈ A.

Similarly, the variable b in Eq. (1.7) is a column vector of the offsets b ∈ b.
The primal variable w is connected to α by w = − 1

λ(v + Aα). It is

possible collapse the previous lower bounds to a small number without loss

of accuracy or convergence guarantees (Do and Artieres, 2012).

1.3.4 Theoretical Analysis

In this section, we show a generalization bound for the proposed method of

structured learning with partially annotated outputs. This establishes the

theoretical guarantee that the algorithm will not overfit, given sufficiently

many training examples.

Theorem 1.1 (Generalization Bound for Structured Learning with Par-
tially Annotated Outputs). Let D = (xn, y

∗
n)1≤n≤N be an i.i.d. family of

random variables with y∗n ∈ Yp ⊃ Y such that there exist B > 0 such that



12 Structured Learning from Cheap Data

P (‖Φ(x, y)‖ ≤ B) = 1. Let ∆max := supy,y′ ∆(y, y′). Put l(xn, y
∗
n,w) :=∣∣maxy∈Y◦n (〈w,Φ(x, y)〉+ ∆(yn, y))−maxy∈Y∗n〈w,Φ(x, y)〉

∣∣
+

. Denote w∗ ∈
argminw:‖w‖≤µ E[l(x, y,w)] and ŵN ∈ argminw:‖w‖≤µ Ê[l(x, y,w)]. Then,
with probability at least 1− δ, the generalization error of structured predic-
tion with partially annotated outputs is bounded by:

E[l(x, y, ŵN )|D]− E[l(x, y,w∗)] ≤
(µB + ∆max)

(
8 |Yp| |Y|+

√
2 log(2/δ)

)
√
N

.

Due to the chapter space constraint, the detailed proof is available on-

line at http://raetschlab.org/suppl/mitbookstruct. The proof follows

similar ideas in multiclass classification (Koltchinskii and Panchenko, 2002).

We observe that the bound depends quadratically on the size of the output

space, which can be very large and render the value of the bound high. For

specific structures such as hidden Markov models, it might be possible to

obtain a tighter bound (cf. Chapter 11 of Bakir et al. (2006)). The above

bound establishes consistency in the sense that E[ŵN ] − E[w∗] → 0, when

N →∞. Another interesting question is whether the formulation fulfills con-

sistency with respect to the discrete loss function ∆. Such an analysis was

presented in McAllester and Keshet (2011), who showed asymptotic con-

sistency of the update direction of a perception-like structured prediction

algorithm. Whether such a result also holds for an analog perceptron-like

algorithm using partially annotated labels is unknown at the present time.

1.3.5 Results

We use training data (DCellIQ from Li et al. (2010)) and test data (Mi-

tocheck from www.mitocheck.org) from two different labs for a realistic

demonstration.

Firstly, on the running example our structured learning from partial anno-

tations is compared against bundle method for risk minimization (Lou and

Hamprecht, 2011) using full annotations, and structured perceptron with

partial annotations (Fernandes and Brefeld, 2011). To make all experiments

comparable, the same (training) precision, i.e. the approximation gap (Teo

et al., 2010), was used for bundle method and the method proposed here.

The structured perceptron with partial annotations was trained until the

task loss, i.e. the true loss ∆(·, ·), became zero, or stopped improving, using

early stopping.

Fig. 1.4 shows a comparison of the average test loss (specifically, the

task loss ∆(·, ·)). Firstly, the tracking model trained using 25% partial

annotation is comparable to a model training using fully annotated data.

Secondly, the proposed method consistently outperforms the structured
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perceptron with partial annotation. We attribute this to the perceptron’s

lack of regularization, and resulting overfitting. Fig. 1.5 shows a comparison

of training times. Once the proportion of partial annotation exceeds 20%,

our method requires roughly twice as much time as the bundle method for

risk minimization that is working on full annotations only. Training the

structured perceptron appears to be more expensive.

Secondly, we compare our optimization strategy to the CCCP procedure

from Yu and Joachims (2009) which does not use the bounds recycling and

adaptive precision proposed here. We also study the effect of omitting either

bounds recycling or/and adaptive precision. Fig. 1.6 shows the convergence

of the objective function. All optimization methods converge to the same

objective value. Using both bounds recycling and adaptive precision, we

achieve a speed-up of a factor of approximately 5. Note that we implemented

Yu and Joachims (2009)’s CCCP procedure using the BMRM method (Teo

et al., 2010) whose complexity O(1ε ) is actually better than that of the

proximal bundle method used in the original paper, O( 1
ε3 ). Fig. 1.7 shows

the total number of bounds computed across the CCCP iterations. By

using bounds recycling, our method only requires ca. 100 bounds until

convergence, while Yu and Joachims (2009)’s approach computes almost

100 bounds at its first iteration.

1.4 Strategy II: Structured Data Retrieval via Active Learning

In the previous chapter we have described a strategy in which we can take

advantage of partial annotation which is typically easier to obtain than a
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Figure 1.6: Decrease of the objective
function. Using both bounds recycling
and adaptive precision, we achieve a
speed-up of a factor of approximately 5
compared to Yu and Joachims (2009).
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Figure 1.7: Total Number of bounds
before convergence. We need ca. 100
bounds until convergence, while Yu and
Joachims (2009) already computed al-
most 100 bounds at its first iteration.

complete annotation. In many cases the annotation is produced in a manual

effort. This section describes an alternative strategy based on active learning

in which the annotator is guided through the dataset and asked to label only

specific parts. This can lead to significant reductions of the labeling efforts.

1.4.1 Motivation

The concept of active learning is to guide users to annotate samples that

are pivotal to improving the predictor and avoid wasting efforts on already

well covered cases. One principled way is to estimate the uncertainty of

each parameter in the model after structured learning, and then to identify

that (part of a) training sample that will lead to the greatest reduction in

uncertainty (Anderson and Moore, 2005). Unfortunately, such an endeavor is

extremely costly (Krause and Guestrin, 2009) and not pursued here. Another

good approach is to find that (part of a) training annotation whose inclusion

in the training set minimizes the expected risk. Additional strategies of

active learning for detecting rare positives were discussed (Warmuth et al.,

2003). Even in unstructured prediction, such criteria are only tractable for

specific classifiers such as Naive Bayes that allow efficient evaluation. In

structured prediction, one possibility is to estimate the expected change of

the predictions instead.

This section discusses a simple alternative, namely to break the large

training instances into parts (a violation of their structure!) and to then

identify those parts that look most informative, according to a variety of

criteria. The parts selected by the algorithm can then be annotated by the

human expert, added to the training set, etc. Our method consists of the
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following core components: uncertainty measure, model update and stopping

criteria. In what follows, we elaborate on the details following the pseudo-

code shown in Algorithm 1.2.

Algorithm 1.2 Active structured learning with perceptron.

1: Input: D ← {xn}Nn←1,w, η̂
2: Initialize DL ← ∅,DU ←D, t← 1
3: repeat
4: Find x̃← arg maxx∈DU

q(x,w)
5: Annotate ỹ∗

6: Set DU ←DU \ x̃
7: Set DL ←DL ∪ {(x̃, ỹ)}
8: for all (x, y∗) ∈DL do
9: Compute the best assignment ŷ
10: Update w ← w + Φ(x, y∗)− Φ(x, ŷ)
11: end for

12: Compute average uncertainty q̄t ←
1

|DU|
∑

x∈DU

q(x,w)

13: Compute convergence measure η(q̄t−T :t) according to (1.8)
14: Set t← t+ 1
15: until η(q̄t−T :t) ≤ η̂ or DU ≡ ∅
16: Output: w

1.4.2 Algorithm

In this section we will discuss the algorithmic aspects of our approach.

Firstly, proper means for measuring prediction uncertainty is vital to the

uncertainty based active learning framework (Settles, 2012). We propose to

use four different uncertainty measures described in Table 1.2. They are

direct extensions of uncertainty measures for flat data (Tong and Koller,

2002; Schohn and Cohn, 2000) to structured data as in this paper. As line

4–6 of Algorithm 1.2 shows, at each iteration, we find the most uncertain

sample (i.e., pair of patches) from all unlabeled samples DU and demand

annotation from the annotator. We will compare the learning curves of those

uncertainty measures in section 1.4.4.

Secondly, at each iteration the model parameter w needs to be properly

updated after receiving a newly annotated sample. Given a labeled training

set DL, a näıve way is to invoke max-margin structured learning from

the previous Section 1.2.3. However, this turns out inefficient in practice:

max-margin structured learning is known very expensive (Tsochantaridis

et al., 2006), which means that the annotator has to wait a few minutes

before proceeding to the next sample. Therefore, we resort to structured

perceptron (Collins, 2002) for model update (line 8–11, Algorithm 1.2).

Briefly, it makes a one-pass run through all labeled samples and updates
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Name Formulation and Description

Random q(x,w) ∼ uniform(0, 1)

Scoring q(x,w) = exp

(
−max

y∈Y
w′Φ(x, y)

)
Higher value of max

y∈Y
w′Φ(x, y) indicates higher confidence on the

predicted tracking using existing parameter w.

Best vs. Worst q(x,w) = exp

(
−
(

max
y∈Y

w′Φ(x, y)−min
y∈Y

w′Φ(x, y)

))
Larger margin between those two terms indicates higher confidence
towards the best predicted tracking w.r.t the worst one.

Best vs. 2nd q(x,w) = exp

(
−
(

max
y∈Y

w′Φ(x, y)− max
y∈Y◦

w′Φ(x, y)

))
maxy∈Y◦ w′Φ(x, y) means computing the second best scoring and
larger margin between those two terms indicates higher confidence
towards the best predicted tracking w.r.t the second best one.

Table 1.2: List of uncertainty sampling strategy for comparison. Random assumes
a uniform distribution of uncertainty on all samples. The rest are direct extensions
of uncertain measures proposed in the literature on flat data (Tong and Koller,
2002; Schohn and Cohn, 2000).

the parameter by incrementally (and locally) adding the gradient, i.e.,

w = w + ∂w (L(x, y∗;w)− L(x, ŷ;w)) (equivalent to line 10).

Thirdly, to decide when to terminate the entire active learning iteration,

we chose a very popular measure proposed in Vlachos (2008) – the average

uncertainty over all remaining unlabeled samples (cf. Table 1.2). This does

not require any holdout validation dataset. At iteration t, given a sequence

of computed average uncertainty q̄t−T :t (incl. previous ones), we compute

the convergence measure η from Laws and Schätze (2008) (line 12–13,

Algorithm 1.2) using

η(q̄1:T+1) = |m̂ean(q̄2:T+1)− m̂ean(q̄1:T )|, (1.8)

where m̂ean(·) is the robust mean (i.e., mean of the elements within the

10% and 90% quantile). This convergence measure drops low when the

improvement on average uncertainty remains minor for several iterations.

We stop the active learning when the convergence measure is below a given

threshold or all samples are labeled (line 15, Algorithm 1.2).

Finally, we propose a combined learning strategy. Though gaining speed,

using structured perceptron for model update has two drawbacks: lack of reg-

ularization and local (thus noisy) gradient update (line 10, Algorithm 1.2).

This makes the learned model prone to overfitting and also unstable in con-

vergence. Therefore, in practice we use a combined approach: we use active
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structured perceptron only for training data retrieval and, after its conver-

gence, we use max-margin structured learning to obtain a regularized and

globally optimized model. It is also possible to call max-margin training mul-

tiple times during the active learning procedure, which is in spirit related to

the hybrid training procedure in LASVM (Bordes et al., 2005).

1.4.3 Complexity Analysis

Assuming a pool of N unannotated samples, the complexity of the proposed

Algorithm 1.2 is O(N2), while the complexity of using dual max-margin

structured learning for model update is at least O(N3).

In Algorithm 1.2, at iteration t (1 ≤ t ≤ N) we need N predictions in total,

among which N − t predictions are for uncertainty estimation on unlabeled

samples (line 4) and the rest t for model update using the newly labeled

sample (line 8–11). This gives t · N predictions overall after t iterations.

Since t is a fraction of N , the overall complexity is O(N2).

In the case of dual max-margin structured learning (cf. Section 1.2.3) for

model update, Bottou (2007) shows that, in the dual SVM (and alike, e.g.

max-margin structured learning), the number of support vectors scales at

least linearly with the number of training samples. Thus, the complexity of

max-margin structured learning using the dual is at least quadratic because

we need compute the inner-product of each support vector and each sample.

The complexity is at least
∑
t

[
(N − t) + t2

]
, which amounts to O(N3).

1.4.4 Results

We train on the DCellIQ dataset from Li et al. (2010) and test on the

Mitocheck dataset. We first applied patchification on the training data

(DCellIQ), namely a pair of full images is divided into pairs of local patches

which are used for training. We consider patchification a necessary and

viable pre-processing step for active learning. Otherwise, annotating a single

sample with many patches is already too tedious and time-consuming, and

part of the efforts is wasted on similar and repeated event patterns.

We first evaluate the uncertainty Measures and stopping criteria. Using

660 patchified training samples from the DCellIQ dataset, in Fig. 1.8 we

compare the learning curves (i.e., average uncertainty) of the four uncer-

tainty measures up to 50% of the total training samples. Best vs. Worst

is stably converging at the beginning but has a second wave of significant

changes after 16% of total training samples. The same applies to Scoring but

the changes of average uncertainty are more drastic. Best vs. 2nd appears
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to be the best performing one: it converges to a stable state after 17% of

total training samples.

Regarding stopping criteria, Random is excluded because it is not suitable

for the uncertainty convergence measure η according to (1.8). To compute η,

we chose T = 80 and used 10−4 as the stopping threshold. As the embedded

figure in Fig. 1.8 shows, they all stop at around 17% of training data.

To further understand the learning curve in a practical setting, we evalu-

ated all intermediate w by the active learning on the test data, respectively

for all uncertainty measures. The result in Fig. 1.9 further supports our

choice of Best 2nd not only because of its superiority in stability but also

for its lower test error.
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Figure 1.8: Comparison of uncertainty
measures: average uncertainty vs. per-
centage of training data. The embedded
figure shows the uncertainty convergence
η vs. the percentage of training data.
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Figure 1.9: Comparison of uncertainty
measure: test error vs. percentage of
training data. Best vs. 2nd shows supe-
rior performance in terms of convergence
speed and stability.

Regarding practical runtime, using the structured perceptron for model

update yields pleasant runtime. Across iterations it requires (stably) less

than 9 seconds to perform model update and uncertainty computation. We

consider this a tolerable delay for interactive labeling. Note that this runtime

is dependent on the hardware specification of the computer because the

underlying solver CPLEX can run the branch-and-bound ILP algorithm in

parallel. We used a 2.40 GHz Intel Xeon machine with 12 cores.

Finally, Table 1.3 shows the result of the proposed combined learning

strategy (CL), using 17% (i.e., the stopping point by the convergence

measure), 30% and 40% of training samples, compared against the active

learning (AL) output. This affords the following observations. Firstly, using

the same amount of training samples, regularized max-margin learning

generally improves the output of active learning. Secondly, Best vs. 2nd

performs better than the rest uncertainty measures. Finally (and most
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Pct. of Training Data 17% 30% 40%

Active or Combined Learning AL CL AL CL AL CL

Random 1.77 1.66 2.14 1.53 2.43 1.31

Scoring 3.72 1.78 2.79 1.73 1.80 1.11

Best vs. Worst 2.73 2.23 2.73 3.06 3.72 1.36

Best vs. 2nd 1.33 1.08 1.26 1.06 1.29 1.09

Baseline 1.07

Table 1.3: Comparison of average test loss between active learning (AL) and
combined learning (CL) on different percentages of training data. Among those
uncertainty measures, Best vs. 2nd reaches a performance comparable to the
baseline method (trained on all data) using 17% of the entire training data. The
unit of the average loss is %.

importantly), using Best vs. 2nd as uncertainty measure and using only

17% of the training samples, we can train a tracking model as competent as

the baseline model learned from all samples (baseline in Table 1.3).

1.5 Strategy III: Structured Transfer Learning

1.5.1 Motivation

The previous strategies are designated for settings in which one has to

construct training data completely from scratch. This section focuses on

a different setting in which rich annotations are available for some datasets

while we need to analyze another one that is different yet closely related.

Typical examples include machine translation across similar languages and

experimental data analysis with varying experimental conditions. Intuitively,

we can reduce the extra effort on annotating the new dataset by exploiting

its connection to those well annotated datasets. Such problems fall into

the category of transfer learning which, in essence, is an embodiment of

the notion “extra data for better regularization”. This section presents an

extension of transfer learning to structured data.

Transfer learning (Caruana, 1997; Evgeniou and Pontil, 2006) has been

successfully applied to many real world problems such as sequence labeling

in NLP (Pan and Yang, 2010) and mRNA splicing site recognition in

computational biology (Schweikert et al., 2008). For the particular case

of structured data, Görnitz et al. (2011) considered transfer learning for

hierarchical tasks for gene finding across species.
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1.5.2 Formulation

Formally, we want to jointly learn from D datasets {D1, . . . ,DD}, where

Dd = {(xn, y∗dn )}n∈[Nd], d ∈ [D]. A näıve approach is to to train on the

union of all dataset, which is referred to as Union. Obviously, the Union

formulation treat all datasets identically and the learning objective is to

achieve a balanced performance over all datasets. This may help but is

limited, particularly regarding the fact that datasets are not likely identical.

To this end, we propose a second strategy that drops this condition:

min
w,w1,w2,...
ξ1,ξ2,...

λ

2
‖w‖2 +

ρ

2

D∑
d=1

‖wd −w‖2 +

D∑
d=1

Nd∑
n=1

ξdn (1.9)

s.t.

∀n ∈ [N1], ∀y ∈ Y1
n, 〈Ψ(x1n, y

∗1
n , y),w1〉 ≥ ∆(y∗1n , y)− ξ1n

...

∀n ∈ [ND], ∀y ∈ YDn , 〈Ψ(xDn , y
∗D
n , y),wD〉 ≥ ∆(y∗Dn , y)− ξDn

As Eq. (1.9) shows, we first regularize each dataset d using separate

parameter vectorwd (left term). This avoids the “averaging” effect in Union.

Secondly, to still encode similarity between datasets, we add the middle

regularization term that penalizes the difference between wd and the shared

componentw. The overall contribution of the middle term is controlled by ρ.

After all, we introduced a higher degree of freedom to the model that allows

to capture the similarity between datasets while respecting their distinction.

The optimization formulation stated in Eq. (1.9) is a quite generic and

resembles several different strategies when parametrized accordingly. When

ρ = 0, each wd is learned for dataset d independently, which means no

learning transferred across datasets. When ρ = ∞, all wd are forced to be

identical to each other, which exactly leads to Union.

1.5.3 Optimization

For the union, the learning objective can be solved using the bundle method

(cf. Section 1.2.3). For the more complicated transfer learning, we provide

an extension of the bundle method (Teo et al., 2010). Briefly, like in max-

margin structured learning, we iteratively construct piece-wise linear lower

bounds for the empirical loss, respectively for each dataset (i.e. domain).
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This leads to the following update rule for w:

min
w,w1,w2,...

λ

2
‖w‖2 +

ρ

2

D∑
d=1

‖wd −w‖2 +

D∑
d=1

max
(a,b)∈(Ad,bd)

{〈a,wd〉+ b}

where (Ad, bd) denote the set of gradients and offsets which form the linear

lower bounds for the empirical loss of domain d.

Using Lagrange multipliers, we can eventually obtain the dual form for

the above formulation:

max
α1,α2,...

−1

2


α1

...

αD


′ 

1
τQ

11 . . . 1
λQ

1D

...
...

...
1
λQ

D1 . . . 1
τQ

DD



α1

...

αD

+


b1

...

b2


′ 

α1

...

αD


s.t. ∀d ∈ 1, . . . , D, ‖αd‖1 ≤ 1 and αd ≥ 0.

Here, Qij = (Ai)′Aj and τ = ρλ
ρ+λ . Furthermore, the primal variables and

the dual variables are connected by

w = − 1

λ

D∑
d=1

Adαd and wd = w − 1

ρ
Adαd,∀d ∈ 1, . . . , D. (1.10)

Note that, similar to Eq. (1.7), the variable Ad and bd in the above

optimization formulation are also the matrix/vector representation of the

set of gradients/offsets, respectively.

1.5.4 Results

We experimented on the same DCellIQ and Mitocheck dataset. Our objec-

tive was to leverage the fully annotated DCellIQ data (e.g., source, 1188

samples) to ease the training of a model for the Mitocheck data (e.g., target,

assumed newly acquired and lacking annotation, 2166 samples for training).

The test data is a hold-out dataset sampled from Mitocheck (2165 samples).

We compared five different learning strategies, as given in Table 1.4. As

Figure 1.10 shows, when annotation in the target increases, Transfer con-

verges to the baseline strategy (All Target) faster than the rest methods, and

achieved a comparable performance at 20% target annotation. Afterwards,

Transfer show very similar performance to Union, and they both outper-

form All Target after adding 30% target annotation which is an indication

of the advantage of leveraging extra data for better regularization.
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Strategy Formulation Parameters Trained on

All Source BMRM λ = 1 All DCellIQ

All Target BMRM λ = 1 All Mitocheck

Partial Target BMRM λ = 2.5 Partial Mitocheck

Union BMRM λ = 1 All DCellIQ & partial Mitocheck

Transfer Eq. (1.9) λ = 0.5, ρ = 2.5 All DCellIQ & partial Mitocheck

Table 1.4: Comparison of learning strategies – Unit %. The approximate gap
parameter ε (see Teo et al. (2010)) is set to 10−2 throughout all strategies. The
other parameters are selected using cross validation.
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Figure 1.10: Comparison of learning strategies listed in Table 1.4. Transfer
converges to the baseline strategy (All Target) faster than the rest methods, and
achieved a comparable performance at 20% target annotation.

1.6 Discussion and Conclusions

We have explored three different approaches for training structured predic-

tion models with significant less annotations while maintaining a similar

generalization performance.

We have proposed and theoretically as well as experimentally analyzed a

method for structured output learning based on partial annotations. In many

cases it is much easier to annotate only a part of an image or a sequence

or to provide incomplete information about the structure. We proposed a

novel algorithm based on bundle methods for solving a CCCP problem.

Theoretically, we have shown that the proposed algorithm is consistent,

and provided its generalization bound. Our experimental results show that

we only need a tiny fraction (approximately 5%) of the complete label
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information in order to achieve almost the same generalization performance

as with full labels.

We have described and proposed two additional strategies for the same

purpose. First, we considered a hybrid active learning strategy in which the

algorithm quickly performs prediction and estimates its prediction uncer-

tainty of many yet unlabeled patches. The annotator then iteratively labels

the most uncertain patches. We have analyzed a few estimators for uncer-

tainty and have shown that the Best vs. 2nd best predictor performs best in

our experiments. With less then 10% of the labeled training data the active

learning algorithm predicts almost as well as with the full training data. We

have also shown work on using transfer learning to reuse model information

from prior experiments to train more accurate models with limited informa-

tion in a new setting. Again with only approximately 5% of the data in the

target domain, the accuracy is almost as good as with all data.

Depending on the prediction problem at hand and the specific difficulties

of obtaining annotation data, different combinations of the presented and

above-mentioned methods will lead to the best results. What we have

described is a set of essentially orthogonal strategies of how to deal with

costly annotations in practice.
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Book Chapter Supplement: Structured Learning
from Cheap data

In this supplement we theoretically analyze the problem of learning with partially annotated outputs.
We need a more refined notation as in the book chapter: we denote Y◦(y) and Y◦(y) for the space
of all outputs that compatible and non-compatible, respectively, with y. Thus, for example, the term
Y◦n in the book chapter is denoted by Y◦(yn) here. We also use a more little different notation for
the loss l (see below).

We focus on the problem using the bridge loss, that is,

min
w

λ ‖w‖2 +
1

N

N∑
n=1

∣∣∣∣ max
y∈Y◦(yn)

(〈w, ψ(x, y)〉+ ∆(yn, y))− max
y∈Y∗(yn)

〈w, ψ(x, y)〉
∣∣∣∣
+

.

First note that we can show by a standard Lagrangian argument (cf., e.g., Proposition 12 in [2]) that,
for any λ > 0 there is an µ > 0 such that the above problem can be equivalently rewritten as follows:

min
w:‖w‖≤µ

1

N

N∑
n=1

∣∣∣∣ max
y∈Y◦(yn)

(〈w, ψ(x, y)〉+ ∆(yn, y))− max
y∈Y∗(yn)

〈w, ψ(x, y)〉
∣∣∣∣
+

. (1)

Now let us denote the base hypothesis class (the kernel class) by Fker :=
{((x, y) 7→ 〈w, ψ(x, y)〉) : ‖w‖ ≤ µ} and its induced structured-prediction class F struct :={

((x, y) 7→ ρf (x, y)) : f ∈ Fker
}
, where ρf (x, y) := maxy′∈Y◦(y) (f(x, y′) + ∆(y, y′)) −

maxy′∈Y∗(y) f(x, y′) . Finally, denote the bridge-loss class by Gbridge := lbridge ◦ F struct ,

where lbridge(t) := |t|+. Thus solving problem (1) is equivalent to performing empirical
risk minimization over the class Gbridge, that is, minf∈Fstruct

1
N

∑N
n=1 l

bridge(f(xn, yn)) =

ming∈Gbridge
1
N

∑N
n=1 g(xn, yn). Hence, we may analyze structured prediction with partially

annotation outputs within the proven framework of empirical risk minimization.

Background on Empirical Risk Minimization Let us briefly review the classic setup of empirical
risk minimization [7]. We assume that (x1, y1) , . . . , (xN , yN ) is an i.i.d. sample drawn from a
probability distribution P over X × Y . Let F be a class of functions mapping from X to some set
Y , and let l : Y × Y → [0, b] be a loss function, for some b > 0. The goal in statistical learning
theory is to find a function f ∈ F that predicts well, i.e., that has a low risk E[l(f(x))]. Denoting
the loss class by G := l◦F , this is equivalent finding a function g with small E[g]. The best function
in G we can hope to learn is g∗ ∈ argming∈G E[g].

Since g∗ is unknown, we instead compute a minimizer ĝN ∈ argming∈G Ê[g], where Ê[g] :=
1
N

∑N
n=1 g(xn). Let us compare the prediction accuracies of g∗ and ĝN . Standard learning theory

gives [7] gives, with probability at least 1− δ over the draw of the sample, E[ĝN ]− E[g∗] ≤

2 sup
g∈G

∣∣E[g]− Ê[g]
∣∣ ≤ 2E sup

g∈G

∣∣E[g]− Ê[g]
∣∣+ b

√
2 log(2/δ)

N
≤ 4RN (G) + b

√
2 log(2/δ)

N
. (2)

The first inequality is a direct consequence of the minimality of f̂ , the second one is by McDiamid’s
inequality [5], and the last inequality follows from symmetrization. Note that the result uses the
notion of the Rademacher complexity RN (G), which is defined as follows.
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Definition 1. Let σ1, . . . , σN be an i.i.d. family of Rademacher variables (random signs, i.e., each
σi takes on the values -1 and 1, with equal probability of 1/2), independent of the sample x1, . . . , xN .
Then the Rademacher complexity of G is defined as RN (G) := E supg∈G

1
N

∑N
n=1 σng(xn).

Commonly RN (G) is of the order O(1/
√
N), when we employ appropriate regularization, so in

that case the bound (2) converges at the order of O(1/
√
N). When bounding the Rademacher

complexity for Lipschitz continuous loss classes (such as the hinge loss or the squared loss), the
following lemma is often very helpful.

Lemma 2 (Talagrand’s lemma; [4], Corollary 3.17). Let l be a loss function that is L-Lipschitz
continuous and l(0) = 0. Let F be a hypothesis class of real-valued functions and denote its loss
class by G := l ◦ F . Then the following inequality holds: RN (G) ≤ 2LRN (F).

Generalization Guarantees for Structured Learning with Partially Annotated Outputs Let
us denote the set of all possible partially annotated outputs by Yp. Then we have the following main
theorem:

Theorem 3 (Generalization Bound for Structured Learning with Partially Annotated Outputs). Sup-
pose there exist b, B <∞ such that P

(
supg∈Gbridge |g(x, y)| ≤ b

)
= 1 and P (‖ψ(x, y)‖ ≤ B) = 1.

Let ∆max := supy,y′ ∆(y, y′). Denote g∗ ∈ argming∈Gbridge E[g] and ĝN ∈ argming∈Gbridge Ê[g].
Then, with probability at least 1− δ, the generalization error of structured prediction with partially
annotated outputs is bounded by:

E[ĝN ]− E[g∗] ≤
(µB + ∆max)

(
8 |Yp| |Y|+

√
2 log(2/δ)

)
√
N

.

In particular, we have consistency, that is, E[ĝN ]− E[g∗]→ 0, when N →∞.

The proof, which is given below, uses similar ideas as in [3] for multi-class classification. In partic-
ular, the following result, taken from [6] (Lemma 8.1), is used.

Lemma 4. Let F1, . . . ,Fl be hypothesis sets in RX , and let F := {max(f1, . . . , fl} : fi ∈ Fi, i ∈
{1, . . . , l}}. Then, Rn(F) ≤

∑l
j=1 Rn(Fj).

Proof. By assumption, we have almost surely,

sup
g∈Gbridge

|g(x, y)| ≤ sup
f∈Fstruct

|f(x, y)| ≤ sup
f∈Fker

|f(x, y)|+ ∆max ≤ µB + ∆max .

Thus, by (2), we have, with probability at least 1− δ,

E[ĝN ]− E[g∗] ≤ 4RN (Gbridge) + (µB + ∆max)

√
2 log(2/δ)

N
(3)

For the remainder of the proof it thus suffices to bound RN (Gbridge). To this end, we proceed in
three steps: 1. showing that RN (Gbridge) ≤ 2RN (F struct), 2. showing that RN (F struct) can
be bounded by the term

∑
y∗∈Yp E

[
supf∈Fker

1
N

∑N
n=1 σnρf (xi, y

∗)
]
, and 3. bounding the latter

term.

STEP 1 The first step is also the simplest of the three: it is an obvious consequence of Talagrand’s
lemma (Lemma 2) as the bridge loss lbridge : t 7→ |t|+ is evidently 1-Lipschitz with lbridge(0) := 0.

2



STEP 2 Next, we note that

RN (F struct)
def.
= E

[
sup

f∈Fker

1

N

N∑
n=1

σnρf (xn, yn)

]
(∗)
≤

∑
y∗∈Yp

E

[
sup

f∈Fker

1

N

N∑
n=1

σnρf (xn, yn)1y∗=yn

]

≤ 1

2

∑
y∗∈Yp

E

 sup
f∈Fker

1

N

N∑
n=1

σnρf (xn, y
∗) (2 · 1y∗=yn − 1)︸ ︷︷ ︸

⊆{−1,1}


+

1

2

∑
y∗∈Yp

E

[
sup

f∈Fker

1

N

N∑
n=1

σnρf (xn, y
∗)

]

(∗∗)
=

∑
y∗∈Yp

E

[
sup

f∈Fker

1

N

N∑
n=1

σnρf (xn, y
∗)

]
,

where (∗) is by the sub-additivity of the supremum, and for (∗∗) we exploit that −σn has the same
distribution as σn.

STEP 3 We start by rewriting ρf explicitly:∑
y∗∈Yp

E

[
sup

f∈Fker

1

N

N∑
n=1

σnρf (xn, y
∗)

]

=
∑
y∗∈Yp

E

[
sup

f∈Fker

1

N

N∑
n=1

σn max
y∈Y◦(y∗)

(f(x, y) + ∆(y∗, y))− max
y∈Y∗(y∗)

f(x, y)

]

≤
∑
y∗∈Yp

(
RN

(
max

y∈Y◦(y∗)

({
x 7→ f(x, y) + ∆(y∗, y) : f ∈ Fker

}))

+ RN

(
max

y∈Y∗(y∗)

({
x 7→ f(x, y) : f ∈ Fker

})))
We now may apply Lemma 4 to remove the maxima in the above bound, that is, for each y∗,

RN

(
max

y∈Y∗(y∗)

({
x 7→ f(x, y) : f ∈ Fker

}))
≤

∑
y∈Y∗(y∗)

RN

(({
x 7→ f(x, y) : f ∈ Fker

}))
and, similar,

RN

(
max

y∈Y◦(y∗)

({
x 7→ f(x, y) + ∆(y∗, y) : f ∈ Fker

}))
≤

∑
y∈Y◦(y∗)

RN

({
x 7→ f(x, y) + ∆(y∗, y) : f ∈ Fker

})
≤

∑
y∈Y◦(y∗)

(
RN

({
x 7→ f(x, y) : f ∈ Fker

})
+ ∆(y∗, y)︸ ︷︷ ︸
≤∆max

/
√
N

)

≤ |Y
◦(y∗)|∆max

√
N

+
∑

y∈Y◦(y∗)

RN

({
x 7→ f(x, y) : f ∈ Fker

})
,

where we have used the well-known fact (e.g., Theorem 12.5 in [1]) that for a any constant c ∈ R,
RN (F + c) ≤ RN (F) + |c| /

√
N . Furthermore, the Rademacher complexity of kernel classes has

been characterized in [1] (Lemma 22), which yields RN

(({
x 7→ f(x, y) : f ∈ Fker

}))
≤ µB√

N
.

Thus, because |Y◦(y∗)|+ |Y∗(y∗)| = |Y|,∑
y∗∈Yp

E

[
sup

f∈Fker

1

N

N∑
n=1

σnρf (xn, y
∗)

]
≤ |Yp| |Y| µB + ∆max

√
N

.
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Putting things together, we thus finally obtain the following bound on the Rademacher complexity:

RN (Gbridge)
STEP 1
≤ 2RN (F struct)

STEP 2
≤ 2

∑
y∗∈Yp

E

[
sup

f∈Fker

1

N

N∑
n=1

σnρf (xn, y
∗)

]
STEP 3
≤ 2 |Yp| |Y| (µB + ∆max)√

N
.

Combining the above result with (3), we obtain the claimed result.
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